SUPPLEMENTARY DATA - JLR/2013/037622

Table 1 – PC species in CSF – To isolate PC species from isobars in CSF, we used the Quan software (Thermo Fisher, San Jose, CA) to extract 0.5 min spectral segments across the PC peak. After exporting the exact mass from each segment to an Excel spreadsheet, peak intensities < 100 were deleted and the data was sorted by increasing m/z. PC peaks that have an equal or higher intensity compared to the odd m/z isobars are shaded with yellow. These data are representative of 70 SF injections.

Table 1		anaoiao ir		oro	highlighted	in	vallow
	- F C	species ii	I OF	ale	nigniignieu	11.1	yenow

Mass	Intensity	Mass	Intensity	Mass	Intensity	Mass	Intensity
690.60	1463	755.77	1282	796.67	58964	838.80	28572
692.63	796	756.84	23404	797.67	32832	839.71	22096
704.68	758	757.65	6503	798.73	11646	840.74	6020
706.74	40708	758.61	449885	799.83	6304	841.70	4920
707.60	14521	759.78	263293	800.74	19412	842.78	2291
710.57	1963	760.87	3486193	801.73	21175	844.62	11046
711.40	898	761.60	1613264	802.60	6067	845.73	7106
716.61	3282	762.67	519846	803.97	11011	846.81	3345
717.38	1239	763.86	173433	804.70	14182	847.65	817
718.70	19638	764.77	92273	805.64	15242	848.73	6095
719.73	13394	765.82	81327	806.82	171919	849.80	6123
720.70	45386	766.93	74509	807.55	75854	850.86	10604
721.79	9048	767.91	23067	808.78	173288	852.52	2894
722.92	5471	768.75	35608	809.84	68610	856.41	2136
726.02	3667	769.93	33043	810.75	392867	859.83	9108
728.50	496	770.74	21048	811.67	192785	860.80	5444
729.53	2603	771.91	9292	812.99	202240	861.75	2272
730.52	8517	772.65	48671	813.69	85888	864.00	1938
731.76	507	773.72	13535	814.61	38297	865.00	1779
732.68	165738	774.65	47560	815.79	25847	866.13	3762
733.70	65488	775.63	27609	816.78	37142	867.64	1738
734.67	554192	776.68	16787	817.69	7482	868.85	134
735.61	222670	777.72	3134	818.96	33352	870.78	1142
736.79	81290	778.70	5634	819.59	15186	871.81	426
737.74	29283	780.76	17311	820.87	16161	872.79	2780
738.53	4697	781.65	10276	821.69	6299	873.70	5436
739.92	7722	782.75	452570	822.75	7448	874.81	14817
740.95	4939	783.67	240658	823.76	4895	876.94	2007
741.93	9327	784.91	222410	824.73	19307	877.92	718
742.61	15599	785.80	127241	825.80	13270	878.69	2125
743.99	9559	786.76	440371	828.68	8741	879.91	1128
744.73	86397	787.83	214830	829.65	1119	883.84	4412
745.76	32469	788.77	382369	830.87	7012	886.90	1138
746.76	111353	789.81	156024	831.70	1407	887.41	751
747.67	36173	790.81	71936	832.76	22167	889.86	1628
748.75	42046	791.79	18542	833.82	5697	896.83	2050
749.76	13365	792.61	46739	834.75	122413	898.57	1952
750.78	4103	793.94	35307	835.93	45957	899.87	1151
752.76	4161	794.90	53117	836.84	22762	900.77	3630
754.66	260	795.78	35504	837.61	7109	901.87	1917

SUPPLEMENTARY DATA

Figure legends

Figure 1 – Spectra of PC showing the appearance of distinct species – To determine whether the clusters of PC are made up of distinct species, we obtained 0.5 min spectral segments across the PC peak. Figure 1 shows spectral segments from 11-13.5 min that differentiates several species within clusters at m/z of ~ 782 and 810. These data are representative of 70 SF injections.

Figure 2 - MRM of PC species in SF and NP - MRM of selected PC species was performed as described in Methods and Supplementary Methods.

Figure 2A is representative of LC-MS/MS analyses from 70 SF injections showing the total ion current, SRM of IS [PC(11:0/11:0), m/z = 594)], and MRM of 42 PC species. The precursor masses used for MS^2 and the relative abundance of each molecular species are shown on each panel. A product m/z of 184 was monitored for each molecular species using MS conditions described in our Supplementary Methods.

Figure 2B is representative of LC-MS/MS analyses from 67 NP injections showing the total ion current, SRM of IS [PC(11:0/11:0), m/z = 594)], and MRM of 60 other PC molecular species. MRM conditions are described in our Methods and in details in Supplementary Methods.

Supplementary Data

Figure 2 – MRM of selected PC species in SF and NP

