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Web Appendix A

This section extends the familial-sample model to any size pedigree. Suppose
there are G generations for a pedigree, each with n1,...,nG members. Members at
generation g are denoted by ig1,...,igng . From generations 2 to G, each member has
0, 1, or 2 parents available. The observed log2 ratios for the kth member igk are sigkl

and cigkl
are modeled by sigkl

|λigkl
,σ2

sigkl
∼ N(λigkl

,σ2
sigkl

) and cigkl
|λigkl

,σ2
cigkl

∼
N(λigkl

,σ2
cigkl

). The posterior has the same form as equation (5) in the main
article. The differences are all the products over f, m, o (

∏
i=f,m,o) are replaced by∏

g=1,...,G

∏
i=ig1,...,igng

, and the term
∏

i=f,m P (di|di0) is replaced by the product

over all members without any parent (e.g. first generation, marry-ins). The same
for

∏
i=f,m P (di0). Finally, the term P (do|df ,dm) is replaced by the product of

conditional probabilities of all members with at least one parent. Here, we assume
that the copy number of an individual is conditional independent from those
ancestors at least one generation apart, given his/her parents’ copy numbers.

Web Appendix B

This section describes the parameter inference for BMCP. The method proposed
here is based on those in Suchard et al. (2003) and Tai et al. (2009). The algorithm
comprises four move types: birth step, death step, location update, and parameter
update. Their corresponding proposal probabilities are bK , oK , ηK , λK respec-
tively, where bK = c×min{1, P (K+1)/P (K)}, oK = c×min{1, P (K−1)/P (K)},
and ηK = λK = (1 − bK − oK)/2. The boundary conditions are bKmax = 0 and
o0 = 0. The constant c is set up to be as large as possible with the constraint that
bK + oK ≤ 0.9. We describe how we implement these four move types based on
the one-sample problem. The implementation for the multi-sample and familial-
sample problems are similar so the details are omitted.

The parameter and location updates are done using the standard Metropolis-
Hastings (MH) algorithm. If the proposed move is a parameter update, then we
randomly select one of the segment-specific copy number difference dls, say dj,
and draw its new value d∗

j from an interval centered at dj of truncated normal
N−αjR(dj, u2), where u is a tuning constant. Similarly, we randomly select one
of the d0, say, dj′0, and draw its new value d∗

j′0
from an interval centered at dj′0

of N−α
j
′
R
(dj′0, u

2). Next, we update β. To satisfy the identifiability constraint,

we identify the segment with the smallest absolute copy number difference which
is least likely to be a CNV and randomly select one of the remaining segments

1



and draw its new β from truncated normal distribution with mean equaling the
current value and truncation upper and lower bounds 1 and 0, respectively. The β
for the segment with the smallest absolute copy number difference is also adjusted
such that the identifiability constraint is met. Since this segment is most likely to
be the one whose copy number difference is 0, adjusting its β value to meet the
identifiability constraint has the least impact on the likelihood. Next we update
σ2

s and σ2
c . Again, we randomly select one of the σ2

s and σ2
c and draw their new

values from uniform distribution centered at their current values within a small
window size w, with the constraint that the new values are positive. The δ2 value
is fixed and assigned as (0.3× κ)2, where κ is the SD for all the data points. The
factor 0.3 could be replaced by any value between 0 and 1, to reflect the belief
that true copy number variances should be smaller than observed in the data.
This is a reasonable assumption, since SNP microarray data are typically noisy.

If the proposed move is a location update, then we randomly select one change
point, say τj, and sample its new location τ ∗

j from a set of candidate locations
within a fixed window centered at the current location, i.e. [τj − Wj, τj + Wj],
where the window sizes Wj are chosen such that the order of the new location
is the same as that of the current one, and the new location is integer valued.
The set of candidate locations is defined based on the absolute differences in
log2 ratios between consective data points. We select the top x% locations with
the largest absolute differences as the candidate locations to sample from. When
x = 100, the algorithm searches through all locations. When 0 < x < 100, we only
sample from these candidate locations according to probabilities proportional to
these absolute differences, since the larger the absolute differences, the more likely
these locations have copy number difference changes. This subsampling scheme
is done to reduce computational burden, and its effect on the ability to detect
change points is investigated in section 3 of the main article.

If the proposed move is the birth step, then we randomly sample a new change
point from the set of candidate locations. Suppose that the newly sampled location
τ ∗ falls into the segment [τj, τj+1 − 1]. This segment is then split into two new
segments: [τj, τ ∗−1] and [τ ∗, τj+1−1]. The location-specific parameters for these
two new segments are:

d∗
r = (dj + 2)e−wlσdzd − 2 d∗

l = (dj + 2)ewrσdzd − 2,
d∗

0r = (d0j + 2)e−wlσd0zd0 − 2 d∗
0l = (d0j + 2)ewrσd0zd0 − 2,

σ2∗
sr = σ2

sje
−wlσσszσs σ2∗

sl = σ2
sje

wrσσszσs ,
σ2∗

cr = σ2
cje

−wlσσczσc σ2∗
cl = σ2

cje
wrσσczσc ,

β∗
r =

βje−w
′
lσβzβ

(1 − βj + βje−w
′
lσβzβ)

β∗
l =

βjew
′
rσβzβ

(1 − βj + βjew′
rσβzβ)

,

(1)

where wl = C∗
j /(C

∗
j + C∗

j+1), wr = C∗
j+1/(C

∗
j + C∗

j+1), w
′
l = C∗

j /T , w
′
r = C∗

j+1/T ,
and σd, σd0, σσs , σσc and σβ are tuning constants, zd, zd0, zσs , zσc , zβ are random
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variables drawn from uniform distribution U(−u, u), C∗
j , C∗

j+1 and T are the total
number of data points in the new segments [τj, τ ∗ − 1], [τ ∗, τj+1 − 1], and in the
entire chromosome, respectively. The Jacobian JB for the birth step mapping is
thus equal to

σd
(d∗

r + 2)(d∗
l + 2)

dj + 2
σd0

(d∗
0r + 2)(d∗

0l + 2)

d0j + 2

σσsσ
2∗
sr σ

2∗
sl

σ2
sj

σσcσ
2∗
cr σ2∗

cl

σ2
cj

σβ(w
′

l+w
′

r)
β∗

l (1 − β∗
l )β

∗
r (1 − β∗

r )

βj(1 − βj)
.

The acceptance probability for the birth step is min(1, AB), where

AB =
P (d∗,ρ∗,σ2∗

s ,σ2∗
c ,d∗

0|data)

P (d,ρ,σ2
s ,σ

2
c ,d0|data)

× P (K|K + 1)

P (K + 1|K)f(zd)f(zd0)f(zσs)f(zσc)f(zβ)
× JB, (2)

and d∗, ρ∗, σ2∗
s , σ2∗

c and d∗
0 are the proposed parameters and partition for the

birth. The proposal ratio can be written as

oK+1qτ̃

bKp
′
τ∗f(zd)f(zd0)f(zσs)f(zσc)f(zβ)

, (3)

where f(z) is the density for U(−u, u) at z, and qτ̃ is the probability (inversely
proportional to the absolute difference in log2 ratio at τ̃) of the change point τ̃ ,
being removed out of the K+1 existing change points after the birth, and p

′
is the

prior probability that τ ∗ is a change point (proportional to the absolute difference
in log2 ratio at τ̃).

If the proposed move is the death step, then we delete one of the current
change points, say τj, according to qτj . Prior to the death, this point divides two
consective segments [τj−1, τj − 1] and [τj, τj+1 − 1]. After τj is deleted, these two
segments are joined together into [τj−1, τj+1 − 1]. The new parameters for this
new segment come from the inverse mapping of the birth step, which are

d∗ = ewllog(dl+2)+wrlog(dr+2) − 2,
d∗

0 = ewllog(d0l+2)+wrlog(d0r+2) − 2,

σ2∗
s = ewllog(σ2

sl)+wrlog(σ2
sr),

σ2∗
c = ewllog(σ2

cl)+wrlog(σ2
cr),

β∗ =
ew

′
l logit(βl)+w

′
rlogit(βr)

1 + ew
′
l logit(βl)+w′

rlogit(βr)
.

(4)

The acceptance ratio for the death step is just min(1, A−1
B ) with the proposed

model modified as a death and K is replaced by K − 1 in AB.
The estimated number of change points is the mode of the posterior number

of change points. Once the number of change points K̂ is determined, the change
points are estimated by selecting the top K̂ locations with the highest posterior
probabilities being change points. All chains start with no change points with
these starting values: d = d0 = 0, σ2

s = s2
s (sample SNP variance), σ2

s = s2
c

(sample CNV variance), and β = 0.5.
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Web Appendix C

This section describes our simulation method in detail. The simulation data were
generated based on Affymetrix SNP 6.0 chromosome 21 arrays from HapMap
samples and a case study on skin cancer. It is known that marker density (number
of markers in a regiondividedbylength of a region) varies across genome locations,
so any region could be classified into one of these four categories: 1) length < 5
kb, above average density; 2) length < 5 kb, on or below average density; 3)
length ≥ 5 kb, above average density; 4) length ≥ 5 kb, on or below average
density. Regions of type 2) are the hardest to detect, and there may not be
a clear distinction between these regions and outliers. It is important to see
how the presence of outliers affect the performance of a segmentation algorithm.
Therefore, we mainly focused on BMCP’s performance on 1), while incorporating
2) in outlier analysis. Intuitively, regions of types 3) and 4) (in particular, type
3) should be easier to detect by any algorithm. Table 1 in the main article gives
the details of each simulation model. To see how the algorithm performs under
different situations, we varied the values of σ2

s , σ2
c , β and x. For each model, we

simulated both the samples with and without outliers. For the latter, the outliers
were added at six locations (two within each normal region) that are at least 111
kb apart from any other outlier or change point location so that they are indeed
outliers.

Model 1 (M1) represents the situation when data are of the same variability as
typically seen in real data and the degree of contamination is moderated. Under
this model, the algorithm searches through the top 20% of candidate locations.
M2 is the same as M1, except that the degree of contamination is larger. M3 is
the same as M1 but with larger data variability. M4 differs in the priors for d
by assuming perfect correlation among true copy number differences. M5 and M6

test the effect of the percentage of locations being searched by the algorithm on
the results. Under M5, it only searches through the top 5% of candidate locations,
by contrast, M6 searches through the top 95% of candidate locations. M7 tests
the performance of the algorithm when copy numbers are mosaic. M8 is the same
as M1, except that the CNV regions are longer.

We assumed the reference sample has 2 copies across all locations. For each
model, we simulated 50 independent samples for the cases with outliers and with-
out outliers, separately. For M1 to M7, we assigned 4 true change points at
locations 21, 855, 876, 21, 858, 980, 39, 870, 416, and 39, 874, 612 bps giving CNVs
of sizes 3.1 and 4.2 kbs. These locations were chosen to assess the algorithm’s abil-
ity to detect regions of type 1). Since there were only fewer than 5 markers within
each region, we randomly added more markers to increase the marker densities
of both regions. For M8, the true change points were assigned to be 21, 541, 564,
22, 173, 087, 39, 555, 928, and 40, 187, 781 bps giving CNV sizes both about 632
kbs. This model was used to test the algorithm’s ability to detect regions of type
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4). For each sample, we first draw d from a truncated multivariate normal distri-
bution N−2(d0,V). The d0 was generated by assigning these copy numbers from
the start to the end segments: 2, 3, 2, 1, 2 for M1 to M7. For M8, they are 2, 2.5,
2, 1.5, 2. The ij-th element of V is δ2r|i−j|. We set r > 0 in all the simulation
models so that we can assess the effect of ignoring potential correlations among
copy numbers. Then λ was calculated as log2(β×d+2)−1. Conditional on λ, σ2

s

and σ2
c, we next draw sl and cl from N(λl,σ2

sl) and N(λl,σ2
cl), respectively. Each

chain was run 100, 000 iterations. The burn-ins were the first 50, 000 iterations
and were thrown away, and we took every 10 of the remaining iterations for the
final analyses. The upper bound for the number of change points (Kmax) was set
to 20 for all simulations.

We compared the ability of change point detection with those of the two com-
monly used algorithms: Circular Binary Segmentation (CBS) and Hidden Markov
Model (HMM) implemented in the Bioconductor softwares DNAcopy (Olshen
et al., 2004; Venkatraman and Olshen, 2007) and aCGH (Fridlyand et al., 2004),
respectively. For models without outliers, we did not do any outlier smoothing,
undo split (DNAcopy), or merge step (aCGH). Nor did we do any other ad hoc
adjustment on the results (e.g. combination or removal of very short segments).
BIC was used as the model selection criterion for aCGH analysis. For models
with outliers, we did outlier smoothing first prior to segmentation using DNA-
copy, to remove the potential effects from outliers. For aCGH, we merged states
whose predicted values are less than 0.25 apart. The comparisons were made
based on the numbers of false positives (FP) and false negatives (FN). Since each
method gives estimated change points, we were able to determine the number of
detected true change points. By this, we mean the number of true change points
located within distance of 100 markers from the subsampling of at least one es-
timated change point. The number of false negatives is the total number of true
change points minus the number of true change points detected by at least one
estimated change point. Similarly, we define the number of false positives as the
total number of estimated change points minus the number of estimated change
points located within distance of 100 markers from subsampling of at least one
true change point.
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Web Table 1

Parameter True Value Estimate 95% CI
τ1 21,855,876 21,855,900 [21,160,407, 21,856,237]
τ2 21,858,980 21,858,980 [21,858,765, 22,152,248]
τ3 39,870,416 39,870,416 [39,870,416, 39,870,416]
τ4 39,874,612 39,874,612 [39,874,611, 39,874,612]
d2 0.82 0.66 [0.44,0.96]
d4 -0.92 -0.72 [-0.98,-0.60]
β2 0.70 0.72 [0.50,0.90]
β4 0.70 0.90 [0.66,0.99]

Table 1: Estimated parameters of interest from BMCP approach of 1 simulation
with outliers from M1.
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Web Table 2

Rank Location (bp) Posterior Prob.
1 56129270 0.1200
1 79865244 0.1200
1 81856486 0.1200
4 75212671 0.1100
4 63287151 0.1100
6 98319393 0.0730
7 98312568 0.0400
8 69333663 0.0180
9 69335653 0.0120
10 63294085 0.0100
11 72623668 0.0089
12 72433414 0.0076
13 125296227 0.0073
14 98319560 0.0067
15 125918133 0.0066
16 72473859 0.0065
17 65997458 0.0063
18 72505882 0.0056
19 125121004 0.0053
20 125573852 0.0047

Table 2: Posterior probabilities of the top 20 locations for the tumor sample by
BMCP.
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Web Table 3

Parameter Estimate 95% CI
τ1 56,129,270 [56,129,270, 56,129,270]
τ2 63,287,151 [63,287,151, 63,294,085]
τ3 69,333,663 [69,027,272, 73,244,833]
τ4 75,212,671 [74,902,548, 75,212,671]
τ5 79,865,244 [79,865,244, 79,865,244]
τ6 81,856,486 [81,856,486, 81,856,486]
τ7 98,312,568 [98,312,568, 98,319,560]
τ8 98,319,393 [124,772,608, 130,247,840]
d1 0.15 [0.054, 0.28]
d2 -0.46 [-0.5, -0.4]
d3 0.13 [-0.018, 0.29]
d4 -0.16 [-0.35, 0.065]
d5 0.46 [0.36, 0.57]
d6 -0.33 [-0.39, -0.18]
d7 0.64 [0.62, 0.68]
d8 0.45 [0.059, 0.68]
d9 0.031 [-0.02, 0.086]
β1 0.49 [0.16, 0.96]
β2 0.49 [0.47, 0.54]
β3 0.51 [0.48, 0.59]
β4 0.5 [0.48, 0.53]
β5 0.43 [0.38, 0.5]
β6 0.59 [0.55, 0.69]
β7 0.51 [0.5, 0.55]
β8 0.51 [0.49, 0.55]
β9 0.5 [0.47, 0.53]

Table 3: Estimated parameters of interest for the tumor sample by BMCP.
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Web Table 4

Individual Parameter Estimate 95% CI
All τ1 105,803,129 [105,771,742, 105,814,900]
All τ2 105,841,589 [105,823,899, 105,841,721]
All τ3 111,179,089 [111,179,089, 111,179,089]
All τ4 111,185,496 [111,185,496, 111,185,496]

NA18852 d1 -0.028 [-0.076, 0]
NA18852 d2 -0.24 [-0.58, 0]
NA18852 d3 -0.019 [-0.081, 0.037]
NA18852 d4 -1.1 [-1.7, 0]
NA18852 d5 -0.0082 [-0.041, 0.003]
NA18853 d1 -0.013 [-0.11, 3.00E-04]
NA18853 d2 -0.22 [-0.74, 0.36]
NA18853 d3 0.0044 [-0.036, 0.051]
NA18853 d4 -0.48 [-0.9, 0]
NA18853 d5 0.0012 [-0.028, 0.12]
NA18854 d1 -0.015 [-0.033, 0]
NA18854 d2 -0.32 [-0.71, 0]
NA18854 d3 -0.0067 [-0.032, 0.004]
NA18854 d4 -0.41 [-0.88, 0]
NA18854 d5 0.00064 [-0.065, 0.019]
NA18852 β1 0.26 [0,0.53]
NA18852 β2 0.46 [0,0.98]
NA18852 β3 0.38 [0, 1]
NA18852 β4 0.65 [0,1]
NA18852 β5 0.48 [0,1]
NA18853 β1 0.3 [0,0.61]
NA18853 β2 0.5 [0,0.98]
NA18853 β3 0.44 [0,1]
NA18853 β4 0.071 [0, 0.24]
NA18853 β5 0.26 [0,0.57]
NA18854 β1 0.29 [0,0.5]
NA18854 β2 0.33 [0,0.84]
NA18854 β3 0.56 [0,1]
NA18854 β4 0.53 [0,0.98]
NA18854 β5 0.4 [0,1]

Table 4: Estimated parameters of interest for the trio by BMCP familial-sample
model.
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Web Table 5

ID Log2 Ratio Estimated Copy Number Absolute Difference
Multi-Sample Model

CNV1
NA18852 -1.5 1.68 0.97
NA18853 -1.4 1.81 1.1
NA18854 -1.3 1.84 1
CNV2

NA18852 -1.5 1.62 0.91
NA18853 0.087 2.06 0.064
NA18854 -0.28 1.91 0.26

Total Abs. Diff. 4.3

Familial-Sample Model
CNV1

NA18852 -0.72 1.76 0.55
NA18853 -0.68 1.78 0.53
NA18854 -0.66 1.69 0.42
CNV2

NA18852 -2.80 0.91 0.62
NA18853 0.19 1.53 0.75
NA18854 -0.48 1.6 0.17

Total Abs. Diff. 3.04

Table 5: Absolute Differences in Copy Number Estimates and True Copy Numbers
for both CNVs in the Trio by BMCP multi-sample and faimilial-sample models.
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Web Figure 1
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Figure 1: Plot of 1 simulated dataset from model M1
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Web Figure 2
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Figure 2: Distribution of number of change points of 1 simulated dataset from
model M1
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Web Figure 3
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Figure 3: Trace plots for β at two locations, one within the CNV region (top) and
the other within the normal region (bottom) of 1 simulated dataset from model
M1. The traces are plotted every 10 iterations.
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Web Figure 4
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Figure 4: Estimated change point locations for the tumor sample by CBS and
HMM without outlier handling, and the top 48 locations by BMCP.
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Web Figure 5
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Figure 5: Estimated log2 ratio, posterior probability, copy number, and adjust-
ment factor for the tumor sample. Dashed lines are the 95% CIs.
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Web Figure 6
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Figure 6: Estimated common change points (green vertical lines) for the trio
(NA18852, NA18853, NA18854) by BMCP multi-sample model. The blue solid
and red dashed lines are the estimated log2 ratios and the corresponding 95% CIs,
respectively.
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Web Figure 7
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Figure 7: Estimated common change points (green vertical lines) for the trio
(NA18852, NA18853, NA18854) by BMCP single-sample model. The blue solid
and red dashed lines are the estimated log2 ratios and the corresponding 95% CIs,
respectively
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