Supporting Information

Remnant et al. 10.1073/pnas.1311341110

SI Text

Frequency of the Duplication in the DGRP and Australian Populations

The *Drosophila* Genomic Reference Panel (DGRP) dataset of 168 sequenced lines contained three strains with the 113-kb duplication surrounding *Resistance to Dieldrin (Rdl*; Ral-317, Ral-318, and Ral-378). Subsequent to the release of this public resource, Ral-378 has been removed from the list of available lines and was not included in genomewide analysis studies (1). Estimates of Ser³⁰¹ frequency in the DGRP were

based on 4 lines (Ral-317, -318, -378, and -491) of 168 lines (2.4%).

Our Australian survey consisted of 20 males collected at 19 locations ranging from Cooktown to Tasmania along the Australian East coast. Duplication primers were tested without yielding positive products. However, the *nwk-Roo* product was amplified from 9 of the 19 populations, indicating its presence in intron 7 of *nwk* in some individuals in that pool. There was a strong correlation between the presence of *nwk-Roo* and the Ser³⁰¹ mutation, which was present in 3% of the populations tested. No populations showed amplification of the *glutamate receptor IB* (*Glu-RIB*) product.

Fig. S1. Schematic representation of the RDL subunit monomer. Each subunit consists of a large, extracellular N-terminal ligand-binding region, followed by four transmembrane domains. Subunits pentamerize to form a chloride channel, which is lined by the second transmembrane domain. Localization of non-synonymous polymorphisms identified in the DGRP genome sequences and RNA editing sites are indicated (adapted from ref. 1).

1. Wotring VE, Miller TS, Weiss DS (2003) Mutations at the GABA receptor selectivity filter: A possible role for effective charges. J Physiol 548(Pt 2):527–540.

Mackay TFC, et al. (2012) The Drosophila melanogaster genetic reference panel. Nature 482(7384):173–178.

Fig. S2. Haell diagnostic restriction digest assay to detect Ala^{301} and Ser^{301} alleles in *RdI* exon 7. (*A*) Of the 268-bp PCR fragment, Haell digest yields three bands for WT Ala^{301} alleles (148, 63, and 57 bp). Ser^{301} removes a Haell restriction site yielding two bands (205 and 63 bp). (*B*) Testing of Ral-318 and Ral-378 parents and F₁ offspring from a cross to WT w^{1118} lines. w^{1118} exhibit the WT Ala^{301} banding pattern as seen in *A*. Male and female parents used in reciprocal crosses to w^{1118} are indicated and show all four bands (205, 148, 63, and 57 bp), indicating heterozygous genotype. F₁ offspring retain the same banding pattern, showing that the Ser³⁰¹ allele is inherited from the Ral- parents 100% of the time, supporting the duplication hypothesis.

λHindUl	317/ 318/ 378	491/ Rdl ^R
· (111)		
NIRANI A		
Liniumi		
_		

Fig. S3. PCR product obtained from DGRP Ral-317 spanning the *Roo* transposable element (TE) using the primers *Glu_int1_F* and *nwk_int7_R*. The same product was present in Ral-318 and -378 but was not present in Ral-491 or *Rdl^R-MDRR*.

Fig. 54. Alignment of the portion of *Rdl* surrounding the equivalent 301 residue in insect species, showing copy number variation and the relative amino acid variation at the 301 site. *Bombyx mori* contains three *Rdl* orthologs, with a different residue at 301 (1 = Ala, 2 = Ser, 3 = Gln). Both aphid species contain two *Rdl* orthologs: *Acyrthosiphon pisum* and *Myzus persicae* (1 = Ala, 2 = Ser). In sequences taken from resistant and susceptible *Myzus persicae* strains, copy 1 of *Rdl* contains either Ala or Gly alleles, and copy 2 has either of two different Ser alleles. *D.mel, D. melanogaster; A.mel, Apis mellifera; A.aeg, Aedes aegypti; T.cas, Tribolium castaneum; B.mor, Bombyx mori; A.pis, Acyrthosiphon pisum; M.per, Myzus persicae* (1–3).

1. Yuan G, Gao W, Yang Y, Wu Y (2010) Molecular cloning, genomic structure, and genetic mapping of two Rdl-orthologous genes of GABA receptors in the diamondback moth, Plutella xylostella. Arch Insect Biochem Physiol 74(2):81–90.

2. Dale RP, et al. (2010) Identification of ion channel genes in the Acyrthosiphon pisum genome. Insect Mol Biol 19(Suppl 2):141–153.

3. Anthony N, Unruh T, Ganser D, ffrench-Constant R (1998) Duplication of the Rdl GABA receptor subunit gene in an insecticide-resistant aphid, Myzus persicae. Mol Gen Genet 260(2-3): 165–175.

Polymorphism	No. of lines	Frequency	Location in protein	
T18I	2	0.012	Signal peptide	
132N	1	0.006	Signal peptide	
H38N	32	0.190	Extracellular N-terminal domain	
A3015	4	0.024	M2 domain; site of <i>Rdl^{MD-RR}</i> mutation	
T350S	1	0.006	M3 domain; site of <i>D. simulans</i> mutation (Thr ³⁵⁰ to Met) (1)	
M360I	3	0.018	M3-M4 loop; RNA-editing site	
K370Q	1	0.006	M3-M4 loop	
H433N	1	0.006	M3-M4 loop	
H436Q	1	0.006	M3-M4 loop	
G528C	1	0.006	M3-M4 loop	

Table S1. Polymorphisms in *Rdl* found in the 168 sequenced DGRP lines

1. Le Goff G, Hamon A, Bergé J-B, Amichot M (2005) Resistance to fipronil in Drosophila simulans: Influence of two point mutations in the RDL GABA receptor subunit. J Neurochem 92(6): 1295–1305.

Table S2. Genes partially or fully duplicated in the 113-kb region surrounding *Rdl*, showing nonsynonymous heterozygous substitutions identified in duplicated lines

Gene No.	Name	Function	NS polymorphisms
CG4684	nwk	Protein binding; negative regulation of synaptic growth; neuromuscular synaptic transmission	_
CG10537	Rdl	GABA _A receptor activity	A3015, M360I
CG4484	Slc45-1	Sucrose transmembrane transporter activity	P352A
CG4476		Neurotransmitter transporter activity; potassium: amino acid symporter activity	P187T, A252V, V520I
CG4483		Src homology-3 domain; Zinc finger, palmitoyltransferase	l13M, N112D, D274E, R161Q
CG4477		Trypsin-like serine protease	F7L, L16F, S295C, A297V, M309I
CG4481	Glu-RIB	lonotropic glutamate receptor activity	_
CG42509		Unknown; part of discistronic transcript with Glu-RIB	—

Genes in bold are fully duplicated. Glu-RIB, glutamate receptor IB; NS, nonsynonymous; nwk, nervous wreck; Rdl, resistance to dieldrin.

Table S3. Primers used to confirm putative duplication topology, exon 7 Haell digest, exon 7–8 sequencing, and cloning of *Rdl* left and right arms for recombineering

Name	Sequence (5′-3′)	Location
Glu_int1_F	TTGCTTTGGTCAATGTTTGC	Intron 1 of Glu-RIB, upstream of Roo insertion
Glu_int1_R	TCGTTCTCGTTAGTTCGACAGA	Intron 1 of Glu_RIB, downstream of Roo insertion
Roo_LTR_F	GAACGGAGCCCAAAATTGTA	3' end of <i>Roo</i> element LTR
Roo_LTR_R	CTCTGCGTAGGCCATTTAC	5' end of <i>Roo</i> element LTR
nwk_ex7_F	GAGTATTCCTCCGCCAGGTA	Exon 7 of <i>nwk</i> , upstream of <i>Roo</i> insertion
nwk_int7_R	AATCGTAGGGCATTTCATCG	Intron 7 of nwk, downstream of Roo insertion
Rdl_LA-Ascl_F	GGCGCGCCGTCTAAACAGCGACACC	5' of the Rdl locus, to generate the left arm for P[acman] recombineering
<i>Rdl_LA</i> -BamHI_R	CCAAGAAAATAGTTAGGATCCGAGGAGACG	
Rdl_RA-BamHI_F	CAGGATCCCACGTTACGCATACGCCGTG	3' of the Rdl locus, to generate the left arm for P[acman] recombineering
Rdl_RA-Pacl_R	TTAATTAACAGCTGCACATGCCACG	
Rdl_Ex7_F	CAACTATTCGCGTTTAGCCTGC	Exon 7 of Rdl; used for Haell digests and sequencing
RdI_Ex7_R	GACCATAACGAAGCATGTTCCC	Exon 7 of Rdl; used for Haell digests
Rdl_Ex8_R	CACCGTATTCTCCAGCGTTCC	Exon 8 of <i>Rdl</i> ; used for sequencing

Table S4. Frequency of WT and mutant Rdl cDNA

Genotype	No. of clones	Frequency
WT: Ala ³⁰¹ Met ³⁶⁰	21	0.47
Mutant: Ser ³⁰¹ lle ³⁶⁰	24	0.53

Frequency of changes identified in individual clones obtained by sequencing the Rdl exon 7–8 PCR product of cDNA generated from adult heads from DGRP lines Ral-318 and Ral-378.

Table S5. Frequency of RNA editing in WT and mutant Rdl cDNA

	No. of clones			Frequency		
Change	Total	In WT	In mutant	Total	In WT	In mutant
1283V	37	17	20	0.82	0.81	0.83
N294D	13	12	1	0.28	0.57*	0.04*
M/I360V	7	1	6	0.15	0.05	0.25

Frequency of changes identified in individual clones obtained by sequencing the Rdl exon 7–8 PCR product of cDNA generated from adult heads from DGRP lines Ral-318 and Ral-378.

*Significant difference in RNA editing frequency between WT and mutant (Fisher exact test, P = 0.00013).

Table S6. LC50 values for dieldrin (lethal concentration for 50% of the population) with 95% CIs and fold resistance with 95% CIs observed in natural populations and transgenic lines with *RdI* duplication and resistance mutations

Line	Genotype	LC50 (µg/µL) (95% CI)	Fold (95% CI)
Ral-882	Rdl ^{WT} Rdl ^{WT}	0.3 (0.25–0.33)	1 (0.84–1.19)
Ral-378	<u>Rdl^{WT}/ Rdl^{S301}</u> Rdl ^{WT} / Rdl ^{S301}	8.2 (7.9–8.6)	27.8 (24.4–31.7)
RdI ^R MD-RR	<u>Rdl⁵³⁰¹</u> Rdl ⁵³⁰¹	13,750 (12,550-14,600)	45,800 (40,430-53,360)
Φ -86Fb-empty	<u>P[acman]^{Empty} ; Rdl^{WT}</u> P[acman] ^{Empty} Rdl ^{WT}	0.22 (0.19–0.24)	1 (0.87–1.15)
Φ-86Fb-P[ac]- <i>Rdl^{WT}</i>	P[acman]-Rdl ^{WT} ; Rdl ^{WT} P[acman]-Rdl ^{WT} Rdl ^{WT}	0.23 (0.21–0.25)	1 (0.93–1.22)
Φ-86Fb-P[ac]- <i>Rdl^{A301S}</i>	<u>P[acman]-Rdl^{S301} ; Rdl^{WT}</u> P[acman]-Rdl ^{S301} Rdl ^{WT}	1.3 (1.2–1.4)	6 (5.2–6.6)

PNAS PNAS