
Supporting Information
Bean et al. 10.1073/pnas.1307845110
SI Text
Inferential Questions Regarding v′β0. We mentioned the possibility
of deriving a confidence interval for v′β0 when v is a given de-
terministic vector. This is of interest, for instance, to get a confi-
dence statement regarding one coordinate. Recall the stochastic
representation

β̂= β0 +Σ−1=2urρðp; nÞ;

where u is uniform on the unit sphere of radius one, rρðp; nÞ is
independent of u and is such that rρðp; nÞ= kβ̂ðρ; 0; IdpÞk, and Σ
is the covariance of the predictors. Therefore,

v′β̂= v′β0 + rρðp; nÞv′Σ−1=2u:

Now v′Σ−1=2u is approximately Nð0; v′Σ−1v=pÞ as p tends to in-
finity. Similarly, rρðp; nÞ has a deterministic limit in our asymp-
totics, which we called rρðκÞ. So as p tends to infinity,

v′β̂− v′β0
rρðκÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v′Σ−1v=p

q )Nð0; 1Þ:

Using the fact that our predictors are Gaussian, we know (1) that

v′Σ̂ −1
v

v′Σ−1v
=
L n
χ2n−p

:

In the asymptotics we are considering, i.e., p=n→ κ< 1, while n
and p tend to infinity, so

n
χ2n−p

=
n

n− p

h
1+OP

�
n−1=2

�i
:

So n− p
n v′Σ̂ −1

v is a “
ffiffiffi
n

p
-consistent” estimator of v′Σ−1v [in the

sense that the ratio minus 1 is OPðn−1=2Þ].
An asymptotically 95% confidence interval for v′β0 is therefore

(in our asymptotics)

v′β̂± 1:96rρðκÞp−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n− p
n

v′Σ̂ −1
v

r
:

When the distribution of the errors is known, which is needed to
compute the optimal objective function, rρðκÞ can be obtained by
solving the system S in the main text. If the distribution of the
errors is not known, at ρ given, leave-one-out methods can be
used to yield an estimate of rρðκÞ from the data. We do not discuss
this issue further as it is not really relevant to the main theme of
this paper.

The Case of Gaussian Errors. We give a full derivation of the fol-
lowing fact.

Fact. In the setting of independent identically distributed (i.i.d)
Gaussian predictors, among all convex objectives, l2 is optimal in
regression when the errors are Gaussian.
Let us now justify this assertion.
In the Gaussian case, it is clear that ϕropt⋆ fe is a Gaussian density.

We denote by p2 the function such that p2ðxÞ= x2=2. Hence,
ðp2+r2opt   log  ðϕropt⋆ feÞÞ* is a multiple of p2 (up to an additive

constant). It is easy to check that carrying out the algorithm,
our proposal for ρ is

ρoptðxÞ=
x2

2

�
p=n

1− p=n

�
−K :

Because this is, up to centering and scaling, x2=2, we see that
when the errors are Gaussian, l2 objective is optimal (among all
convex objectives) in any dimension.

A Lower Bound on r2optðκÞ. Let us call ξ the function such that
ξðrÞ= r2IðrZ+ eÞ. Since ξ is the information of Z+ e=r, Stam’s
inequality (2) gives

1
ξðrÞ≥ 1+

1
r2Ie

;

where Ie is the information of «. Therefore, if r is such that
ξðrÞ= 1− η, we see that

r2 ≥
�
1
η
− 1

�
1
Ie
:

So we see that

r2optðκÞ≥
κ

1− κ

1
Ie
:

In particular, it tends to ∞ as p=n tends to 1.
Using suboptimality of least squares, we also see that

r2optðκÞ≤ κ
1− κ σ

2
e .

About ξðrÞ When r→∞. Recall that ξ is such that ξðrÞ= IðZ+ e=rÞ,
where Z∼Nð0; 1Þ and « is independent of Z and has a log-
concave density. In particular, « has a variance (see ref. 3, p. 332).
It is well known, that for any random variable Y with a vari-

ance, IðY Þ≥ 1=varðY Þ. So ξðrÞ≥ 1
1+ σ2e=r2

. However, using Stam’s
inequality (2), we have IðrZ+ eÞ≤ 1.
So we see that as r→∞, ξðrÞ→ 1.
Simple computations also result in the fact that ξðrÞ= 1−

σ2e
r2 + oð1=r2Þ as r→∞ (see ref. 4 for more details). Using this
fact, one can show that

r2optðκÞ
r2ℓ2ðκÞ

→ 1

as κ tends to 1.

More Details on kβ̂opt −β0k2=kβ̂ols − β0k2. Our simulations were
performed in the case where β0 = 0 and Σ= Idp, with double-
exponential errors. We chose n= 500 and did 1,000 independent
simulations.
Table S1 shows the 2.5 and 97.5 percentiles for kβ̂optk2=kβ̂olsk2

over our 1,000 experiments.
We note that approximating Eðrρðp; nÞÞ by rρðκÞ for κ= p=n works

very well even in this moderately sized setting, but larger problems
are needed for kβ̂k2 to become almost deterministic. We found
that across values of p=n, the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðrρðp; nÞÞ

p
=Eðrρðp; nÞÞ

was about 10% in our simulations, for all of the estimators we
looked at.
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For the sake of completeness, we also present a brief com-
parison between the empirical behavior of β̂opt and that of β̂ℓ1 .
The results are in Fig. S1. The maximal relative error in comparing
empirical to theoretical values is 1%, achieved for p=n= 0:5.

Inf-Convolution and Conjugation.Recall that p2ðxÞ= x2=2. We have

f ⋆inf p2ðxÞ= inf
y

"
ðx− yÞ2

2
+ f ðyÞ

#

=
x2

2
+ inf

y

�
−xy+

y2

2
+ f ð yÞ

�

= x2=2− sup
y

�
xy−

y2

2
− f ðyÞ

�

=
x2

2
− ðp2 + f Þ*ðxÞ:

It follows that

f⋆inf p2 = p2 − ð f + p2Þ*:

Plots of ρopt. Fig. S2 compares ρopt to other loss functions of
potential interest, when p=n= 0:2. Fig. S3 does the same when
p=n= 0:5. Fig. S4 plots ψopt when p=n= 0:5. In the plots, all of the
objective functions are normalized to take value 0 at 0 and 1 at 1.
We have used different normalizations from the ones discussed

in the main text to make visual comparisons easier. Therefore,
some of the analytic comparisons made in the main text do not
apply to the figures, because these comparisons are sensitive to
the choice of centering and scaling.

The Question of Intercept. The normality assumption, and the in-
variance properties it entails, greatly simplify our arguments for
obtaining inferential results. We show here how they also allow us
to handle the issue of lack of intercept in the model described in
the main text. The main conclusion of the brief discussion that
follows is that we can take care of this issue by recentering pre-
dictors and responses before doing the regression.
Let us assume that Xi’s are i.i.d Nðμ;ΣÞ. μ and Σ depend on p,

but the coming argument is almost entirely finite dimensional,
so let us not mention p to make notations lighter. Let us assume
that Yi = ei +Xi′β0, where ei does not necessarily have mean 0.
ei’s are assumed to be independent of Xi’s.
Call Y the sample mean of Y and μ̂X the sample mean of Xi’s.
Let us consider

β̂= argminβ
Xn
i= 1

ρ
��
Yi −Y

�
−
	
Xi − μ̂X



′β
�

:

Of course, Yi −Y = ei − e+ ðXi − μ̂X Þ′β0. Hence,

�
Yi −Y

�
−
	
Xi − μ̂X



′β= ei − e+

	
Xi − μ̂X



′ðβ− β0Þ :

If Zi =Σ−1=2ðXi − μÞ, Zi − μ̂Z =Σ−1=2ðXi − μ̂X Þ. Call X −X the
n× p matrix whose ith row is ðXi − μ̂X Þ′. Note that it is of course
equal to ðZ−ZÞΣ1=2, where Zi is Nð0; IdpÞ and is the ith row of
the n× p matrix Z.
Clearly, if 1n is an n× 1 vector with all entries equal to 1,

X −X =
�
Idn −

1n1′n
n

�
X =

�
Idn −

1n1′n
n

�
ZΣ1=2

=
	
Z−Z



Σ1=2:

So, if ei is the ith canonical basis vector in Rn,

β̂= argminβ
Xn
i= 1

ρ

��
ei − e

�
− ei′

�
Idn −

1n1′n
n

�
ZΣ1=2ðβ− β0Þ

�
:

We use =
L to denote equality in law. Let wðβÞ=Σ1=2ðβ− β0Þ. We

note that this is a 1–1 reparametrization. Call β̂ðρ; 0; IdpÞ the
solution of our M-estimation problem when β0 = 0 and Σ= Idp.
Note that wðβ̂Þ=L β̂ðρ; 0; IdpÞ, because n≥ p+ 1, and therefore�
Idn − 1n1′n

n

�
Z is of rank p with probability 1.

Because, for any p× p orthogonal matrix O,

Z=
L ZO;

we have, conditional on feigni=1, which we assume independent
of X and therefore Z,

β̂
	
ρ; 0; Idp


��feigni= 1 =
L O′β̂

	
ρ; 0; Idp


��feigni= 1:

Therefore, by a standard invariance argument,

β̂
	
ρ; 0; Idp



��β̂	ρ; 0; Idp
��2

���feigni= 1 =
L u;

where u is uniform on the unit sphere in Rp. Also, because the
law of u does not depend on ei′s, we finally have

β̂− β0 =
L ���β̂	ρ; 0; Idp
���

2
Σ−1=2u ;

and the two random variables in the product are independent.
If v is a fixed vector of norm 1,

ffiffiffi
p

p
v′u is nearly Nð0; 1Þ in high

dimension. (Of course, its exact distribution is known but these
details are not needed here.)
So we conclude that, if W represents a Nð0; 1Þ random variable,

ffiffiffi
p

p v′
	
β̂− β0



ffiffiffiffiffiffiffiffiffiffiffiffiffi
v′Σ−1v

p )
���β̂	ρ; 0; Idp
���

2
W :

This argument shows that
ffiffiffi
p

p v′ðβ̂− β0Þffiffiffiffiffiffiffiffiffiffi
v′Σ−1v

p is asymptotically a scaled

mixture of Gaussians. We expect the analysis of kβ̂ðρ; 0; IdpÞk2 in
this case to be similar the one we undertook in ref. 5, and we
expect that it will again be asymptotically deterministic. That will
give asymptotic normality of

ffiffiffi
p

p v′ðβ̂− β0Þffiffiffiffiffiffiffiffiffiffi
v′Σ−1v

p . We have confirmed this

fact in limited simulations.
We further note that when the errors have a symmetric dis-

tribution and the objective function ρ is symmetric, the system
controlling kβ̂ðρ; 0; IdpÞk2 in the case of recentered Xi’s and Yi’s
appears to be the same as the one in Result 1. Details concerning
this situation will appear elsewhere as the derivation is long,
technical, and tedious.
We have also investigated the situation in which we allow the

intercept to be estimated directly in the M-estimation problem.
Under further assumptions on EðXiÞ, we have obtained a char-
acterization of this intercept and of kβ̂− β0k through a system of
three nonlinear equations in three unknowns. This result will be
presented elsewhere. The optimization of the objective function
in that setting is naturally made harder by the presence of a third
equation. We have not yet carried this task out.
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Gaussian Design and Measure of Performance. In the case of Gaussian
predictors, our stochastic representation gave

β̂ðρÞ− β0 =
L ��β̂	ρ; 0; Idp
��2Σ−1=2u;

where u is uniform on the unit sphere and the two random
variables in the product are independent. Of course, ρ in-
tervenes only in the distribution of kβ̂ðρ; 0; IdpÞk2. So for any
norm k·kN ,

E
���β̂ðρÞ− β0

��
N

�
=E

���β̂	ρ; 0; Idp
��2�E���Σ−1=2u
��
N

�
:

Hence, the relative efficiency of the estimators obtained for different
ρ′s should be the same regardless of the norm chosen to measure
their accuracy, as the performance of the estimators in whatever
norm is chosen effectively only depends on kβ̂ðρ; 0; IdpÞk2.
In other words, the loss function we propose will lead to im-

provements of the regression estimators in any norm chosen by
the user and not only in ℓ2 norm.
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Fig. S1. The picture represents the ratio Eðroptðp;nÞÞ=Eðrℓ1 ðp;nÞÞ for different p’s and n= 500. The expectations are calculated numerically from 1,000 independent
simulations.
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Fig. S2. p=n= 0:2: comparison of ρopt (optimal loss) to l2, l1, and −log  fropt ;e (called −logLik conv in the legend of the plot). ropt is the solution of r2IeðrÞ=p=n;
for p=n= 0:2, ropt ’ 0:62.
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Fig. S3. p=n= 0:5: comparison of ρopt (optimal loss) to l2, l1, and −log  fropt ;e (called −logLik conv in the legend of the plot). ropt is the solution of r2IeðrÞ=p=n;
for p=n= 0:5, ropt ’ 1:35.
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Fig. S4. p=n= 0:5: representation of ψopt = ρopt′ for double-exponential errors. The normalization is the same as above. Numerically, limx→∞ψðxÞ ’ 2:55.

Table S1. Case n = 500: statistics of the distribution of kβ̂ optk2=kβ̂ ℓ2k2 over 1,000 independent simulations

p/n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.5%-tile 0.4781 0.6061 0.7009 0.7725 0.8365 0.8925 0.9463 0.9824 0.9972
97.5%-tile 0.9675 0.9674 0.9792 0.9906 0.9974 1.0058 1.0077 1.0039 1.0013
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