
Supplementary Materials for Pointwise Confidence Intervals for a Survival
Distribution with Small Samples or Heavy Censoring

MICHAEL P. FAY, ERICA H. BRITTAIN, MICHAEL A. PROSCHAN
National Institute of Allergy and Infectious Diseases,

Bethesda, MD, 20892-7630, USA
correspondence to M.P. Fay: mfay@niaid.nih.gov

Summary
This supplement provides additional mathematical details and simulations for the paper.

A Distribution of S(Tj) with Progressive Type II Censoring
Let Yi = Y (Ti) be the number of patients at risk just prior to the ith event time Ti. With progressive type II censoring,
Yi − Yi+1 − 1 patients are selected randomly to be censored at time T+

i (infinitesimally after time Ti) among the
Yi − 1 people who did not die and were not censored by time Ti. We compute the conditional distribution of the time
of the next event, Ti+1, given Ti = (T1, . . . , Ti) and Y = (Y1, . . . , Yn). (Note: we could condition on only the
Y s up to the ith event, and this gives the same answer.) Each of the remaining Yi+1 patients just after time Ti has
amassed followup time Ti without an event. Therefore, the conditional probability that Ti+1 > ti+1, given Ti, and Y
is [{S(ti+1)}/{S(Ti)}]Yi+1 . But {Ti+1 > ti+1} = {S(Ti+1) < S(ti+1)}, so

Pr{S(Ti+1) < S(ti+1) |Ti,Y} =

[
S(ti+1)

S(Ti)

]Yi+1

Pr{S(Ti+1) < u1 |Ti,Y} =

[
u1

S(Ti)

]Yi+1

Pr{S(Ti+1) < u2S(Ti) |Ti,Y} = u
Yi+1

2

Pr

{
S(Ti+1)

S(Ti)
< u2 |Ti,Y

}
= u

Yi+1

2 .

This shows that the conditional distribution of S(Ti+1)/S(Ti) given Ti and Y is beta(Yi+1, 1). Because this distribution
is the same for all values of Ti, S(Ti+1)/S(Ti) is conditionally independent of Ti, given Y. This holds for all i, so
conditioned on Y, S(T2)/S(T1) is independent of S(T1); S(T3)/S(T2) is independent of {S(T1), S(T2)/S(T1)}, etc.
It follows that, conditioned on Y,

S(Ti) = S(T1)
S(T2)

S(T1)
. . .

S(Ti)

S(Ti−1)

is the product of independent betas with respective parameters (Y1 = n, 1), (Y2, 1), . . . (Yi, 1).

B Proof of Theorem 1
The confidence interval method of this paper can be viewed as a special case of the following technique (formally
shown in Casella and Berger (2002), Theorem 9.2.14). Suppose that W has distribution Fθ(w), where F is a decreasing
continuous function of θ. Determine θL = θL(wobs) as the solution to Pr(W ≥ wobs | θL) = α/2, where wobs is the
observed value of W. It is helpful to regard this technique in the following way. Fix wobs and determine θL such that if it
is the true value of θ and we repeat the experiment by drawing a new value W, the new value has probability α/2 of being
≤ wobs. Notice that the event θ < θL(wobs) implies that Pr(W ≥ wobs | θ) ≤ α/2. By definition, the probability that
this occurs under true parameter value θ is ≤ α/2. Similarly, define θU to be the solution to Pr(W ≤ wobs | θU ) = α/2.
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By the same reasoning as above, The event θ > θU has probability ≤ α/2. Therefore, the probability that the random
interval (θL, θU ) covers θ is at least 1− α.

Now apply the above technique to the estimated survival probability Ŝ(t) = SKM {t;Z(t)} using the Kaplan-Meier
estimator with progressive type 2 censoring. Fix the observed number of events, i, by time t, and the observed censoring
pattern Y = yobs. Imagine repeating the experiment with the proviso that the censoring pattern of the replicate is the
same as in the original experiment up to the number of events observed in the replicate. Let Ŝobs(t) be the estimated
survival at time t in the original experiment and Ŝ(t) be the corresponding survival estimate in the replicate experiment.
Then Ŝ(t) ≤ Ŝobs(t) if and only if at least i events in the replicate experiment occur by time t. Equivalently, Ti ≤ t,
where Ti is the time of the ith observed event in the replicate experiment. This in turn is equivalent to S(Ti) ≥ S(t).
This is equivalent to

S(T1)
S(T2)

S(T1)
. . .

S(Ti)

S(Ti−1)
≥ S(t). (B.1)

Likewise, Ŝ(t) ≥ Ŝobs(t) if and only if at most i events in the replicate experiment occur by time t, which is equivalent
to Ti+1 > t, which is equivalent to

S(T1)
S(T2)

S(T1)
. . .

S(Ti+1)

S(Ti)
< S(t). (B.2)

Therefore, we can determine a 1 − α confidence interval for S(t) that has the correct conditional coverage probability
given the observed censoring pattern Y = yobs as follows. The upper limit is the upper α/2 quantile (i.e., the value
x exceeded with probability α/2) of the distribution of the product of the i independent betas on the left side of (B.1).
The lower limit of a 1−α confidence interval for S(t) is the lower α/2 quantile of the distribution of the product of the
i + 1 independent betas on the left side of (B.2). Because this confidence interval has the correct conditional coverage
probability given that Y = yobs, it has the correct unconditional coverage probability also.

C Proof of Theorem 2
The BPCP for S(t) with t = Tj uses a beta product random variable with parameters Y(t) = [y1, y2, . . . , yj ] and
1 = [1, . . . , 1], where yi = Y (Ti). Let

Vj = − log(BP {Y(t),1}) =
j∑

i=1

− log(B(yi, 1))

Note that if Bi ∼ beta(yi, 1) with yi fixed then W ∗
i = − log(Bi) is exponential with mean 1/yi. Therefore,

Vj =

j∑
i=1

1

yi
Wi,

where Wi is exponential with mean 1.
Consider first the case where G, the censoring distribution is fixed, so that the number of observed failures before t

goes to infinity. Since E(Wi) = V ar(Wi) = 1 and

maxi=1,...,j 1/y
2
i∑j

i=1 1/y
2
i

≤
1/y2j
j/n2

= (1/j)(n/yj)
2 → 0,

we can use the Liapounov central limit theorem to see that

Zj =

∑ Wi−1
yi√∑
1/y2i

=
Vj − Â(t)

σ̂(t)

L→ N(0, 1).

2



where N(0, 1) denotes the standard normal distribution function (see e.g., Lehmann (1999), p. 102). Treating Zj as
asymptotically standard normal we get

1− α ≈ Pr

[
−Φ−1(1− α/2) ≤ Vj − Â(t)

σ̂(t)
≤ Φ−1(1− α/2)

]
= Pr

[
Â(t)− Φ−1(1− α/2)σ̂(t) ≤ − log {BP (Y, 1)} ≤ Â(t) + Φ−1(1− α/2)σ̂(t)

]
= Pr

[
exp

{
−Â(t)− Φ−1(1− α/2)σ̂(t)

}
≤ BP (Y, 1) ≤ exp

{
−Â(t) + Φ−1(1− α/2)σ̂(t)

}]
.

We see that the BPCP asymptotically matches (3). The asymptotic equivalence of (3.3) and (3.4) has been shown (see
e.g., Andersen and others (1993); Aalen and others (2008)).

D Alternative Notation for Grouped Data
To write the collapsed beta product we introduce new notation. Let N(t) be the number who are known to have failed
at or before t. For t ∈ (gi−1, gi], let D(t) = N(gi)−N(gi−1), Y +

g (t) = Y (gi) and Y −
g (t) = Y (gi−1). Suppose there

are kg assessment times, gi, where D(gi) > 0, and let the associated indices be i1, . . . , ikg . Let

Yg(t) = [Y −
g (gi1), Y

−
g (gi2), . . . , Y

−
g (gih), Y

+
g (t)] if t ∈ (gih−1, gih+1−1], and

Da(t) = [D(gi1), D(gi2), . . . , D(gih), a] if t ∈ (gih−1, gih+1−1]

and let 1g(t) be a vector of 1s the same length as Yg(t). Then repeatedly using (2.1), we can show that for t ∈
{g1, . . . , gm},

BP {Y(t),1a(t)} ∼ BP {Yg(t)−Da(t) + 1g(t),Da(t)} .

So an equivalent definition of the BPCP for grouped data is: for t ∈ (gi−1, gi],

Lt(Zg(t), 1− α/2) = Q {α/2,Yg(gi)−D1(gi) + 1g(gi),D1(gi)}
and

Ut(Z(t), 1− α/2) = Q {1− α/2,Yg(gi−1)−D0(gi−1) + 1g(gi−1),D0(gi−1)} .

E Simulation on Median Unbiased Estimator

Table E.1: 1000 times mean squared error of the survival estimates at the true values given by the top row.
0.99 0.9 0.75 0.5 0.25 0.1 0.01

KML 0.39 3.66 7.61 11.00 9.45 6.11 0.30
KMM 0.39 3.66 7.61 11.00 9.43 5.73 0.80
KMH 0.39 3.66 7.61 11.00 9.41 5.60 2.87

BPCPMM 0.44 3.49 7.41 10.66 8.89 4.37 1.49
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F Simulation Modeled After Nash et al (2007) Data

Table F.2: Simulated Size, with the simulation modeled after Nash and others (2007) Data; n = 34 with X a mixture
of two exponentials, one exponential with mean 0.227 sampled with probability p=0.187 and the second exponential
with mean 22.44 sampled with probability 1-p=0.813; censoring, C, is uniform on (2, 8). Simulation had 100,000
replications. Percent Error on Each Side of 95% Interval (nominal is 2.5%).

t = 3 t = 4 t = 5 t = 6
S(t) = 0.71 S(t) = 0.68 S(t) = 0.65 S(t) = 0.62

Ê(N(t)) = 9.8 Ê(N(t)) = 10.7 Ê(N(t)) = 11.2 Ê(N(t)) = 11.6

Ê(Y (t)) = 20.1 Ê(Y (t)) = 15.3 Ê(Y (t)) = 11.0 Ê(Y (t)) = 7.1
low high low high low high low high

Greenwood (log) 4.3 0.5 5.2 0.6 5.4 0.3 7.0 0.0
Modified Lower 4.3 0.5 4.1 0.6 2.7 0.3 2.5 0.0

Borkowf (log) 4.3 0.5 3.7 0.3 2.5 0.3 2.7 0.0
Borkwof (log, shrink) 4.0 0.5 2.3 0.3 1.7 0.3 1.9 0.0

Strawderman-Wells 3.4 1.9 2.0 1.6 2.6 1.6 4.5 1.7
Thomas-Grunkemeier 1.4 2.2 2.0 2.2 2.4 1.8 3.8 2.4

Constrained Beta 3.4 2.0 2.0 2.0 2.5 1.8 3.8 2.5
Bootstrap 4.0 2.7 3.2 2.6 3.4 2.4 4.2 2.3

Constrained Bootstrap 2.6 2.3 2.0 2.7 2.0 2.1 3.8 2.1
Binomial (Censor>t) 1.2 1.4 1.4 1.7 1.2 1.2 1.0 1.6

BPCP (MM) 1.2 1.9 0.5 1.4 0.4 1.4 0.3 1.1
BPCP (MC) 1.1 1.9 0.5 1.4 0.4 1.5 0.2 1.6
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