The American Journal of Human Genetics, Volume 93

Supplemental Data

De Novo Mutations in GNAO1, Encoding a $G\alpha_o$ Subunit of

Heterotrimeric G Proteins, Cause Epileptic Encephalopathy

Kazuyuki Nakamura, Hirofumi Kodera, Tenpei Akita, Masaaki Shiina, Mitsuhiro Kato, Hideki Hoshino, Hiroshi Terashima, Hitoshi Osaka, Shinichi Nakamura, Jun Tohyama, Tatsuro Kumada, Tomonori Furukawa, Satomi Iwata, Takashi Shiihara, Masaya Kubota, Satoko Miyatake, Eriko Koshimizu, Kiyomi Nishiyama, Mitsuko Nakashima, Yoshinori Tsurusaki, Noriko Miyake, Kiyoshi Hayasaka, Kazuhiro Ogata, Atsuo Fukuda, Naomichi Matsumoto, and Hirotomo Saitsu

Figure S1. Expression of AcGFP1-Tagged Gao1 in N2A Cells

Human *GNAO1* cDNA was inserted into pAcGFP1-N2 vector (Clontech, Mountain View, CA, U.S.A.) to generate C terminal AcGFP1-tagged Ga_{o1} expression constructs. Expression of AcGFP1-tagged wild-type Ga_{o1} (WT), p.Gly203Arg, and p.Gly203Thr mutants were observed at the cell periphery. In contrast, p.Thr191_Phe197del was expressed in the cytosolic compartment. The p.Asp174Gly and p.Ile279Asn mutants were localized to the cell periphery with weak signal in the cytosol. The nucleus was stained with DAPI. The scale bars represent 10 μ m.

Overall and close-up views of the positions in the Ga subunit-containing complexes corresponding to the mutation sites found in human *GNAO1*; p.191_197del in the Ga_s $\beta\gamma$ - β 2AR complex (PDB code 3SN6) (A), p.Asp174Gly and p.Ile279Asn in the GDP-bound Ga_i $\beta\gamma$ heterotrimer (PDB code 1GG2) (B), and p.Gly203Arg in the transition-state analogue of GTP (GDP+AlF₄⁻)-bound Ga_q-PLC β complex (PDB code 3OHM) (top) and the Ga_s $\beta\gamma$ - β 2AR complex (bottom) (C). Overall views are shown in the space-filling representation as in Figure 4. In the close-up views, α helices, β strands

and loops are depicted as ribbons, arrows and threads, respectively. Colors are as in Figure 4 except for nucleotides in orange and the mutated residues in red. The amino acid numbering shown is for human *GNAO1* with bovine $G\alpha_s$ (A and C), rat $G\alpha_i 1$ (B), and mouse $G\alpha_q$ (C) in parentheses. In B, side chains of some residues involved in a hydrophobic core are shown in the space-filling representation, and hydrogen bonds are shown as black dotted lines. In C, the switch I region is colored cyan, and heavy atoms within 5 Å distance from the atom corresponding to the α carbon of Gly203 in the human $G\alpha_{o1}$ are shown in the space-filling representation.

Exon	Forward primer (5'>3')	Reverse primer (5'>3')	Product size (bp)	PCR conditions
Ex1	TTTGTTTCCAGCCCAGGAGAGGATA	GATCCTGGGCACATGGTGGTG	386	KOD FX with 2 step PCR 70-64
Ex2	CCCCTGTTCCCTTAAGCTG	GAGGACCCAGAACCAACGTA	286	KOD FX 64-56
Ex3	GACCTGGCCCACAGTCAG	AGGCAGCCCAGCACTATAAA	326	HotStartTaq MM Kit 64-56
Ex4	CTTGGCTGGCAGAGGTCTT	CATCACCAGTCCCTTCCACT	295	HotStartTaq MM Kit 64-56
Ex5	ACAGTGTCCAGGCATTTGGT	CCTTGGCAGAAACACAGACA	347	HotStartTaq MM Kit 64-56
Ex6	CAGCGTGCTCACAGCTTAAT	CTCAGAGGGCTGGCCTATC	280	HotStartTaq MM Kit 64-56
Ex7-variant 1	CCAGTCCCTCTCTGTCAAGC	GAGCAGCCTGTTCTCTGAGC	329	KOD FX 64-56
Ex7-variant 2	AGCCACATTGGTGGACCTT	CATCCACAGAGCACAGGAAG 34		HotStartTaq MM Kit 64-56
Ex8-variant 1	ATCCCACTTCCTGGGACAC	TCTGTGGGTGCTGGAATCAT	350	HotStartTaq MM Kit 64-56
Ex8-variant 2	GTCCATGCCAAGCAGTCC	CAAGTGCAAAGAGTGGTCTGA 348		HotStartTaq MM Kit 64-56

Table S1. Primers and PCR Conditions

The column "PCR conditions" shows the PCR enzymes used and the range of annealing temperatures. The temperature was lowered by 2°C every 3 cycles to the lowest annealing temperature. Then, the PCR reaction was cycled 30 times.

The details of the PCR conditions are as follows:

Hot Start Taq MM Kit: 95° C for 10 s, 64° C, 60° C, 58° C, 56° C for 30 s, and 72° C for 30 s KOD-FX: 95° C for 10 s, 64° C, 60° C, 58° C, 56° C for 30 s, and 72° C for 30 s KOD-FX with 2 step PCR: 98° C for 10 s and 70° C, 68° C, 66° C, 64° C for 30 s

The following PCR amplification enzymes were used: Hot Start Taq MM Kit, Hot Start Taq Master Mix Kit (Qiagen, Tokyo, Japan); KOD FX, KOD FX Neo (Toyobo, Osaka, Japan)

Case	Diagnosis	cDNA change	Amino acid change	Inheritance	SIFT	Polyphen2	Mutation Taster	In-house database
1	Ohtahara syndrome	c.836T>A	p.Ile279Asn	de novo	0.00	Probably damaging 1.000	Disease causing 0.999	0 / 408
2	Ohtahara syndrome	c.521A>G	p.Asp174GLy	<i>de novo</i> mosaic	0.00	Probably damaging 1.000	Disease causing 0.999	0 / 408
3	Ohtahara syndrome	c.572_592del	p.Thr191_Phe197del	de novo	N/A	N/A	N/A	0 / 408
4	Epileptic encephalopathy	c.607G>A	p.GLy203Arg	de novo	0.00	Probably damaging 1.000	Disease causing 0.999	0 / 408

Table S2. Prediction of the Pathogenicity of the GNAO1 Mutations

N/A = not applicable.

SIFT (http://sift.jcvi.org/): scores of less than 0.05% indicate substitutions that are predicted as intolerant.

PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/): scores are evaluated as 0.000 (most probably benign) to 0.999 (most probably damaging). Mutation Taster (http://www.mutationtaster.org/): rapid evaluation of DNA sequence alterations. The alterations are classified as disease causing or polymorphism.

Methods	Rea		
&samples	Mutant alleles	Wild type alleles	% of Mutant alleles
Whole exome			
Blood #1	6	29	17.14
Deep sequencing			
Blood #1	2,996	13,430	18.24
Blood #2	2,659	11,784	18.41
Nail #1	4,187	12,174	25.59
Nail #2	2,975	14,948	16.60
Saliva	3,073	14,255	17.73
Father Blood	23*	18,154	0.13
Mother Blood	27*	14,872	0.18

Table S3. Read Counts in Family of Individual 2 with a Mosaic Mutation in *GNAO1* (c.521A>G)

Samples of blood and nail have been independently obtained twice (#1 and #2).

*These small numbers of mutant reads were considered to be PCR or sequencing errors.