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Supplemental Material 
 

Detailed Methods 
 
Generation and characterization of microRNA transgenic mice.  miR-143 and miR-378 transgenic mice 
were created via cloning genomic DNA fragments flanking microRNA stem-loop precursor regions 
(lengths as shown in Figure 2a of the main text) into the SalI/HindIII cloning site of the αMHC/Myh6 
cardiac transgenic promoter construct.  Mice were housed according to procedures approved by the 
Washington University Institutional Animal Care and Use Committee.  miR-143 and -378 overexpression 
in hearts were initially measured using Applied Biosystems TaqMan microRNA qPCR assays with U6 
snRNA as reference RNA (data not shown); later microRNA-Seq analysis (see below), as documented in 
the manuscript, found similar overexpression levels. 
 
Mouse adult cardiomyocyte isolation and gene expression analysis.  Cardiomyocyte and nonmyocyte 
fractions were separately isolated from the hearts of three 8 week-old, wild-type FVB/N mice, as 
previously described 1.  Following 3 rounds of gravity filtration and washing with ice-cold PBS, myocytes 
were immediately dissolved in Trizol (Invitrogen) and total RNA was prepared.  In order for sufficient 
nonmyocytes to be available for gene expression assays, cells were plated in tissue culture dishes in 
DMEM / 10% fetal calf serum / antibiotics, grown at 37 C / 5% CO2, and passaged once.  Cell 
monolayers were harvested directly into Trizol.  Applied Biosystems TaqMan microRNA and mRNA 
qPCR assays were performed as previously described 2, with the following mRNA expression probes: 
 
Actc1:   Mm01333821_m1 
Col1a1:  Mm00801666_g1 
Gapdh:  Mm99999915_g1 
Myh6:  Mm00440359_m1 
Tpm1:   Mm00600378_m1  
 
microRNA-Seq for microRNA expression analysis.  Libraries were prepared with TruSeq Small RNA 
Sample Prep Kits (Illumina) following the manufacturer's protocols, as previously described 2.  Briefly, 
small RNAs from 1 μg total mouse heart RNA were sequentially ligated with 3′ and 5′ adapters, followed 
by reverse transcription to produce single stranded cDNAs, which were then amplified by PCR with 
primers including indexing capabilities to distinguish individual libraries after flowcell processing.  The 
amplified libraries were size-selected/gel-purified and quantified.  Twelve libraries were pooled in 
equimolar amounts and diluted to 14 pmol/L for cluster formation on a single flow cell lane, followed by 
single-end sequencing (50 nt reads, not including the index determination) on an Illumina HiSeq 2000 
sequencer.  Alignment and quantitation of microRNA sequencing reads was performed by following the 
E-miR pipeline as described 3 with minor modifications to the EmiR-Bowtie.pl Perl script to allow the 
Bowtie aligner 4 to correctly map those microRNAs that arise from multiple genomic loci. 
 
microRNA annotation using miRBase 19.  Previous nomenclature for microRNAs often described the 
minor product (passenger strand) of a microRNA stem-loop structure as a miR* form.  In this manuscript, 
we have annotated mouse microRNAs according to the nomenclature used by miRBase 19, released in 
August 2012 (http://www.mirbase.org/) 5, 6.  microRNAs are designated as -5p or -3p forms according to 
their site of origin in the microRNA stem-loop precursor.  While information on whether a microRNA 
form is ‘major’ or ‘minor’ is sometimes available from deep-sequencing data accumulated in the 
miRBase database from a variety of tissues, we have designated ‘major’ and ‘minor’ forms in mouse 
hearts according to the deep-sequencing data that we obtained for this paper. 
 

http://www.mirbase.org/
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mRNA-Seq for mRNA expression analysis.  mRNA-sequencing was performed essentially as described 2, 7-

9, using Illumina HiSeq 2000 sequencers and library indexing rather than bar-coding.  Using prior criteria 
that a meaningfully expressed transcript should be present at a level equivalent to at least 1 mRNA 
copy/cell (3 FPKM; fragment [reads] per kilobase of exon per million mapped reads) 2, 7-9, or as an 
alternate, that a detectable transcript must map to at least 1 millionth of the total mapped reads in an 
individual library, we identified approximately 9,500 coding mRNAs in mouse hearts.  Concordance of 
these cardiac transcriptomes with those from previous RNA-Seq studies was high 2, 7-9. 

We and others have extensively compared RNA-sequencing analyses to microRNA and mRNA 
microarrays, finding that RNA-sequencing analyses generally offer superior dynamic range and accuracy 
(Supporting Information of 2).  In addition, we have validated differential expression results from 
sequencing analyses with RT-qPCR techniques in several prior studies 2, 7, 10. 

Calculation of differential gene expression using the DESeq package.  In comparison to previous analyses 
using Partek Genomics Suite to compare FPKM values of individual mRNAs 1, 6-8, we used DESeq 11 to 
normalize read depth across multiple sequencing libraries, to calculate fold-changes, and to derive 
individual pairwise comparison p-values and false discovery rates (FDRs).  This statistical approach, 
using a negative binomial distribution in comparison to the normal (Gaussian) distribution used by Partek 
on log-transformed data, is designed to be more robust in contexts where relatively few genes are highly 
abundant and there is a majority of less abundant genes.  While DESeq takes the non-normalized, 
absolute number of aligned reads as input, we have reported microRNA and mRNA abundance in the 
main text and remainder of the Online Information as Reads per Million aligned to microRNA species 
(RpM) for microRNAs, and FPKM for mRNAs, although the underlying fold-change and p-value / FDR 
comparisons used DESeq’s internal methods of library normalization.  We compared the DESeq method 
to Partek methods using FPKM and found similar direction and magnitude of changes in individual 
mRNAs (data not shown).  However, DESeq tended to be more conservative in its assignment of p-values 
and FDRs.  
 
Cardiac microRNAs and mRNAs regulated in microRNA-transgenic mice were defined using a threshold 
of 25% (increased or decreased) and a FDR of 0.05.  Partek Genomics Suite 6.6 (Partek, St. Louis, MO) 
was used to derive principal components analysis plots, fold-change vs p-value volcano plots, and 
unsupervised hierarchical clustering heatmaps. 

Explanation of principal component analysis plots: (used in Figures 4a and 4b as exploratory data 
analysis tools).  Principal Components Analysis (PCA) is an exploratory multivariate statistical technique 
for simplifying complex data sets 12-14.The number of principal components is less than or equal to the 
number of original variables.  This transformation is defined in such a way that the first principal 
component has the largest possible variance (that is, accounts for as much of the variability in the data as 
possible), and each succeeding component in turn has the highest variance possible under the constraint 
that it be orthogonal to (i.e., uncorrelated with) the preceding components.  Principal components analysis 
has been used in a wide range of biomedical problems, including the analysis of microarray data in search 
of outlier genes 15 as well as the analysis of other types of expression 16, 17.  We and others use this data 
analysis method and graphical presentation for our RNA-sequencing work (see Figure 4 of 7 and the 
Supplemental Methods of 2) because it offers a compact way of viewing a great deal of 
(multidimensional) data in a fairly intuitive fashion.  The above description is adapted from 18. 

Informatic analyses.  To compare the numbers of likely mRNA targets of primarily and secondarily 
regulated microRNAs (Figure 6, main text) we used our previously described FastamiRs algorithm 2 
(http://epigenomics.wustl.edu/edwardsLab/index.php/downloads), since it permits prediction of targets 
for microRNA passenger or minor strands that are not present in the current TargetScan database.  

http://en.wikipedia.org/wiki/Variance
http://epigenomics.wustl.edu/edwardsLab/index.php/downloads
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Overexpressed or upregulated microRNAs were used as input to search the set of downregulated mRNAs 
(defined using the genome-wide significance criteria above); separate processing was carried out for miR-
378 and miR-499 TG mice.  Putative target mRNAs were stringently defined as those with a perfect 
match to the microRNA nucleotide 2-7 ‘seed’ region (G:U base pairing was excluded from consideration 
on the basis of recent work demonstrating that G:U pairing is poorly tolerated in the seed region for fly 
Ago2 19), a stretch of at least 7 contiguously paired nucleotides (which may include the ‘seed’), and with 
miR binding in the 3’UTR rather than in coding sequences or the 5’UTR. 

miR-378- and miR-499-regulated transcription factor binding analysis for promoter regions of regulated 
miRs, Figure 7: we first used the RIKEN transcription factor database (http://genome.gsc.riken.jp/TFdb, 
accessed 11/5/12) to identify 1678 transcription factors or accessory proteins, and found 869 of these to 
be expressed in hearts (using the same abundance criteria we used in our other RNA-seq data throughout 
the paper).  We then obtained predictions for miR-378 or miR-499 binding from the latest version of 
TargetScan (v6.2), resulting in 15 and 21 potentially microRNA-regulated entities, respectively (Online 
Table IV).  Finally, the transcription factor-binding prediction database MAPPER 20 
(http://bio.chip.org/mapper) was used to identify putative binding sites 10 kb upstream of the start of the 
pre-miR, or for those cases in which the pre-miR was present in the intron of a host gene, 10 kb upstream 
of the transcription start site (Online Table V). 

‘Defined miR-378 targets’ in Figure 7 (light red box) are derived from Online Table III, and are those 
mRNAs predicted by FastamiRs to be downregulated by miR-378-3p and by no other upregulated 
microRNA.  ‘Indirect miR-378 targets’ in Figure 7 are those mRNAs which were upregulated in miR-
378 transgenic hearts (Online Table I).  miR-99a targets were those mRNAs predicted by TargetScan 
v6.2, and known to be expressed in the heart from our deep sequencing data.  The categories of ‘muscle 
growth and development’, ‘muscle contraction’ and ‘metabolism’ were obtained from MetaCore 
(http://thomsonreuters.com/products_services/science/systems-biology/) / GeneOntology analysis of the 
defined and indirect miR-378 target gene lists, and the miR-99a TargetScan gene list. 

 
  

http://genome.gsc.riken.jp/TFdb
http://bio.chip.org/mapper
http://thomsonreuters.com/products_services/science/systems-biology/
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Online Figures and Figure Legends 
 

 
 
 
Online Figure I.  Echocardiographic examination of miR-143 and miR-378 transgenic hearts at 8 weeks 
of age, relative to littermate controls. Representative M-mode echocardiograms on microRNA transgenic 
hearts and age- and sex-matched littermate controls. 
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Online Figure II.  Transcriptome-wide microRNA effects of miR-143, -378, and -499.  Unsupervised 
hierarchical clustering of expression levels for the 300 cardiomiRs in miR-143, -378 and -499 transgenic 
hearts, compared to littermate controls.  Blue indicates downregulation while red indicates upregulation 
relative to mean level for each microRNA. 
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Online Figure III.  microRNA deep sequencing in nontransgenic mouse hearts.  Contextual abundance 
of cardiomiR guide (black) and passenger (white) strands in 8 wk mouse hearts.   A, most abundant 100 
cardiomiRs (log10 scale); B and C are second and third tiers of 100 cardiomiRs (linear scales).  Arrows 
indicate positions of guide and passenger strands for miR-143 -378, and -499. 
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Supplemental Tables 
 
Online Table I is supplied as an Excel workbook (.xls) 
 
Online Table I.  mRNAs regulated in miR-143, -378 and -499 transgenic hearts.  Regulated mRNAs 
were defined as those changed by at least 25% at FDR < 0.05, compared to littermate nontransgenics.  
The mean FPKM (abundance) of each mRNA in nontransgenic hearts is shown, together with fold-
change and FDR in transgenic hearts calculated by DESeq.  mRNAs are sorted in order of fold-change, 
from the most downregulated to the most upregulated.  Separate Excel tabs are provided for each of the 
miR-143, -378 and -499 transgenic heart comparisons. 
 
 
Online Table II is supplied as an Excel workbook (.xls) 
 
Online Table II.  Regulation amongst 300 cardiomiRs in miR-143, -378 and -499 transgenic hearts.  
Similarly to the mRNA analysis in Online Table I, regulated microRNAs were defined as those changed 
by at least 25% at FDR < 0.05, compared to littermate nontransgenics.  MicroRNA expression is given as 
DESeq-adjusted ‘baseMeans’, representing the number of sequencing reads obtained for each microRNA, 
adjusted for sequencing depth (see Detailed Methods).  Aligned read counts for microRNA libraries 
averaged 7.1 x 106; thus, any microRNA with less than 7 reads (~1 millionth of the total) was eliminated 
from further analysis.  MicroRNAs are sorted in order of fold-change, from the most downregulated to the 
most upregulated.  Separate Excel tabs are provided for each of the miR-143, -378 and -499 transgenic 
heart comparisons. 
 
 
Online Table III is supplied as an Excel workbook (.xls) 
 
Online Table III.  Downregulated mRNAs in miR-378 and -499 transgenic hearts, predicted to be targets 
of primarily and secondarily upregulated microRNAs.  The FastamiRs algorithm 2 was used with 
stringent parameters (see Detailed Methods) to predict targeting of downregulated mRNAs by 
upregulated microRNAs. 
 
  



8 
 

Online Table IV 
miR Gene ID Gene 

symbol 
Gene name  

378 ENSMUSG00000018983 E2f2 E2F transcription factor 2 
378 ENSMUSG00000028266 Lmo4 LIM domain only 4 
378 ENSMUSG00000051510 Mafg v-maf musculoaponeurotic fibrosarcoma 

oncogene family, protein G (avian) 
378 ENSMUSG00000063358 Mapk1 mitogen activated protein kinase 1 
378 ENSMUSG00000000282 Mnt max binding protein 
378 ENSMUSG00000028890 Mtf1 metal response element binding transcription 

factor 1 
378 ENSMUSG00000028423 Nfx1 nuclear transcription factor, X-box binding 1 
378 ENSMUSG00000021111 Papola poly (A) polymerase alpha 
378 ENSMUSG00000051413 Plagl2 pleiomorphic adenoma gene-like 2 
378 ENSMUSG00000049647 Purb purine rich element binding protein B 
378 ENSMUSG00000006456 Rbm14 RNA binding motif protein 14 
378 ENSMUSG00000032238 Rora RAR-related orphan receptor alpha 
378 ENSMUSG00000022623 Shank3 SH3/ankyrin domain gene 3 
378 ENSMUSG00000051910 Sox6 SRY-box containing gene 6 
378 ENSMUSG00000015837 Sqstm1 sequestosome 1 
499 ENSMUSG00000030232 Aebp2 AE binding protein 2 
499 ENSMUSG00000019947 Arid5b AT rich interactive domain 5B (Mrf1 like) 
499 ENSMUSG00000057098 Ebf1 early B-cell factor 1 
499 ENSMUSG00000032035 Ets1 E26 avian leukemia oncogene 1, 5' domain 
499 ENSMUSG00000029563 Foxp2 forkhead box P2 
499 ENSMUSG00000021944 Gata4 GATA binding protein 4 
499 ENSMUSG00000050240 Hic2 hypermethylated in cancer 2 
499 ENSMUSG00000032178 Ilf3 interleukin enhancer binding factor 3 
499 ENSMUSG00000021690 Jmy junction-mediating and regulatory protein 
499 ENSMUSG00000020160 Meis1 myeloid ecotropic viral integration site 1 
499 ENSMUSG00000028647 Mycbp c-myc binding protein 
499 ENSMUSG00000027201 Myef2 myelin basic protein expression factor 2, repressor 
499 ENSMUSG00000048490 Nrip1 nuclear receptor interacting protein 1 
499 ENSMUSG00000021816 Ppp3cb protein phosphatase 3, catalytic subunit, beta 

isoform 
499 ENSMUSG00000004771 Rab11a RAB11a, member RAS oncogene family 
499 ENSMUSG00000023927 Satb1 special AT-rich sequence binding protein 1 
499 ENSMUSG00000041540 Sox5 SRY-box containing gene 5 
499 ENSMUSG00000051910 Sox6 SRY-box containing gene 6 
499 ENSMUSG00000063060 Sox7 SRY-box containing gene 7 
499 ENSMUSG00000032228 Tcf12 transcription factor 12 
499 ENSMUSG00000039473 Ubn1 ubinuclein 1 
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Online Table IV. Cardiac-expressed transcription factors predicted to be regulated by miR-378-3p or 
miR-499-5p according to TargetScan v6.2.  Transcription factor genes were obtained from the RIKEN 
transcription factor database, selected for cardiac expression, and filtered for TargetScan-predicted 
regulation by miRs-378 or -499 (see Detailed Methods). 
 
 
Online Table V is supplied as an Excel workbook (.xls) 
 
Online Table V: Putative transcription factor binding sites in microRNA promoter regions.  Hits 
predicted by MAPPER 20 in microRNA promoter regions (see Detailed Methods). 
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