The American Journal of Human Genetics, Volume 93

Supplemental Data

An X-Linked Cobalamin Disorder Caused by Mutations

in Transcriptional Coregulator HCFC1

Hung-Chun Yu, Jennifer L. Sloan, Gunter Scharer, Alison Brebner, Anita M. Quintana, Nathan P. Achilly, Irini Manoli, Curtis R. Coughlin II, Elizabeth A. Geiger, Una Schneck, David Watkins, Terttu Suormala, Johan L.K. Van Hove, Brian Fowler, Matthias R. Baumgartner, David S. Rosenblatt, Charles P. Venditti, and Tamim H. Shaikh

Figure S1. Pathogenic Variants in *HCFC1* Verified by Sanger Sequencing

(A) Partial chromatograms showing Sanger sequencing results of Exon 3 of *HCFC1* in the family of Subject 1. Subject 1 has a missense mutation c.344C>T (p.Ala115Val) (black box) inherited from his mother who is a heterozygous carrier with one copy each of the C and T (*de novo*) allele shown as Y (pyrimidine), due to dual peaks. (B) Partial chromatograms showing Sanger sequencing results of Exon 2 of *HCFC1* in Subject 11 and his parents. Subject 11 has a *de novo* mutation c.218C>T (p.Ala73Val) (black box). Both parents carry the normal C allele. (C) Subject 2-9 have c.344C>T (p.Ala115Val) mutation, Subject 10 has c.343G>A (p.Ala115Thr) mutation, Subject 12 has c.218C>T (p.Ala73Val) mutation, Subject 13 has c.217G>A (p.Ala73Thr) mutation, and Subject 14 has c.202C>G (p.Gln68Glu) mutation.

Figure S2. Protein Modeling of Wild-type and Mutant HCFC1

The entire protein is shown on the top and the expanded view of the region where the mutations have occurred in shown in the bottom. (A) Predicted structure of wild-type HCFC1 with a close-up of the region containing Gln 68, Ala73, Val74, Arg75, and Ala115 in the bottom panel. The side chains of these amino acids are also shown. The predicted structural changes due to the p.Ala115Val (B), p.Ala115Thr (C), p.Ala73Val (D), p.Ala73Thr (E) and p.Gln68Glu (F) mutations as predicted by Modeller¹. In p.Ala115Val, p.Ala73Val and p.Ala73Thr mutations, the close-up view indicates that this amino acid change generates a conformational change resulting in a kink (red dashed circle) between Val74 and Arg75. The p.Gln68Glu mutation did not generate a similar conformational change.

Figure S3. HCFC1 and THAP11 Binding Regions

Predicted binding sites for HCFC1 and THAP11 based on mouse ChIP-Seq data². The mouse genome coordinates were converted to the human genome coordinates (NCBI build 37) using Liftover tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). The sequences bound to HCFC1 are shown in red and to THAP11 are shown in blue. The conserved THAP11 Binding Motif (TBM) is shown in purple. (A) The region of human chromosome 1 (1p34.1) containing the *MMACHC* gene is shown. (B) The region of human chromosome 1 (1q43) containing the *MTR* gene, (C) the region of human chromosome 2 (2p11) containing the *SUCLG1* gene, and (D) the region of human chromosome 14 (14q24) containing the *ABCD4* is shown.

Figure S4. HCFC1 Expression in siRNA Knockdown Cells

Western blot of *HCFC1* siRNA knockdown in HEK293 cells. Three biological replicates of *HCFC1* siRNA treated cells are shown in the left and replicates of scrambled siRNA treated HEK293cells are shown in the right. In the bottom panel, β -actin was used as a loading control.

Figure S5. MMA Production by *cblX* Fibroblasts in Cell Culture

 $5x10^5$ cells, plated in triplicate, were incubated in complete DMEM medium (solid black bar), medium with 10 mM propionate added (white bar) or medium with 10 mM propionate and 1 ug/ml hydroxocobalamin (grey bar) for 72 hours. The concentration of MMA (nmol/ml) was assayed in the medium. Fibroblasts from Subjects 1 and 11 show a 5.9- or 2.2-fold increase after incubation in propionic acid that was corrected with the addition of exogenous hydroxocobalamin to the medium, comparable to the response of the *cblC* cell line, which rises 2.6 fold after identical treatment and also responds to exogenous hydroxocobalamin. Error bars , +/- 1 s.d. (n=3 replicates per cell line).

Table S1. PCR Primers

	5'-3'
Validation of WES result in Subject 1	
HCFC1 validation forward	CACCTTGGAATGTTGTTCTTTGGGTCCTCG
HCFC1 validation reverse	TGACCTCTACGAACTCCAGGTAAAGCAGCC
TTN validation forward 1	CAAGTACTTTGCAATTAACGGCCACAGACC
TTN validation reverse 1	AGAGATCCTTGTGACCCTCCTGGACAACC
TTN validation forward 2	GTGTTTTTATTGCTCTCACCCATCGCAGGC
TTN validation reverse 2	AAGCAACACTTACATGGACACCTCCCTTGG
Mutation Analysis in other Subjects	
HCFC1 exon1 forward	ACCAGTCGGACTAGGGGCTTTCTTTTAACTAACG
HCFC1 exon1 reverse	ATGGAGTCGTCTACCGCTGTGTGAGAAACC
HCFC1 exon2 forward	TCTTTGCTTTGAGTCTCTTCCACTCCCACC
HCFC1 exon2 reverse	AGTGGCTAGATTCCCAGTAGCTGATGAGGG
HCFC1 exon3 forward	TGGGACTACCTCCAGACAGAGAGTCCTTGG
HCFC1 exon3 reverse	GACCTCTACGAACTCCAGGTAAAGCAGCC
HCFC1 exon4 forward	ATGACAAGAGGAAAGCACGAAGTGGTATGC
HCFC1 exon4 reverse	CCAGTTGGACTCATCCTAGGGAGCTTCTGG
HCFC1 exon5&6 forward	GAGGCTTTTGCACTTTTGGATGTTGGGC
HCFC1 exon5&6 reverse	GTACCTGAAGGAGCGCTATTGCTAGCCTGG
HCFC1 exon7&8 forward	CTACAACCCTTGGAGACAAGCCCAAAGC
HCFC1 exon7&8 reverse	TTGACAACAAAAGAACCAAGGGCAACCAGGG
HCFC1 exon9 forward	TATTAATTCCCACCATGACCTCGCAGGAGC
HCFC1 exon9 reverse	CTTTGGGCTTGTCTCCAAGGGTTGTAGGG
HCFC1 exon10 forward	AAAGCGATGGGGAAACCACCCAAGATGTCC
HCFC1 exon10 reverse	GGTCTGGCAGTAGAGAAAGCTGAGCCATGC
HCFC1 exon11&12 forward	GCTGAGGTCACCAGCTTCAGGATTGTTCCC
HCFC1 exon11&12 reverse	GAAGGTGAGTGTTGAGGCAGGAGCTATGGG
HCFC1 exon13&14 forward	TTAAGCACCACCTGGAACACCAGAGGAAAG
HCFC1 exon13&14 reverse	CATCCAGGTGAGCTCTCAGTCTTTGCACAT
HCFC1 exon15&16 forward	GACAGCCAAACCACGGACTATGACACAGGG
HCFC1 exon15&16 reverse	CACCTGCGAAAATCATCACTGCTGTCCC
HCFC1 exon17 forward 1	CGACATGGCTGTAGTGGCAGTGTTGGTGG
HCFC1 exon17 reverse 1	CCTCTTCCTCATCCCAGTTGCCTTTGAGG
HCFC1 exon17 forward 2	CTCACATGGTGGGTTGGAGCAGACTTGG
HCFC1 exon17 reverse 2	GCTGCTTCTCTTGTGACCTCGACTGTGG
HCFC1 exon17 forward 3	AACTCATGTTGGAAGTGACAGTGGTGGCCG
HCFC1 exon17 reverse 3	CTTTTGTGCAGTTGGCCCCTCTGAGC
HCFC1 exon18 forward	GTCTTATACAGGCTGCGGTGAAGTGACACG
HCFC1 exon18 reverse	CACTTCTTCCCACAGGACCGTGGAGTCTGG
HCFC1 exon19 forward	CCTGTTCTACACGGCAGTCTCTACTACTTGG
HCFC1 exon19 reverse	GAAAACTTAGGCCCACAAGGAAAGGTGAGG
HCFC1 exon20 forward	AGGCCTAGGAAGAAGAAGGTGTCAGCG
HCFC1 exon20 reverse	CAGATGTGATGGGGGAGGACGAGCACAGG
HCFC1 exon21&22 forward	TAACTATGGGCCAGAGGGAAAAGAGGTCAGC
HCFC1 exon21&22 reverse	CTCAACGGCCACTGAGAGTAAGCGACTGAGG
HCFC1 exon23 forward	CCCCCAAGTGGAAGGACTAAGACAAACTGG

HCFC1_exon23_reverse	GGGCTTACAGGAAACTCCTCCATCTTTGGG
HCFC1_exon24_forward	TTTCGGGCCTGGAAACCTACACTTTCCC
HCFC1_exon24_reverse	CCTTCCACTTGGGGGGAAGATCTCTTTGAAGC
HCFC1_exon25&26_forward	GAAAGAGAAAGGGGGAGAGGAGTGAACAGCG
HCFC1_exon25&26_reverse	TGAGTGGGTTTCTAACCTACGTCCAGAGGG
qPCR Expression Analysis	
HCFC1 left	ACACGCTGGCTTGTCTCAA
HCFC1 right	GGGATGTTGTCCTCCAGTGT
HCFC1 Universal Probe number	14
MMACHC left	GCTTCGAGGTTTACCCCTTC
MMACHC right	AGGCCAGGGTAGGTCCTG
MMACHC Universal Probe number	19
MMADHC left	GCTATTTTGCGAACTATCTTCTCC
MMADHC right	TCCTGGGAGATAGGAAACCA
MMADHC Universal Probe number	21
MTR left	CAGAGTGCTTAACGGCACAG
MTR right	TAACAGTGGCCAGCACGAT
MTR Universal Probe number	35
SUCLG1 left	TTCACCAAACAACGCAAGTT
SUCLG1 right	TAAAAGGATCACCTCCAATGC
SUCLG1 Universal Probe number	43
ABCD4 left	ATGCAGATTCGGGTGAATG
ABCD4 right	TCTGTCCTCATGTGCTCCAC
ABCD4 Universal Probe number	40

Subject	HCFC1	[¹⁴ C] propi	onate	[¹⁴ C] meth	nylTHF	[¹⁴ C] form	ate	AdoCbl%	MeCbl%	Urine Hcy ^d	Propionylcarnitine ^e
number	variant	incorporati	ion ^a	incorporat	ion ^b	incorporati	on into				
						methionine	c				(nl<1.78)
		Ref. range	:	Ref. range	: 225±165	Ref. range:		Ref.range:	Ref. range:	(nl=und.)	
		10.8±3.7		C C		2.2±0.6		15.3±4.2	58.0±6.7	· /	
		basal	medium	basal	medium	basal	medium				
		medium	+ OHCbl	medium	+ OHCbl	medium	+ OHCbl				
1	p.Ala115Val	1.0	3.2	27	52	nd	nd	3.9	1.5	nd	nd
2	p.Ala115Val	1.8	2.6	49	61	nd	nd	6.5	2.8	61	nd
3	p.Ala115Val	2.4	5.9	50	74	nd	nd	7.1	10.6	56	nd
4	p.Ala115Val	1.9	4.1	47	60	nd	nd	3.8	6.7	nd	nd
5	p.Ala115Val	3.3	6.0	48	73	nd	nd	6.5	2.6	nd	nd
6	p.Ala115Val	1.5	3.9	23	32	nd	nd	9.8	15.9	nd	nd
7	p.Ala115Val	1.4	4.1	21	39	nd	nd	3.1	2.3	nd	nd
8	p.Ala115Val	1.2*	8.0*	nd	nd	0.3	1.9	12.9	5.1	nd	nd
9	p.Ala115Val	1.4*	7.3*	nd	nd	0.4	1.6	0	1.1	nd	nd
10	p.Ala115Thr	0.6	0.9	36	52	nd	nd	3.0	0.7	nd	nd
11	p.Ala73Val	2.0	4.7	48	54	nd	nd	2.7	15.6	nd	2.16
12	p.Ala73Val	3.7*	11.4*	nd	nd	0.6	1.3	1.0	1.6	nd	nd
13	p.Ala73Thr	1.9	3.0	38	44	nd	nd	5.2	16.7	nd	nd
14	p.Gln68Glu	2.5	4.0	61	87	nd	nd	9.6	6.9	nd	nd

Table S2. Enzymatic Studies in Skin Fibroblasts and Biochemical Findings in *cblX* Patients

Ref. range: Reference range(mean ± SD); OHCbl: hydroxycobalamin; THF: tetrahydrofolate; AdoCbl: adenosylcobalamin; MeCbl: methylcobalamin; tHcy: total homocysteine; Hcy: homocystine; MMA: methylmalonic acid; nl: normal; nd: not determined; und, undetectable

a: (nmol/mg protein/18 hrs), * nmol/mg protein/16 hrs in patients 8, 9 and 12 (reference range 11.7 ± 4.3); b: (pmol/mg protein/18 h); c: (nmol/mg protein/16 h); d: µmol/L; e: nmol/mL

	Subject 1						
Total variants		76,	191				
Coding variants	20,279						
Nonsynonymous, splice-site,	9,249						
InDel variants							
Rare variants	161						
Test of inheritance model	Dominant	Recessive					
Test of inneritance model	model	models					
	da novo	Compound	Homozygous	X-linked			
	ue novo	heterozygous		hemizygous			
	0	1 (<i>TTN</i>)	0	1 (HCFC1)			

Table S3. Summary of Exome Variants and Test of Inheritance Models in Subject 1

cDNA			Grantham	Conservation	Conservation
variant	Amino acid	PolyPhen-2 ^a	Score ^b	GERP ^c	phastCons ^d
c.344C>T	p.Ala115Val	0.997	64	5.25	0.981
		(Probably Damaging)			
c.343G>A	p.Ala115Thr	0.998	58	5.25	0.998
		(Probably Damaging)			
c.218C>T	p.Ala73Val	0.991	64	5.46	0.958
		(Probably Damaging)			
c.217G>A	p.Ala73Thr	0.731	58	5.46	0.952
		(Possibly Damaging)			
c.202C>G	p.Gln68Glu	0.722	29	5.46	1
		(Possibly Damaging)			

 Table S4. Annotation of Mutation Effect and Conservation Score by SeattleSeq134

a: 1=Most Damaging, 0=Most Benign; b: 125=Most Damaging, 0=Most Benign; c: 6.17=Most Conserved, -12.3=Least Conserved; d: 1=Most Conserved, 0=Least Conserved.

	Sample	Gender*		Sample	Gender*
	ID			ID	
Individuals	NA17202	F	African	NA17101	М
of European	NA17203	М	Americans	NA17102	М
Descent	NA17204	F		NA17103	М
	NA17205	М		NA17104	М
	NA17206	F		NA17105	М
	NA17207	М		NA17106	М
	NA17208	F		NA17107	М
	NA17209	F		NA17108	М
	NA17210	F		NA17109	М
	NA17211	М		NA17110	F
	NA17212	М		NA17111	М
	NA17213	F		NA17112	F
	NA17214	М		NA17113	F
	NA17215	F		NA17114	М
	NA17216	F		NA17115	М
	NA17218	F		NA17116	F
	NA17219	М		NA17117	М
	NA17220	М		NA17118	F
	NA17221	F		NA17119	F
	NA17222	М		NA17120	F
	NA17223	М		NA17121	F
	NA17224	F		NA17122	F
	NA17225	М		NA17123	F
	NA17226	М		NA17124	F
	NA17227	М		NA17125	М
	NA17228	М		NA17126	F
	NA17229	F		NA17127	F
	NA17230	F		NA17128	F
	NA17231	М		NA17129	F
	NA17232	М		NA17130	F
	NA17233	F		NA17131	F
	NA17234	F		NA17132	F
	NA17235	М		NA17134	F
	NA17236	F		NA17135	F
	NA17237	М		NA17137	F
	NA17238	F		NA17138	F
	NA17239	F		NA17149	F
	NA17240	М		NA17150	F
	NA17241	М		NA17151	F
	NA17242	F		NA17152	М
	NA17243	М		NA17154	F
	NA17244	М		NA17156	F
	NA17245	F		NA17157	F
	NA17246	F]	NA17164	F
	NA17247	F]	NA17167	F

Table S5. Human Variation Panel Controls from Coriell Institute

NA17248	М	NA17173	F
NA17250	F	NA17176	F
NA17251	F	NA17181	F
NA17252	F	NA17185	F
NA17253	М	NA17189	F

*: M=Male, F=Female

References

- 1. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.-Y., Pieper, U., and Sali, A. (2006). Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics *Chapter 5*, Unit 5.6.
- Dejosez, M., Levine, S.S., Frampton, G.M., Whyte, W.A., Stratton, S.A., Barton, M.C., Gunaratne, P.H., Young, R.A., and Zwaka, T.P. (2010). Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes Dev. 24, 1479–1484.