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Supplementary Figure 1. Transgenic plants expressing pri-miRNAs with different secondary
structures displayed contrasted phenotypes and miRNA abundance. (a) lllustration of extended
(~50bp lower stem) and concise (~25bp lower stem) pri-miR165-166s. (b) Phenotypic distribution
for 36S-MIR165-166 T1 transformants (n>200 for each construct). Four categories of phenotypic
severity are shown on top. Predicted secondary structures of concise pri-miR165-166s are
displayed on left. miRNA and miRNA* are marked as turquoise and red, respectively. (c)
Phenotypic distribution of T1 transgenic plants expressing 356S-MIR166f mutants (n>200 for each
construct). Schematic structures of pri-miR166f deletion mutants or chimeric mutants harboring
counterparts from pri-miR166¢c are shown on left. (d) Phenotypic distribution of T1 transgenic
plants expressing 35S-MIR166¢ mutants (n>200 for each construct). Schematic structures of pri-
miR166¢ deletion mutants or swapped mutants harboring counterparts from pri-miR166f are
shown on left. () Phenotypic distribution of T1 transgenic plants expressing the 35S-MIR166¢
mutants with various deletions in the terminal loop (n>200 for each construct). Schematic
structures of the pri-miR166¢ terminal-loop deletion mutants are shown on left. Loops # 1, 2, and
3 are shown in pink, green yellow and purple, respectively. (f) sRNA blot analysis of miR166
processed from the concise and extended forms of pri-miR166¢c and chimeric pri-miR166¢
containing counterparts from pri-miR166f in N. Bentha. (g) sRNA blot analysis of miR166
processed from the concise and extended forms of pri-miR166f and chimeric pri-miR166f
containing counterparts from pri-miR166¢ in N. Bentha. RNA blot was probed using 5' end *?P-
labeled oligo probes complementary to miR166. U6 serves as a loading control.
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Supplementary Figure 2. An in vitro DCL1 reconstitution assay system in plants. (a) Semi-RT-
PCR of pri-miR166¢ and pri-miR166f transcripts in the pooled T1 transformants expressing 35S-
MIR166¢ and 35S-MIR166f. Four PCR cycles were used for estimation of levels of pri-miRNA
transcripts. EF7-a was an internal control. (b) Strategies for the 5’ end, 3' end and internal
labeling of RNAs. (c) Western blot analysis of DCL1-HYL1 complexes prepared from N. Bentha.
Immunoprecipitation of DCL1 complexes was performed through two-step purification using anti-
Flag and then anti-Myc antibodies. The DCL1 and HYL1 proteins (shown by arrows) were
detected using a polyclonal anti-Myc antibody. (d) Western blot analysis of SE protein in the
DCL1-HLY1 complexes using a monoclonal anti-HA antibody. (e) Western blot analysis of
immunoprecipitates of DCL1-HYL1 complexes and single SE protein prepared through two-step
purification using anti-Flag and then anti-Myc antibodies. (f) In vitro reconstitution of DCL1 assays
with 5" end labeled pri-miR166¢ and pri-miR166f with addition of SE protein prepared from
immunoprecipitation. RNAs recovered from the reaction mix were fractionated on 15% denaturing
gels. The positions of intact substrates, cleavage products, and RNA markers are shown.
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Supplementary Figure 3. Experimental confirmation of in vitro and in vivo processed products of
pri-miR166¢. (a) In vitro DCL1 reconstitution assay with pri-miR166c¢. The reaction products from
the assay were spiked with RNA markers before fractionation on a 15% denaturing gel. The
positions of intact substrates, cleavage products, and RNA markers are shown. CK, negative
control check. (b) Strategic illustration for 5 RACE assays of intermediate processed products
derived from pri-miR166¢ in planta. Sequences for adapters and primers are provided in
Supplementary table 1. (c-e) Sample sequences for a productive-processing (c) and an abortive-
processing (d) fragment from pri-miR166¢ as well as a processing remnant from pre-miR166¢ (e).
5'-RLM-RACE products were cloned into pENTR vector and plasmids prepared from individual
colonies were sequenced with M13 Forward (¢ and d) and M13 Reverse primers (e).
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Supplementary Figure 4. Helicase domain of DCL1 is essential for abortive processing of pri-
miR166¢. (a) Western blot analysis of purified DCL1 mutants (mDCL1) using a polyclonal anti-
Myc antibody. Immunoprecipitates containing DCL1 (a* or b*, or a* b*) or DCL1 (AH) were
prepared as described as in Figure 2b. (b) In vitro DCL1 reconstitution assays with 5' end *?P-
labeled pri-miR166c¢ transcripts with or without ATP and GTP. (c) In vitro DCL1 (AH) reconstitution
assays of pri-miR166c mutants with fully complementary lower stems. Schematic illustration of the
cleavage products by DCL1 (AH) is shown on right. (d) In vitro DCL1 reconstitution assays with
pri-miR166¢c mutants with varying distances between internal loops and the reference sites
without ATP and GTP. Schematic illustration of the cleavage products is similar to Figure 5d. For
panels (b-d), immunoprecipitation, cleavage assays and processing of RNA products were
performed as described in Figure 2b. The positions of intact substrates, cleavage products, and
RNA markers are marked. Black lines mark the locations of reference sites and internal loops.
Red asterisks on the transcripts indicate 32P-Iabelling positions. Large and small red arrows show
the predominant and minor cleavage sites while turquoise arrows indicate abortive processing
sites. Note: predominant cleavages at the edges of internal loops in C-LS-18 and C-LS-19 in
Panel (d) were less obvious compared to those in Figure 5a.
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Supplementary Figure 5. Identification of processing direction of pri-miR166¢ mutants using semi-
active DCL1 protein. (a) In vitro DCL1 reconstitution assays with the 5" end labeled pri-miR166¢
(AL1) transcripts. Schematic illustration of the cleavage products by DCL1 or DCL1 mutants is
shown on right. Red asterisk on transcripts indicate the 32P-Iabelling positions. Turquoise arrows
indicate the abortive processing sites. (b) In vitro DCL1 reconstitution assays with the 5 end
labeled pri-miR166¢ (C-T4) transcripts. Immunoprecipitation, cleavage assays and processing of
RNA products were performed as in Figure 2b. The positions of intact substrates, cleavage
products, and RNA markers are shown. Schematic illustration of the cleavage products by DCL1
or DCL1 mutants is shown on right. Red asterisks on the transcripts indicate 32P-Iabelling
positions. Red arrows show the productive processing sites.



& &8 &8 @

N N N N
NN NS QNS ¢ ) ) Atorive P )
(nt) GO OO U907 U9 Productive Processing ims— ortive Processing —ml
150-@» @ ~ -
L X ] Y
Gc6
100- UG = G’%
J G ; WA o
_mi *sce6° “oceay U uac ouud® “eea’ucsucuss®Uceas cucau®ac® R
80— Pri-miR166c 45| S8l M2 &5, SHRLE A
= B M i GAYUA
70 ApnA UU’T«\UHU\‘Gc,A
60— . A
AAG
50 - .
ey P Auc- eSS &
7 U
a0- s . \, o S, SRS
Pri-miR166f "% ¢ A
3
- A cA
30 Aol
~ -’ u’/:\.lG
- UUAA U, Uu A UL UAGAL\]JG
20- Pri-miR165a  ¥ou288__ 86 0 0, 8RE S6cC 04e  GURACE deRiecintda, %
¢}
*56G6,
UUU G U
. . G VY WP o
Pri-miR166d e asnny sueve
10— Fouad®

Lane# 1 2 3 4 5 6 7 8

Supplementary Figure 6. In vitro DCL1 reconstitution assays with the 5’ end labeled transcripts of
pri-miR165a and -miR166d. Immunoprecipitation, cleavage assays, and processing of RNA
products were described as Figure 2b. The positions of intact substrates, cleavage products, and
RNA markers are shown. Schematic illustration of the cleavage products by DCL1 is shown on
right. Red asterisks on the transcripts indicate 32P-Iabelling positions. Red arrows show the
expected productive cleavage sites while turquoise arrows indicate abortive processing sites.
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Supplementary Figure 7. Bi-directional processing of pri-miRNAs extends beyond pri-miR166
family and beyond Arabidopsis. (a) An example of bi-directional processing of pri-miRNAs with
large internal loops in Arabidopsis. (b) Secondary structures of pri-miRNAs with extended
sequences in 5" and 3' arms predicted from Mfold program. Red and turquoise lines show
locations of productive and abortive processing. (c) Evidence of bi-directional processing of pri-
miRNAs with branched terminal loops in rice. For Panel (a and ¢) miRNA and miRNA* are marked
in turquoise and red, respectively. Red arrows (A ) and numbers show productive processing sites
and counts of miRNA* reads. Blue arrows (A ) and numbers show positions and counts of sRNAs
resulting from apparent abortive processing events. Pink arrows (A) and numbers show
positions and counts of sSRNAs resulting from yet unappreciated processing events. Gold arrows
(~) and numbers show 5' positions and counts of degradome reads, pooled from eight distinct
libraries?**™*3. The distance from abortive processing sites to internal / terminal loops or between
processing sites is shown between two black lines. Note: reads of miRNAs are not shown
because they are not unique for individual pri-miRNA paralogs. Minor forms of miRNA/*s that are
progressively away from predominant miRNA/* loci are not shown and can be referred in
Supplemental Tables 2 and 3.
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Supplementary Figure 8. RNA blot analyses of pre-miR166 and miR166 in N. bentha transiently
expressing 35S-MIR166¢c mutants. RNA blot was probed using *?P-labelled oligo probes
complementary to the indicated miRNA or pre-miRNA. U6 serves as a loading control. The black
asterisks indicate pre-miRNAs.
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Supplementary Figure 9. Original images of key blots and autoradiographs used in this study. (a)
Refer to Fig. 1b. (b) Refer to Fig.1c. (c) Refer to fig. 1f. (d) Refer to Fig. 2b,d. (e) Refer to Fig.3b,c.

SUPPLEMENTARY TABLE LIST



Supplementary Table 1. Primers used in this study.

Supplementary Table 2. Reads of sRNAs generated from bi-directional processing of selected
Arabidopsis pri-miRNAs.

Supplementary Table 3. Reads of sRNAs generated from bi-directional processing of selected pri-
miRNAs in rice.



