Sensitive, Site-Specific, and Stable Vibrational Probe of Local Protein Environments: 4-Azidomethyl-L-Phenylalanine

Christopher G. Bazewicz, Melanie T. Liskov, Kevin J. Hines, and Scott H. Brewer* Franklin & Marshall College, Department of Chemistry, Lancaster, PA 17604-3003 USA

Supporting Information

Sequence of wt-sfGFP.

The sequence for wt-sfGFP is provided in Figure S1.

MVSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKL PVPWPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGTYK TRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIK ANFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRD HMVLLEFVTAAGITHGMDELYKGSHHHHHH

Figure S1. Amino acid sequence of wt-sfGFP with residues 75 and 134 in italics.

ESI-Q-TOF Mass Analysis.

Incorporation of pN_3CH_2Phe or pN_3Phe into sfGFP in response to the amber codon was verified by electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass analysis (see Table S1). This analysis was performed on the same purified protein samples used for the FTIR measurements. ESI-Q-TOF mass analysis was performed at the Mass Spectrometry Facility at the University of Illinois Urbana-Champaign under the direction of Dr. Furong Sun. Prior to the analysis, the protein samples were desalted into a 20 mM ammonium acetate buffer (pH 7) using PD10 gel filtration columns, lyophilized, and resuspended in 1:1 $H_2O:CH_3CN$ with 0.2% formic acid.

The mass difference between wt-sfGFP and sfGFP-75-pN₃CH₂Phe is indicative of the replacement of Y75 with pN₃CH₂Phe, and the mass difference between wt-sfGFP and sfGFP-134-pN₃CH₂Phe is indicative of the replacement of D134 with pN₃CH₂Phe, within the error of the measurement. Similarly, the mass difference between wt-sfGFP and sfGFP-75-pN₃Phe is indicative of the replacement of Y75 with pN₃Phe, and the mass difference between wt-sfGFP and sfGFP-134-pN₃Phe is indicative of the replacement of D134 with pN₃Phe, within the error of the measurement.

Table S1. ESI-Q-TOF observed molecular weights of protein constructs.

Protein Construct	Observed Molecular Weight (g/mol)
wt-sfGFP	27829±1
sfGFP-75-pN ₃ CH ₂ Phe	27868±1
sfGFP-75-pN₃Phe	27854±1
sfGFP-134-pN ₃ CH ₂ Phe	27917±1
sfGFP-134-pN ₃ Phe	27902±1

Equilibrium UV/Vis Absorbance Measurements.

The equilibrium UV/Vis absorbance spectra were recorded on a PerkinElmer Lambda 25 UV/Vis spectrometer using a 1 cm quartz sample holder. The spectra were recorded at room temperature with 1 nm increments and a scan speed of 240 nm/min. The UV/Vis absorbance spectra for pN_3Phe and pN_3CH_2Phe dissolved in water are shown in Figure S2 illustrating the significant decrease in absorbance at 254 nm for pN_3CH_2Phe compared to pN_3Phe .

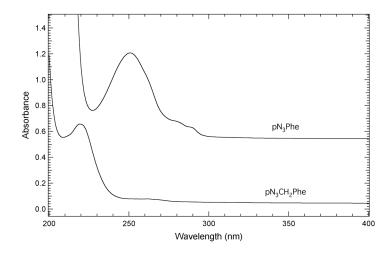


Figure S2. The UV/Vis absorbance spectra of pN_3 Phe and pN_3 CH₂Phe dissolved in water at a concentration of 50 μ M.