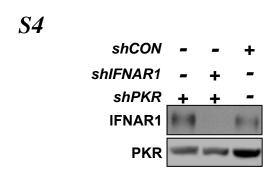
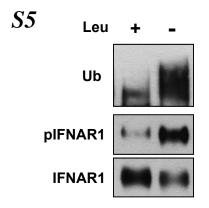


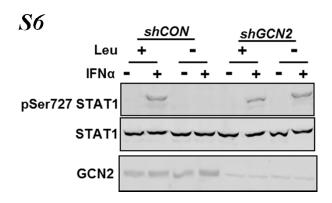
Supplemental Figure S1.


Immunoblotting analysis of the levels of IFNAR1 and HIF1 α in WM266-4 cells transduced with indicated shRNA and incubated for indicated times in 0.5% O_2 .

Supplemental Figure S2. WM266-4 cells transduced with the indicated shRNA and incubated hypoxic conditions $(0.5\%~O_2)$ for 4h were treated with the indicated doses of IFN α . Cell viability was assessed 24 h later. IC₅₀ for cells that received control shRNA was 207 U/mL and those that received PERK shRNA was 125 U/mL.

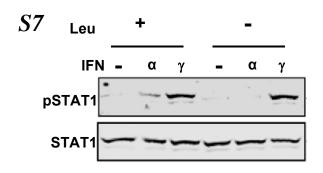


Supplemental Figure S3. Immunoblotting analysis of STAT1 levels and phosphorylation of STAT1 on Ser727 in T47D cells that received control or PKR shRNA 48 h prior to treatment with of IFN α (250 U/mL for 30 min).

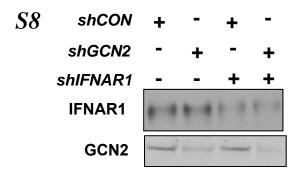


Supplemental Figure S4.

Immunoblotting analyses of IFNAR1 and PKR in the lysates from T47D cells that received the indicated shRNA.



Supplemental Figure S5. Ubiquitination, phosphorylation and levels of IFNAR1 immunopurified from the lysates from 1205Lu cells (incubated in media with or without leucine) were analyzed by immunoblotting using indicated antibodies.



Supplemental Figure S6.

Phosphorylation of STAT1 on Ser727 and levels of STAT1 in WM266-4 cells that received the indicated shRNAs and were incubated in medium in the presence or absence of leucine for 48 h prior to treatment with IFN α (250 U/mL for 30 min). Levels of GCN2 are also shown.

Supplemental Figure S7. 1205Lu cells were incubated in media lacking (or not) leucine for 48 h prior to treatment with either IFN α (250 U/mL) or IFN γ (50 U/mL) for 30 min. Phosphorylation (Tyr701) and levels of STAT1 were analyzed by immunoblotting using indicated antibodies.

Supplemental Figure S8. Levels of IFNAR1 and GCN2 in WM266-4 cells that received the indicated shRNAs were analyzed by immunoblotting.