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Supplementary Figure S1. Comparison of memory performance in networks with 
nonlinear neuronal input-output relations.  
a, Nonlinear firing rate (f) vs. input current (I) relationship.  b-d, Network structures of positive feedback 
(b), negative derivative feedback (c), and hybrid of positive and negative derivative feedback models (d).  
e-g, Activity of the excitatory population in response to transient inputs with different strengths. h-j, Activity 
of the excitatory population in response to step-like inputs with different strengths. 
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Contour plots of τnetwork 

Supplementary Figure S2. Negative derivative feedback networks with 
a mixture of NMDA and AMPA synapses in all excitatory pathways. 
a-b, Time constant of decay of network activity τnetwork as a function of the fractions of NMDA 
synapses for fixed NMDA time constant, τEE =τIE =100 ms (a) and as a function of the time 
constants of the NMDA synapses for fixed NMDA fractions, qEE=qIE =0.5 (b).  The remaining 
parameters were JEE=JIE = 150, JEI = JII = 600, τEE =τIE =5 ms, and τEI =τII =10 ms
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Supplementary Figure S3. Effect of perturbations in NMDA-type receptors.
a-b, Positive feedback networks with only NMDA-mediated excitatory currents (a) and with a mixture of
NMDA- and AMPA-mediated excitatory currents (b).  For consistency of the average time constant of 
excitatory synapses with that in Figure 4, τEE =100 ms with qEE=1 in a, and τEE =150 ms and τEE =50 ms 
with qEE=qIE =0.5 in b.  c-f, Purely derivative feedback networks (c,d) and hybrid of positive and negative 
derivative feedback networks (e,f) with only NMDA-mediated excitatory currents in E to E (c,e) or with a 
mixture of NMDA- and AMPA-mediated excitatory currents in E to E and E to I (d,f).  When the fractions 
of NMDA-mediated currents are equal in E to E and in E to I connections, persistent activity is maintained 
following perturbations in the negative derivative feedback networks (d,f), unlike in positive feedback 
networks.  In c and e, τEE =100 ms, τIE =25 ms, qEE=1, and qIE =0.  In d and f, τEE =150 ms, τEE =50 ms, 
τIE =30 ms, τIE =20 ms, qEE=qIE =0.5, and the remaining parameters are the same as in Figure 4. 
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Supplementary Figure S4. Integration of inputs in spiking networks
with negative derivative feedback.
Activity of the excitatory population in response to step-like inputs.  The 3 traces show the
responses to inputs with 3 different strengths. The network structure is the same as in Fig. 5. 
Instantaneous, population-averaged activity of the excitatory neurons was computed within 
time bins of 1 ms (gray) or 10 ms (black). 
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Supplementary Figure S5

Supplementary Figure S5. Robust memory performance in networks of two 
competing populations with negative derivative feedback.  
a-g, Firing rates of E1 (solid) and E2 (dashed) populations with 5% increase in intrinsic gains of E1 (a), 
I1 (b), or both E1 and I1 (c), and with 5% increase in the strengths of the external inputs to E1 and E2 (d),
or the recurrent synapses from E1 (e), I1 (f), or both E1 and I1 (g).  h, Firing rates of E1 and E2 populations 
with Gaussian white noise presented with the stimulus onset in the external inputs to E1 and E2.
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Supplementary Figure S6

Supplementary Figure S6. Plasticity rule that recovers persistent activity and the
balance condition in negative derivative feedback networks.  
Illustration that the balance condition and persistent activity in negative derivative feedback networks can be 
obtained through a differential Hebbian learning rule in the recurrent synapses onto excitatory neurons.  We 
consider a learning rule for stabilizing persistent activity adapted from that of Xie and Seung [53] and having 
the form, τlearning dwij /dt = cij dri /dt*rj for |dri /dt|<K and τlearning dwij /dt = cij Ksgn(dri /dt)*rj for |dri /dt|>K, where
sgn(x) = x/|x| gives the sign of x and K gives the maximum amplitude derivative that can be sensed by the
learning mechanism.  As shown in Xie and Seung [53], this form can be derived from a spike-timing dependent 
plasticity (STDP) rule in the limit that firing rates vary much more slowly than the width of the STDP window.
Extending that work, we consider plasticity both in excitatory and inhibitory synapses onto the excitatory neurons,
with anti-Hebbian plasticity in the excitatory synapses (cEE = -1) and Hebbian plasticity in the inhibitory synapses 
(cEI = 1).  Plasticity in either E-to-E or I-to-E synapses alone produced similar results (data not shown).  
(a-h) Recovery of persistent activity and the balance condition in circuits with the structure of the two-population 
memory circuit of Fig. 2 (a-d) or the four-population push-pull circuit of Fig. 6 (e-h).  In each network, the initial 
strength of the E-to-E connections is decreased 5% from perfect tuning, resulting in a balance ratio of 0.95 (b,f) 
and activity decaying rapidly to a baseline (c,g).  As the balance condition recovers to nearly perfect tuning (b,f), 
the time constant of activity decay gets longer (a,e) until persistent activity is maintained nearly perfectly (d,h).  
Simulations shown used τlearning=10s and K = 10Hz/s.  The equations and parameters for the firing rate models 
were the same as those for Fig. 2 or Fig. 6, but with nonlinear firing rate vs. input current relationship as in Fig. 
2c,d (bottom) to prevent negative firing rates.  External inputs were presented every 3 seconds with strengths 
chosen independently and randomly from a uniform distribution.
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Supplementary Figure S7

Supplementary Figure S7.  Negative derivative feedback networks with or without 
slow GABAB-type inhibitory currents.  
a, Activity of the control network of Figures 3 and 4, in which neurons receive a mixture of NMDA- and AMPA-
mediated excitatory currents, and only fast GABAA-type inhibitory synaptic currents.  The three different traces 
represent the response to three different amplitudes of transient input, as in Figure 2c. b-c, Activities of networks 
receiving the same mixture of NMDA- and AMPA-mediated excitatory currents, but with a mixture of fast 
GABAA-type and slow GABAB-type synaptic currents.  Even in the presence of slow inhibitory current, when 
GABAB-type synaptic currents are equally present in the I-to-E and I-to-I connections, the time constant of 
decay of network activity is unchanged.  This is because the network decay time constant depends only upon
the difference in the average time constants aver(τEI) = qEIτEI + (1−qEI)τEI  and aver(τII) = qIIτII + (1-qII)τII , and this
difference remains zero.  Here, the superscripts GA and GB denote the fast (GABAA) and slow (GABAB) 
components and qEI and qII denote the proportion of GABAB currents (a,b).  Even if the fraction of GABAB-type 
synaptic currents is somewhat higher in the I-to-E connection (50% higher in panel c), negative derivative 
feedback still arises due to the slower and more NMDA-dominant composition of receptors in the E-to-E 
connection (c). For the simulations shown here, JEE = JIE = 150, JEI = JII = 300, and the time constants and 
fractions of NMDA-mediated synaptic currents were the same as in Figure 4.  In b and c, the time constant 
of GABAB synaptic currents was 100ms and the fractions of GABAB were qEI = qII = 0.2 (b) and qEI = 0.3, 
qII = 0.2 (c). 
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2B1. Analytical description of firing rate model 

In this section, we provide the analytical calculations underlying the results on the firing 

rate model described in the main text, and additionally provide simplified versions of the firing 

rate model that elucidate the core principles underlying negative derivative feedback networks.  

Using a control theoretic analysis, we find conditions on the network parameters for the network 

to generate persistent activity through derivative feedback control.  We show that, unlike in 

previous models based on positive feedback, different temporal dynamics of recurrent excitatory 

and inhibitory inputs is critical to generating persistent activity through derivative feedback 

control.  Furthermore, we show analytically that persistent firing in these networks is more 

robust against many natural perturbations than in traditional positive feedback based models.   

The structure of this section is as follows.  In Section 1.1, we first identify important 

features for derivative feedback control from a simple reduced-dimensionality firing rate model.  

In Section 1.2, we analyze the dynamics of the full-dimensional models of recurrently connected 

excitatory and inhibitory populations used in the main paper and find conditions on the network 

parameters for the models to generate persistent activity through positive feedback and/or 

negative-derivative feedback.  Section 1.3 derives additional conditions assuring that the non-

persistent modes of the derivative-feedback networks are stable.  Section 1.4 describes the 

relationship between the rates of inhibitory and excitatory neurons during persistent firing, as 

well as the optimal input direction for driving maximal responses in derivative-feedback 

networks.  In Section 1.5, we investigate the robustness of the maintenance of persistent activity 

against perturbations in the network connectivity parameters Jij.  In Section 1.6, we show how 

generation of persistent activity with negative derivative feedback control can be extended to 

networks whose neurons have a nonlinear firing rate versus input current relationship.   

 

7B1.1. Simplified firing rate model illustrating negative derivative feedback 

Here, we present a simplified network model that provides mathematical intuition for 

how derivative feedback can arise in a balanced network.  Specifically, we show how derivative-

like feedback arises from balanced positive feedback and negative feedback with different 

kinetics, and we relate the properties of this derivative-like feedback to the strengths and time 

scales of the positive and negative feedback pathways.  The reader is referred to Sections 1.4 and 

1.5 of this Supplement for rigorous derivations of the analogous properties in the full network of 

Fig. 2a.   

Consider a population of neurons that receives excitatory and inhibitory recurrent inputs 

with equal strengths but with different filtering time constants: 
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Here, r denotes the firing rate of a neuron with time constant τ, Es  denotes recurrent excitatory 

synaptic input that conveys positive feedback with time constant E , and Is  similarly denotes 

recurrent inhibitory synaptic input conveying negative feedback with time constant I .  

Excitatory and inhibitory synaptic inputs are assigned equal strengths J.  External input is 

modeled as a brief, delta function δ(t) pulse of input of strength  JO.  

The key feature of the above model is that the synaptic inputs conveying positive and 

negative feedback, EJs  and IJs , arrive with equal strengths but offset kinetics due to the 

different time constants E  and I .  We next show that, due to this balance in strength but 

difference in kinetics of the individual synaptic inputs, the total recurrent input approximates 

derivative feedback for the low-frequency responses characteristic of persistent activity.  To 

show this, we recall that the Laplace transform of the time-derivative of a signal, dr(t)/dt, equals 

uR(u) where R(u) is the Laplace transform of r(t) and u is the complex-valued frequency.  Using 

that the synaptic functions Es  and Is  are exponentially filtered transformations of the firing rate 

r(t), we obtain that the Laplace transform of the total recurrent input is proportional to 
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uR u R u
s s R u
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


 (A2) 

where R(u) is the amplitude of the activity r(t) at frequency u.  For low frequencies u, 

[ ]E Is s    ( )E I uR u   , which is a constant multiple of the Laplace transform of the 

derivative of the activity uR(u).  Thus, at the low frequencies characteristic of persistent activity, 

the difference between Es  and Is  is approximately proportional to the derivative of the activity 

der

dr
W

dt
  in Eq. (1) in the main text: 

       for low-frequency .E I E I der

dr dr
Js J W

d
s

t d
J

t
r        (A3) 

By contrast, at high frequencies (large u), [ ]E Is s     2/ ( )E I E Iuu R u     ~ ( ) /R u u .  

This shows that high frequencies are suppressed, rather than differentiated, by the recurrent 

inputs.  As noted in the main text, this may be a useful feature, because high frequencies are 

often associated with noise and would be amplified by an exact derivative feedback mechanism. 
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From the simple recurrent network defined in Eq. X(A1) X, we can identify a few important 

features of negative derivative feedback.  First, the time constant of network activity increases 

with the strength of the recurrent feedback and the difference between the time scales for 

excitatory and inhibitory feedback.  From Eq. (1) in the main text and Eq. X(A3) X, the time constant 

of decay of the activity is  

 (  for large ) .eff der E I JW J     (A4) 

Second, although the negative derivative feedback network is resistant against drift of 

activity in the absence of the external input, external input whose strength is comparable to that 

of the recurrent inputs results in a significant change of activity.  For pulse-like input of strength 

JO, as in Eq. X(A1) X, the jump in activity is given by  

  / ( ) ./O eff O E Ir J J J       (A5) 

From the equation above, we see that Δr does not approach zero even with large J if the strength 

of the external input JO scales similarly to the strength of the recurrent inputs J.  Indeed, since J 

represents the strength of the total (excitatory or inhibitory) recurrent synaptic connections 

averaged across the population, J should scale with the number of recurrent connections.  

Similarly, JO scales with the number of connections onto the memory network from the 

population transmitting the information about the stimulus.  Since the number of external 

connections scales with the network size in the same way as the number of recurrent 

connections, JO should be of the same order as J.  Thus, even with large derivative feedback, 

external inputs can produce large changes in the level of the persistent firing rate.  In addition, 

for networks with separate excitatory and inhibitory populations, proper spatial arrangement of 

the external inputs can reduce the derivative feedback during stimulus presentation and thereby 

enhance the effect of the external inputs (see Section 1.4). 

Finally, we note that this simple model is robust against uniform changes in neuronal 

gains or loss of a fraction of the neuronal population, because such changes maintain the balance 

of excitation and inhibition.  However, this simple model is not robust against perturbations in 

excitatory or inhibitory synapses since these disrupt the balance between excitation and 

inhibition.  This is a critical difference from the full-dimensional models described below, which 

exhibit robustness against perturbations in recurrent excitatory or inhibitory synapses (see 

Section 1.5).   

 

8B1.2. Conditions for generation of persistent activity in full-dimensional models with linear 

dynamics 

In this section and the remainder of Section 1, we analytically derive conditions for 

producing stable persistent activity in linear networks consisting of one excitatory and one 
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inhibitory population.  Through this analysis, we separately identify parameter regimes for 

positive feedback control and derivative feedback control, and show that derivative feedback 

control requires recurrent excitation and inhibition to exhibit a close balance in strength but 

different temporal dynamics.   

 

MATHEMATICAL CONDITIONS FOR GENERATION OF PERSISTENT ACTIVITY 

To analyze the linear network, we use the eigenvector decomposition to decompose the 

coupled neuronal activities into non-interacting modes (eigenvectors) that can be considered 

independently [1].  For a linear network obeying the equation /dy dt Ay , the right 

eigenvectors 
i

rq  and corresponding eigenvalues i of the matrix A  satisfy the equation 

i i

r r

iAq q  for each i=1 to n, where n denotes the number of state variables.  The decay of each 

mode is exponential with time constant , 1/i eff i   .   

For the system defined by Eq. (5) in the main text: 
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 (A6) 

where for the linear case fE(x)=fI(x)=x, 
T, , , , ,( )E I EE IE EI IIy r sr s s s  and the matrix A  is given by 
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 (A7) 

For persistent firing ( ,i eff  large), the system y Ay  defined by Eq. (A7) should have at 

least one eigenvector with its corresponding eigenvalue equal to or close to 0.  Below we show 

two different manners by which one can obtain an eigenvalue equal to or close to 0 in networks 

of recurrently connected excitatory and inhibitory populations.  One case corresponds to positive 

feedback based models, and the other corresponds to negative derivative feedback based models.  

In the former case, the recurrent connections in the network mediate positive feedback that 

precisely offsets the intrinsic leakiness of neurons [2-4], where this leakiness is represented 

mathematically by the decay terms –rE and –rI in equation (A6).  In the latter case, the recurrent 
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feedback may not cancel the intrinsic leakiness precisely; instead, the recurrent connections 

mediate a balance between large positive and negative feedback that are offset in time, resulting 

in derivative-like feedback that opposes any drifts in activity.  In the following, we identify these 

two parameter regimes in linear firing rate models.      

To find the conditions on network parameters for which the network has an eigenvalue 

equal to or close to 0, we utilize the characteristic function of the linear system.  The 

characteristic polynomial of a linear system is defined by char( ) det( )Ix A x   where I  is the 

n-by-n identity matrix.  Eigenvalues λ of the system correspond to roots of the characteristic 

polynomial.  In our 6-dimensional network model described by the matrix of Eq. (A7), the 

characteristic polynomial is given by  
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where the coefficients ai of char(x) are functions of the network parameters Jij and τij, with i,j = E 

or I, and can be expressed in terms of the eigenvalues i .   

We examine the conditions for this characteristic polynomial to have roots whose values 

are 0 or close to 0.  In particular, the constant term a0 of the characteristic polynomial char(x) 

determines whether char(x) has a zero-valued root, since a0 is the product of all eigenvalues of 

A .  However, this condition only determines the parameter sets having a precisely 0 eigenvalue.  

In the case that there is one eigenvalue λ1 close to 0 and another eigenvalue whose magnitude is 

larger than the magnitude of 1/λ1, the product of all eigenvalues represented by a0 can be finite.   

Additionally, the ratio between the coefficient a1 of the x term and the constant term a0 

can be used to identify a parameter set which allows the system to have eigenvalue close to 0.  

This can be shown using the expression for ai in terms of the eigenvalues: 
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  (A9) 

If an eigenvalue λ is close to zero, the magnitude of its reciprocal 1/λ will be large.  Thus, 

if the magnitude of the ratio between a1 and a0 is large, there exists at least one eigenvalue close 

to zero.  (Note that this condition is a sufficient but not necessary condition for the existence of 

an eigenvalue close to 0.  In the case that there exist multiple eigenvalues close to zero having 

different signs, the reciprocal of each eigenvalue can be large but the sum can be finite due to 

cancellation.)   
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To find conditions on the network parameters for having an eigenvalue equal to or close 

to 0, we use the explicit expressions for a1 and a0 in terms of Jij and τij:  

 

,

0

, ,

( 1)( 1)
,EI IE EE I

i
i E I i I

i
E

I

j
j

a
J J J J

 
 








 
 

       

,

1

, ,

 ( 1)( 1) 1 (1( ) )
,

EI IE EE II EE II IE EI II E EE EE I II

ii
i E I i j E

j
I

J J J J
a

J J       

 
 

       



 


   

       

     

1 0

( 1)( 1) 1 1
/

( 1)( 1)

( 1) ( 1) 1 ( 1)
      

    ( ) ( )

  /   ( ) / (
   .

( 1) ( 1)

)

/

EI IE EE II EE II IE EI II E EE EE I II

EI IE EE II

EI IE II EE II EE IE EI E EE EE II I II

EI IE II EE

J J J J J J
a

J J J J

J J J J J J

J J J

a

J

       

       

       


  

     

  

    


  

 (A10) 

In the above expression, the ratio between a1 and a0 becomes large either when the 

denominator is small (corresponding to small a0) or when the numerator is much larger than the 

denominator if the denominator is not close to zero.  Below, we show that the former provides a 

condition for positive feedback networks, and the latter provides conditions for negative 

derivative feedback networks.   

 

CONDITIONS FOR POSITIVE FEEDBACK NETWORKS 

As described above, one condition that leads to an eigenvalue equal to 0 is to have the 

term a0 of the characteristic polynomial of Eq. (A8) equal zero.  From the set of equations above, 

this occurs when 

 ( 1)( 1) 0.EI IE EE IIJ J J J     (A11) 

Biologically, this condition corresponds to the precise cancellation of the intrinsic leakiness of 

the neurons by network-mediated positive feedback, a mechanism that has been suggested 

previously to underlie persistent firing [5].  To see how the above equation corresponds to such a 

mechanism, note that during persistent activity 0y   so that the firing rate of the inhibitory 

population rI in Eq. X(A6) X can be expressed in terms of the firing rate of the excitatory population 

rE as / (1 )I IE II Er JJ r .  Then, in the equation for rE, the inhibitory feedback strength through 

the inhibitory population becomes / (1 )EI IE IIJ J J  and the net recurrent feedback strength 

becomes the difference between the excitatory synaptic strength and the strength of the 

inhibitory feedback, / (1 )EE EI IE IIJ J J J .  The amount of this net recurrent feedback precisely 

cancels the intrinsic leakiness if / (1 ) 1EE EI IE IIJ JJ J   , which is the condition given in Eq. 
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X(A11) X.  Thus, Eq. X(A11) X corresponds to the condition used by traditional positive feedback 

models in which excess positive feedback is tuned to offset intrinsic neuronal leakiness.  

 

CONDITIONS FOR NEGATIVE DERIVATIVE FEEDBACK NETWORKS 

We next consider the alternative mathematical condition for having an eigenvalue close 

to 0, i.e. that the ratio between a1 and a0 becomes large (even if a0 itself is not very close to 

zero).  That is, even if ( 1)( 1)EI IE EE IIJ J J J   is not small, the network can have an eigenvalue 

close to zero if the numerator in Eq. X(A10) X is relatively large compared to the term in the 

denominator.  Here, we show that this condition leads to two core requirements for negative 

derivative feedback control:  first, a balance between positive and negative feedback in strength 

and, second, slower positive than negative feedback.  

Networks can have an eigenvalue close to 0, that is, large a1/a0 in Eq. X(A10) X with finite 

0 ( 1)( 1)EI IE EE IIa J J J J     in two ways:  either having a large time constant τ (case 1) or, for 

finite τ, having large J’s under special relations between the J’s (case 2).  In the first case, having 

long time constants of synapses obviously results in slow dynamics in the system and leads to 

slow decay of neural activity.  Indeed, previous works have suggested that the use of long 

intrinsic or synaptic time constants may lessen the strictness of the tuning requirement that 

feedback connections must precisely offset intrinsic neuronal decay processes [6-8].  However, 

the slowest intrinsic time constant in most models is of order 100ms (e.g., the time constant of 

NMDA decay kinetics), much shorter than observed memory periods of many seconds.   

In the second case, the network can have an eigenvalue close to 0 with finite 

( 1)( 1)EI IE EE IIJ J J J    if the numerator is much larger than the denominator in Eq. X(A10) X.  As 

shown next, this can occur when the values of the J’s are large.  In this case, we can approximate 

the numerator and the denominator of Eq. X(A10) X with their leading terms in the J’s, 

   EI IE EE II EE II IE EIJ J J J      and EI IE EE IIJ J J J , respectively.  A sufficient condition for 

the ratio of these terms to be large is then that: 

 
    2),~ (EI IE EE II EE II IE EIJ J J J O J    

  

 
2( ),EI IE EE IIJ J J J O J

 

or equivalently,   

 
    )/ ~ ,(EE II EI IE II IE EI EEJ J J JJ O    

 (A12)
 

  )  i.e.,  / 1( / ~ .EI IE II EE EI IE EE IIJ J J J J J J JO J
 (A13) 
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Networks with parameters satisfying the above conditions operate in a regime that 

corresponds to maintaining persistent firing through negative derivative feedback.  To see this, 

recall from our discussion of the positive feedback mechanism that / (1 )EI IE IIJ J J  represents 

the strength of inhibitory feedback onto the excitatory population through the inhibitory 

population, and JEE is the strength of recurrent excitatory feedback onto the excitatory population 

(Fig. 2a).  When the J’s are large, 1 )/ ( /EI IE II EI IE IIJ J J JJ J ; thus, Eq. X(A13) X implies that the 

strengths of the two feedbacks are similar, and we refer to this equation as the balance condition.   

The second condition, given by Eq. X(A12) X, constrains the time constants of the positive 

and negative feedback.  In Eq. X(A12) X, the time constants multiplying the feedback strengths 

correspond to the time scales of the positive and negative feedback, that is, EE II      and 

EI IE     ; thus, from Eq. X(A12) X,     (below, in separate stability analyses in Section 1.3, 

we will show that    must be greater than   ).  Qualitatively, EI IE   approximates the time for 

signals to traverse the negative feedback loop.  Similarly, EE  is the time constant of the direct 

positive feedback onto the excitatory population and II  represents the time constant for indirect 

positive feedback onto the excitatory population by suppressing the inhibitory population
 
(Fig. 

2a).  

Note that the conditions corresponding to positive feedback networks and negative 

derivative feedback networks are not mutually exclusive.  If the J’s are large, the condition for 

the positive feedback models given in Eq. X(A11) X becomes a subset of the balance condition for 

the negative derivative feedback models described in Eq. X(A13) X.  In particular, if the network 

satisfies both Eq. X(A11) X and Eq. X(A12) X for large J’s, that is, the amount of large positive 

feedback is similar to, but slightly larger than that of negative feedback and the time scales of the 

two feedbacks are different, then the network receives large negative derivative feedback as well 

as additional positive feedback that precisely cancels off the intrinsic neuronal leakiness.  This 

corresponds to the hybrid positive feedback and negative derivative feedback model of Fig. 1c.  

 

CONNECTION TO PHENOMENOLOGICAL AND SIMPLIFIED FIRING RATE MODELS 

We next show how the negative-derivative feedback models described above can be 

directly connected to the simpler phenomenological model of Eq. (1) of the main text that was 

defined by overall positive feedback and negative-derivative feedback strengths Wpos and Wder, 

respectively.  Specifically, for the case that the J’s are large as in the negative derivative 

feedback networks, we express Wpos and Wder in terms of the synaptic strengths Jij and their time 

constants τij and show that the amount of negative derivative feedback Wder is proportional to the 

product of the synaptic strength scale J and the difference between    and   .   
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To derive the expression for the amounts of negative derivative feedback and positive 

feedback in terms of network parameters, we examine the expression for the longest time 

constant of decay of network activity τnetwork.  Since 
, 1/i eff i   , the longest time constant of 

decay of network activity τnetwork is the reciprocal of the eigenvalue closest to 0 whose expression 

is given by Eq. X(A10) X.  Denoting the balanced amount of positive feedback JEE and negative 

feedback JEIJIE/(JII+1) as Jder and the difference between them, JEEJEIJIE/(JII+1), as Jpos, the 

approximate τnetwork from Eq. X(A10) X for large J’s is  

 
  1

.
 

1

der

network

pos

J c

J

 
   




  (A14) 

where c1 is a constant of order 1.  The above expression is analogous to the effective network 

time constant of the phenomenological model of the main text (Eq. (2) of the main text), 

   / 1eff der posW W     where  was the intrinsic (cellular or synaptic) time constant.  Thus, 

we identify Wpos = Jpos and Wder ~ Jder (  −  ).  Thus, the amount of negative derivative 

feedback increases linearly with the J’s and the difference between the time constants of positive 

and negative feedback, similar to what was found for the simplified firing rate model network of 

Section 1.1 (Eq. X(A4) X).  

In summary, in this section we found the conditions for persistent firing with positive 

feedback or derivative feedback control.  The derivative feedback models are distinct from the 

previously studied positive feedback models:  they require a close balance between excitation 

and inhibition (Eq. (3) in the main text) and different kinetics of excitation and inhibition (Eq. (4) 

in the main text).  However, the positive feedback models and derivative feedback models are 

not mutually exclusive, and we show how a hybrid of the two models can be constructed.   

 

9B1.3. Stability conditions for the derivative-feedback network 

In the previous section, we discussed the conditions for the network parameters to have 

eigenvalue equal to or close to zero.  We found a new parameter regime in which the network 

uses a derivative-like feedback mechanism to maintain persistent activity.  Unlike previously 

models, the negative derivative feedback mechanism does not require perfect cancellation of 

intrinsic leakiness by positive feedback.  Instead, it requires large positive and negative feedback 

inputs which balance each other but have different dynamics (Eqs. X(A12)X and X(A13)X).  Here, we 

identify additional conditions on the network parameters for the networks to maintain persistent 

activity without unbounded growth of activity in the non-persistent modes.  Specifically, the 

system requires that all eigenvalues except those close to 0 have a negative real part, and we 

refer to this as “the stability condition” for the network.  In the following, we first show the 

necessary and sufficient stability conditions for a 4-dimensional reduced network in which the 
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intrinsic neuronal responses are assumed to be fast.  Next, we show necessary stability conditions 

for the full 6-dimensional system.   

 

STABILITY CONDITION FOR THE 4-DIMENSIONAL SYSTEM   

To simplify the analytical calculation of the stability condition, here we assume the 

dynamics of the firing rates is rapid [9] so that the firing rates instantaneously follow their input 

in Eq. (A6).  That is, τE and τI are considered small and the dynamics is reduced to the 4-

dimensional system:  

 

 for

( )

( )

 , ,  or 

.

E EE EE EI EI

I IE IE II

EO

IOII

ij ij ij j

s s J i t

s s J i t

s

r J J

r J J

s r i j E I

 

 

  



  (A15) 

To determine the signs of the eigenvalues in this 4-dimensional system, we use the well-

known stability test for linear systems, the Routh stability criterion [10].  In the Routh stability 

criterion, the number of positive eigenvalues is determined by examining functions of the 

coefficients of the characteristic polynomial through the use of a Routh table defined as follows: 

1

1 1 0

2 4

1 2 3 1 4 51
11 3 5

1 1

1 2 3

1 3

2

31 2 1 5 1
1

1

1 2 3 2

1

0

, ,

   with ·

, , .·

n n

n n

n
n n n

n n n n n n n nn
n n n

n n

n n n n

x a x a x a

a a ax
a a a a a a a a

b ba a ax
a a

b b b
b a a b

a

a a
c c c

b b
c c

b b





 

     
  

 

   

    

 
 


 

 

 

In the table above, the number of roots with positive real parts is equal to the number of changes 

of sign of the elements of the first column of the Routh table.   

The persistent activity networks considered here contain an eigenvalue close to 0 which 

can have either positive or negative real parts, so the system is marginally stable.  Thus, before 

directly applying the Routh-Hurwitz criterion to the characteristic polynomial given in Eq.(A15), 

we factor out the root of the characteristic polynomial whose value is close to 0, denoted by 1 , 

from the characteristic polynomial:  

 

 

4 3 2

3 2 1 0

3 2

1 3 1 2 1 3 1 1 1 2 1 3 1

0 1 1 1 2 1 3 1

0

( ) ( ) ( ( )) ( ( ( )))

         ( ( ( ))) 0.

a x a x a x a

x x a x a a x a a a

a a a a

x

      

   

    

          

       
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Here, the remainder 0 1 1 1 2 1 3 1( ( ( )))a a a a        equals 0 since 1  is a root of the 

characteristic polynomial.   

In particular, if the system has only one eigenvalue close to 0, from Eq. X(A9) X, 1  can be 

approximated by 0 1/a a  and the quotient function becomes  

 3 20 0 0 0 0 0
3 2 3 1 2 3

1 1 1 1 1 1

( ) ( ) ( ( )) ( ( ( ))).
a a a a a a

Q x x a x a a x a a a
a a a a a a

           (A16) 

Thus, we apply the Routh stability criterion to this third order quotient function.  Moreover, 

using that the J’s are large, we further approximate the coefficients with the leading terms in J as 

follows: 
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Note that a0 is at most of order J, since in the balance condition in Eq. X(A13) X, we 

additionally assume that the difference between the strengths of positive and negative feedbacks 

is of order 1, or equivalently, ~ ( )IE EI EE IIJ JJ OJ J .  Applying the Routh-Hurwitz criterion to 

these asymptotic expressions for the coefficients of the quotient function Q(x) in Eq. (A16), we 

obtain the stability conditions 
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 (A17) 

The last condition is similar to Eq. X(A12) X, which showed that the time scales for the 

positive and negative feedback must be different to have stable persistent firing.  The stability 

condition above additionally specifies that the positive feedback should be slower than the 
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negative feedback.  The second condition above is similar to the last condition except that it 

constrains the product of the time constants.  The first condition compares the magnitudes of 

recurrent excitation and recurrent inhibition; that is, for other non-persistent modes to be stable, 

the normalized strength of the inhibitory feedback must be larger than that of the excitatory 

feedback.   

 

STABILITY CONDITION FOR THE 6-DIMENSIONAL SYSTEM   

 For the full 6-dimensional system given in Eq. X(A6) X, the complete stability conditions also 

can be calculated by the Routh stability criterion.  However, the stability conditions are far more 

complicated expressions in terms of the network parameters.  Here, for ease of interpretation, we 

instead provide simpler, necessary conditions for stability.  These necessary conditions are 

determined by the sign of the coefficients of the characteristic polynomial.  To have a stable 

system, all eigenvalues must be negative and, correspondingly, the coefficients of the 

characteristic polynomial must all be positive.  However, in our persistent activity network, the 

leading eigenvalue (the one close to 0) may be slightly positive (corresponding to very slow 

growth of activity in the persistent mode).  Therefore, as in the 4-dimensional system, we factor 

out the eigenvalue close to 0, denoted by λ1, and find conditions for all coefficients of the 

quotient function to be positive.  To leading order in the J’s, these conditions are given by 
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 (A18) 

The last two conditions are the same as those obtained for the 4-dimensional system (Eq. 

X(A17) X).  The first condition is similar to the 4-D case, but now the time constants of the 

population activity, τE and τI, contribute to the positive and negative feedback similarly to the 

synaptic time constants, τEE and τII, respectively.  The second condition is similar to the first 

condition, but with extra terms containing the various τ’s.  Thus, having slower excitatory time 

constants than inhibitory ones is beneficial to stable persistent firing.  The sufficient and 

necessary conditions obtained through the Routh stability criterion also follow these general 

rules but have much more complicated forms and thus are not shown here.   
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10B1.4. Activity patterns during persistent firing and the optimal input direction  

 In this section, we analytically obtain the activity patterns observed during persistent 

firing and the optimal input direction that maximizes the response of the network.  We show 

below that the firing rates of the excitatory and inhibitory populations change proportionally for 

different levels of persistent firing, as has been observed experimentally [11].  On the other hand, 

we show that the response to external input is maximized when the external input excites the 

excitatory neurons and suppresses the inhibitory ones, as has been suggested to lead to a transient 

amplification of activity in sensory networks composed of excitatory and inhibitory populations 

[12].   

To find the activity pattern for persistent firing and the best input direction, we 

decompose the network activity into its eigenvector components.  In a linear system that is 

eigenvector-decomposable, the network activity in response to a transient input can be described 

by its eigenvalues and corresponding eigenvectors.  In particular, when one eigenvalue has real 

part much larger than the remaining eigenvalues, the network activity can be expressed 

approximately in terms of this leading eigenvalue and its corresponding left and right 

eigenvectors [13].  Since the system with derivative feedback discussed in the previous sections 

has one eigenvalue close to 0 and the remaining eigenvalues have real parts strictly less than 0, 

the network activity with derivative feedback is well-described by 

 1

10 0 1 e ( · ) ,tAt l ry y e v y qvq   (A19) 

where A  is the matrix defined in Eq. (A7), 0y  is the vector of states before the arrival of the 

transient input, and v  is the external input vector.   

In Eq. X(A19)X, if 0 0y  , the right eigenvector 1

rq  corresponds to the activity pattern that is 

maintained during persistent firing and the amplitude of this pattern is proportional to 1·l vq , that 

is, the projection of the input vector v  onto the left eigenvector 1

lq .  Thus, the ratio between rE 

and rI is proportional to the ratio between the first and second elements of 1

rq .  In the derivative 

feedback networks, 1

rq  can be found through its defining equation 11 1 0r rAq q  .  Then, 1

rq  is 

expressed in terms of the network parameters according to 
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and the ratio between rE and rI during persistent firing is /  ~ /II IE EI EEJ J JJ .  Since the J’s are 

positive, this ratio is positive, that is, rE and rI positively covary for different levels of persistent 

firing.    

The left eigenvector 1

lq  can be computed similarly from its definition 
1 0l

T

A q  .  The 

expression for 1

lq  in terms of the network parameters is found according to  
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Notably, the first and second elements of 1

lq  have different signs.  Since the amplitude of 

persistent activity is proportional to 1·l vq , which is maximized when v  is parallel to 1

lq , the 

optimal external input to the excitatory and inhibitory populations should have different signs, 

that is, excite the excitatory populations and suppress the inhibitory populations.  Note, by 

contrast, that the activities of the excitatory and inhibitory populations during persistent firing 

have the same sign.  This difference between the persistent activity pattern and the optimal 

direction of the input, that is the difference between the left and right eigenvectors, arises from 

the asymmetry of the network connectivity.  Thus, it is inherent in networks of excitatory and 

inhibitory populations [12].   

 In summary, in this section, we found the activity patterns during persistent firing and the 

external input pattern that maximizes the network response.  We showed that the firing rates of 

the excitatory and inhibitory populations positively covary for different levels of persistent 

activity, while the maximal response is attained in response to input that excites the excitatory 

population and inhibits the inhibitory population. 

 

11B1.5. Robustness against perturbations in the network connectivity  

In this section, we study the effects of perturbations in the network connectivity on the 

ability to maintain persistent activity.  We find that persistent firing in the derivative feedback 

network is robust against many commonly studied perturbations such as gain changes, changes 

of excitation or inhibition, and inactivation of a fraction of the excitatory or inhibitory 

populations (Fig. 4).  To show this robustness, we check how the balance condition Eq. X(A13) X is 

affected under such perturbations. 
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We examine the types of perturbations of the network parameters under which the system 

still maintains persistent activity, that is, has an eigenvalue close to 0 and satisfies the stability 

conditions.  In particular, we consider multiplicative scaling mij of the synaptic strengths, that is, 

the synaptic strengths become mijJij.  Then, gain control in the entire population corresponds to a 

uniform increase or decrease of all m’s and selective gain control in the excitatory or inhibitory 

population corresponds to a uniform increase in mE,j or mI,j for  j =E,I, and O.  Similarly, 

inactivation (or loss) of a subpopulation of excitatory or inhibitory populations or presynaptic 

changes in transmission can be modeled by multiplicative changes in the strengths of excitatory 

or inhibitory synapses, corresponding to uniform increases in the miE’s and miO’s or miI’s, 

respectively, for i =E or I.   

Under this multiplicative change in the synaptic strengths, the balance condition for the 

existence of an eigenvalue close to 0 becomes  / ~1EE II IIEE IE EE E II Im J m J m J m J , i.e. 

 / ~1EE II EI IEm mm m .  First, we note that for changes in intrinsic neuronal gains in the entire 

network, that is, uniform increase in m’s, this condition is satisfied.  This reflects that, since the 

positive and negative feedback change in the same manner, the net recurrent input continues to 

provide derivative feedback (Fig. 4i).  Second, we see that multiplicative changes in the gain of 

the excitatory or inhibitory population or changes in excitatory (Fig. 4j) or inhibitory (Fig. 4k) 

synapses or inactivation of a subpopulation of excitatory or inhibitory populations similarly 

maintain the balance condition since presynaptic excitation, presynaptic inhibition, postsynaptic 

excitation, and postsynaptic inhibition are in both the numerator and denominator of the above 

expression.  

The stability conditions given in Eq. X(A17) X also are satisfied under moderate 

perturbations in synaptic strengths.  Only the first condition in Eq. X(A17) X depends on the synaptic 

strengths, requiring that mEEJEE/τEE should not exceed mIIJII/τII.  In our models with biologically 

plausible parameters, τEE is an order of magnitude larger than τII and JEE is of the same order as 

JII.  Thus, even in the presence of the perturbations which increase JEE or decrease JII, the system 

satisfies the stability conditions for a large range of perturbations.  However, too much increase 

in the overall excitatory input to the system could break the stability condition and could make 

the system unstable. 

We remark that the derivative feedback models are not robust against all forms of 

perturbations.  For example, if the NMDA conductance is larger in excitatory to excitatory than 

in excitatory to inhibitory connections, perturbation specifically of NMDA-type synapses 

disrupts persistent firing since increasing mEE more than mIE breaks the balance condition 

 / ~1EE II EI IEm mm m .  However, the disruption resulting from this deviation in the balance 

condition is similar to that observed in positive feedback models: if only mEE changes while all 

other mij=1, the time constant of the network activity in Eq. X(A10) X becomes 
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In the first approximation above, the balance condition Eq. X(A13) X is used to replace JEIJIE/(JII+1) 

by JEE.  The final expression above is similar to the time constant of decay / (1 )posW   in 

simple positive feedback networks (e.g. equation (1) of the main text when Wder=0 and when the 

dominant intrinsic cellular or synaptic time constant is EE).  When Wpos is perturbed by m from 

1, the time constant becomes / (1 )m  , similar to Eq. X(A20) X.   

We note that negative derivative feedback models with NMDA-type synapses of 

approximately equal strength at all excitatory synapses, but with slower NMDA-synapses in the 

E-to-E pathway, can be far more robust against perturbations in NMDA-type synapses.  To see 

this, we consider network models in which all excitatory connections are mediated by two 

different types of synaptic currents, NMDA-mediated currents and AMPA-mediated currents 

(Fig. 3 and online methods Eq. (7)).  If we assume the ratios of NMDA- to AMPA-type synapses 

are the same in all excitatory pathways so that EE IEqq q  , but the NMDA-type synapses in 

the E-to-E connection have slower kinetics, N N

EE IE  , then perturbations in NMDA-type 

synapses by a fraction m maintain the balance condition as follows:  

   
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J qm

q J J

J J J O Jq
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Thus, the persistent activity is minimally affected by the perturbations in NMDA-type synapses, 

in contrast to the gross disruptions that occur in pure positive feedback models or in derivative 

feedback models with NMDA-type synapses only in E-to-E connections.  Even in the case that 

EE IEq q , the disruption of the persistent activity is less severe if the E-to-E NMDA-type 

synapses are relatively slow,  N N

EE IE  .  By contrast, if all NMDA synapses have the same 

kinetics, N N

EE IE  , and negative-derivative feedback is accomplished by having stronger NMDA 

conductance in E-to-E connections, EE IEq q , then the network will exhibit the same disruption 

in persistent activity as in negative-derivative feedback models in which NMDA appears 

exclusively in E-to-E connections (calculations not shown).  Thus, having slower NMDA-type 
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synapses in E-to-E than E-to-I connections [14-15] is advantageous in making the system more 

robust to disruptions of NMDA-type conductances. 

 

12B1.6. Negative derivative feedback for networks of neurons with input-output nonlinearity 

 In this section, we consider a network model in which the individual neurons have a 

nonlinear firing rate versus input current relationship and show that the network implements 

derivative feedback control under conditions similar to the linear networks.  In the presence of 

such nonlinearity, global analysis of the network dynamics through the eigenvector 

decomposition is not possible.  Instead, we identify possible sets of steady states and check the 

local stability around those steady states. 

Let us assume that there exists a steady state.  To characterize this steady state, we 

linearize the system locally around it.  For this steady state to belong to a continuous attractor, 

there should exist at least one eigenvalue equal to or close to 0 in the local linearization.  If we 

denote this steady state as 0 0 0 0 0 0( , , , , , )E I EE IE EI II

Tr r s s s s and move the origin to the steady state, the 

linearization of Eq. (A6) becomes   
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where '( )i if x  denotes the derivative of fi(xi) evaluated at xi, δri=
0

iir r  and δsij =
0

ij ijs s .  Eq. 

X(A21) X is the same as the system with linear input-output relationships in the previous sections, 

but with different slopes cE and cI.  Thus, for the system to have an eigenvalue close to 0 through 

negative derivative feedback, we obtain similar conditions but with the replacement of each Jij by 

ciJij for i = E, or I so that 

 
     2( ,~ )E I EI IE EE II EE II IE EIc c J O JJ J J    

   

 
  2),(E I EI IE EE IIc c J J J J O J

 

for large J’s.  If cE and cI are not too small, then the constants can be ignored and the above 

conditions are the same as the linear dynamics given by Eq. X(A12) X and Eq. X(A13) X.  Thus, the 

conditions for negative derivative feedback do not depend on the specific form of the input-

output nonlinearity in the regime that the slopes of the input-output function are not small in 
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magnitude.  Typical input-output nonlinearities such as sigmoid functions have a non-zero slope 

away from the threshold and the saturation.  Thus, a continuum set of steady states 

corresponding to persistent activity will be located in such a regime. 

The stability conditions at each steady state (Eq. X(A17) X) do depend on cE and cI as 

cIJII/τII>cEJEE/τEE.  However, for τEE 1-2 orders of magnitude larger than τII, this condition can 

hold for a wide range of cE and cI.  Thus, in contrast to positive feedback networks 

(Supplementary Fig. S1e,h), the memory performance in derivative feedback networks 

(Supplementary Fig. S1f,i) or hybrid networks  containing a large derivative feedback 

component (Supplementary Fig. S1g,j) is robust to adding an input-output nonlinearity.  

 

3B2. Analysis of firing rate models of two competing populations 

In the previous sections, we discussed a derivative feedback network model consisting of 

one excitatory population and one inhibitory population.  In parametric working memory tasks 

[16] and decision making tasks such as two-alternative forced choice tasks [17], it has been 

suggested that there exist two competing populations whose firing rates vary in opposite 

directions as a function of the remembered stimulus parameter.  In many traditional models, 

positive feedback within and between the populations has been utilized for the maintenance or 

integration of evidence toward one choice or another [16, 18]:  When the two competing 

populations are connected through mutual inhibition or through a common inhibitory pool, this 

forms a disinhibitory positive feedback loop between the populations.  Thus, in such models, 

both recurrent excitatory and recurrent inhibitory synaptic interactions provide positive feedback 

that prolongs the time constant of decay of network activity.   

In contrast to these traditional models, we suggest a model of two competing populations 

based on negative derivative feedback.  In Section 2.1, we show that previously suggested model 

architectures for competing populations cannot generate persistent firing through derivative 

feedback control.  In Section 2.2, we construct a new network model of two competing 

populations.  In the new network architecture, we find conditions on the network parameters for 

derivative feedback control and describe its dynamical features.  In Section 2.3, we show that a 

network model with derivative feedback is robust against the same types of perturbations in 

network parameters considered previously.        

 

13B2.1. Previous models with positive feedback 

 In this section, we analyze previously proposed short-term memory models with two 

competing populations (Figs. 6a,b).  Network interactions in these previous models mediated 

positive feedback through recurrent excitation within a population and mutual inhibition between 

the two populations.  Here, we show that these network architectures cannot contain large 
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derivative feedback in their synaptic interactions.  The essence of the explanation is as follows: 

in previous models, inhibitory inputs are arranged as part of disinhibitory loops that contribute 

positive feedback to the system.  Since the total amount of positive feedback to each neuron 

should be balanced with the intrinsic leakiness during persistent activity, the amount of 

excitatory and inhibitory inputs are bounded in such positive feedback models.  Thus, the models 

cannot have the large balanced excitatory and inhibitory inputs required for strong derivative 

feedback.  Below, we prove this mathematically.  

First, we consider a positive feedback model with disynaptic mutual inhibition as shown 

in Fig. 6a.  It consists of two populations, each of which consists of excitatory and inhibitory 

sub-populations.  The inhibitory neurons receive inputs from excitatory neurons in the opposing 

population and inhibit the excitatory neurons in the same population.  The system can be 

described by 12 state variables 
1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 1 2

T
( ), , , , , , ,, , ,,E I E E E E I E EI I I E I I I I E IEr ry r s s s s r s s s s , where 

E and I stand for the excitatory and inhibitory populations and the subscript 1 or 2 is the index of 

the population.  To see that large excitatory and inhibitory inputs are not allowed, we simplify 

the system by assuming that all variables except 
1 1E Es  and 

2 2E Es  have fast kinetics and 

approximate them as achieving their steady states instantaneously.  Then the system is described 

by the following equations:  

 

1 1 1 1 1

1 1

2 2 2 2 2

2 2 2 2

1 1 1 1 1

1 1 1 1 1 2 1 2

2 2 2 2 2

2 1 2 1 2 2

1 2 1 2 1 2   for  , , , ,   except w

( )

( )

h

( )

(

en  or

)

  

E I E I E O

I O

E O

E E E E E

I I I I I I E I E

E E E E

I

E E I E I

I I E IE I I I O

j

I

ij

r J s J J i t

r s s J i t

r J s

s

J J

J

r i j E E I I

s J i t

r J s J s J i t

s i j E i j E

 

 

 





 

 



    





 (A22) 

 
1 1 1 1 1 1 1

2 2 2 2 2 2 2
.
   

E E E E E E E

E E E E E E E

s

s

s r

s r





 

 
 (A23) 

In the absence of external input, when i(t)=0, the firing rates of the excitatory and 

inhibitory sub-populations can be expressed in terms of the slow variables, 
1 1E Es  and 

2 2E Es  by 

solving Eq.(A22).  Using these expressions, we obtain two conditions for the system defined by 

Eq. X(A23) X to have one eigenvalue close to zero and one negative eigenvalue so that the system 

maintains persistent activity stably.  The conditions are given by 

      
1 1 1 1 1 1 2 2 2 12 2 1 2 2 2

1 1 / (1 ) / (1 ) ,E E E E IE I I I E I E IE I IJ J J J J JJ J      (A24) 
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Assuming, for simplicity, symmetry in the connection strengths between the two populations, 

each 1EEJ   in Eq. X(A25) X should be negative since the right side of the inequality is less than 0.  

Furthermore, from Eq. X(A24) X, 
1 11 1 12

/ (1 )II IEE IJ J J  should be less than 1.  Here, 
1 1 1E E EJ r  and 

1 2 21 1 1 1
/ (1 )I E EE I I IJ J rJ   represent the strengths of the excitatory input and the inhibitory input to 

1Er , respectively.  Thus, the excitatory and inhibitory inputs cannot be large. 

 Similarly, two competing populations connected through a common inhibitory pool as in 

Fig. 6b cannot receive large excitatory and inhibitory inputs.  The dynamics of this network can 

be described by 10 state variables 
2 2 2 2 1 21 1 1 1

T
( ), , , , , , ,,E E E E E E EI I E I E I II IEr ry s s s s r s s s .  As in the 

previous model, we assume that the dynamics of all variables except 
1 1E Es  and 

2 2E Es  is fast.  

Then, the system is given by 
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The conditions for persistent firing and stability are given by 
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To see that large excitatory and inhibitory inputs are not allowed in this system, we 

assume symmetry between the two populations by setting the strengths of the corresponding 
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recurrent synaptic variables in each population to be equal (e.g.,
1 1 2 2E E E E EEJ J J  ).  Then, the 

stability condition simplifies to  
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From Eq. X(A27) X, JEE is found to be less than 2, so that the excitatory input and the derivative 

feedback cannot be large. 

 

14B2.2. Construction of two competing populations with negative derivative feedback  

In the previous section, we showed that previously suggested network architectures for 

two competing populations generate persistent activity through positive feedback control.  Here, 

we construct models of two competing populations that perform derivative feedback control and 

describe their dynamical features.  We find that, despite their complicated algebraic forms, the 

core conditions for negative derivative feedback remain the same as in the recurrent network 

with one excitatory population and one inhibitory population.  That is, a balance between 

positive and negative feedback in strength and slower positive feedback are necessary for 

negative derivative feedback control.  

To construct a model of two competing populations based on negative derivative 

feedback, we assume that each population is composed of excitatory and inhibitory sub-

populations as in the model of Section 1, and the two populations are interconnected through 

excitatory synapses (Fig. 6c; including inhibitory synapses between the populations leads to 

similar results, but with more complicated form).  The dynamics of the system is written as      
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Here, we have 16 state variables with 4 variables for firing rates and 12 variables for recurrent 

synapses.  E and I stand for the excitatory and inhibitory populations, respectively, and the 

subscript 1 or 2 denotes the index of the population.  In the 12 recurrent synaptic variables, 8 

synapses are for intra-connectivity (4 synapses in each population) and 4 synapses are for 

interconnectivity from an excitatory sub-population of one side to excitatory and inhibitory sub-

populations on the other side.  We assume that the time constants of the synaptic variables are 

the same for the same type of synapses, for example, 
1 1 2 2E E E E EE     and 

2 11 2 ,E E E E EE inter   .  
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 To find conditions for negative derivative feedback, we compare the coefficients of the 

first order term a1 and the constant term a0 of the characteristic polynomial of the system in Eq. 

X(A28) X, as in Section 1.2.  This leads to two conditions: 
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 (A30) 

As in the simpler networks of Section 1, the above conditions constrain the connectivity 

strengths and time scales of the synapses.  Analogous to Eq. X(A13) X, Eq. X(A29) X imposes a 

constraint on the connectivity strengths; the first term of the equation is the product of the net 

positive feedback (subtraction of the total negative feedback from the total positive feedback) 

within each population and the remaining 4 terms are the feedbacks through the opposite 

population.  In these remaining 4 terms, the first two terms are the positive feedbacks through the 

mutually excitatory loop and through the indirect mutually inhibitory loop, and the third and 

fourth terms correspond to negative feedback through activating the opposite inhibitory 

population.  Thus, Eq. X(A29) X states that a balance between net positive feedback and negative 

feedback is necessary for generating persistent activity in the coupled networks.   

Eq. X(A30) X imposes a constraint on the time constants of the synapses analogous to Eq. 

X(A12) X for the single population.  In Eq. X(A30) X, the first term is negligibly small compared to the 

remaining terms due to Eq. X(A29) X.  Furthermore, if we assume the time constants within the 

population and across the populations are the same for the same synaptic types so that 

, ,,EE EE inter IE IE inter     , then the second and third terms of Eq. X(A30) X cancel each other and the 

remaining terms are simplified to one product term,  

  
2 2 2 2 2 21 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 1 2 2 22 1

.
E E E E E I E I E I I I I E E I I E EE II II I I I I E I E E E E I EI EE I

J J J J J J JJ J J J J JJ J J            

Thus, each factor of the above product should be nonzero and we obtain EE II IE EI     . 

If we furthermore assume that the network is symmetric and denote 
1 1 2 2E E E E EEJ J J 

and 
2 11 2 ,E E E E EE interJ J J , then Eq. (A29) assumes the much simpler form 



24 

 

   
22 4

, , ).(EI EE inter II IE inter EIEE II IEJ J J J J J J J O J  
 

The first term above is the difference between positive and negative feedback within the same-

side population, and the second term is the difference between positive and negative feedback 

through the opposite-side population.  Thus, in this case, the required balance between positive 

and negative feedback can be expressed in a relatively simple and intuitive form.  

Note that the conditions for derivative feedback, Eq. X(A29) X and Eq. X(A30) X, do not 

guarantee competition between the two populations.  Since each population in general can 

project onto either the excitatory or inhibitory neurons of the other population, the activities of 

the two populations may exhibit positive or negative correlations, unlike in traditional models 

that only contain functionally inhibitory inter-connections and exhibit negative correlations.  For 

the two populations to exhibit negative correlations, the inhibitory interactions between the 

populations (which are mediated by the excitatory projections of one population onto the 

inhibitory neurons of the opposing population) should be stronger than the excitatory interactions 

(Fig. 6c, calculation not shown).    

In summary, in this section, we found conditions for two competing populations to 

implement negative derivative feedback.  The network requires a similar balance condition 

between excitation and inhibition as in the network of one excitatory population and one 

inhibitory population, but the positive and negative feedback now include the interactions 

between the two competing populations.  A time delay in positive feedback can be satisfied with 

slow recurrent excitation as in the single population models. 

 

15B2.3. Robustness against perturbations in the network connectivity   

Next, we investigate whether the model of two competing populations with negative 

derivative feedback can maintain persistent firing when the network parameters are perturbed.  

To do so, as in Section 1.5 for the case of the single population, we check whether the balance 

condition given in Eq. X(A29) X is satisfied in the presence of various perturbations. 

Persistent firing in two competing populations with negative derivative feedback is found 

to be robust against many natural perturbations, as in the single population.  First, we consider 

changes in intrinsic neuronal gains in the entire network, which can be modeled as a uniform 

multiplication of all synaptic strengths by a factor m.  In this case, the balance condition in Eq. 

X(A29) X is multiplied by m
4
 and is still satisfied.  Second, selective gain control in any individual 

excitatory or inhibitory population also maintains persistent firing.  For example, gain control in 

excitatory population 1 can be represented by multiplying all 
1E jJ by m for 1 2 1 2, , ,j E E I I  so 

that the balance condition becomes  
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mJ J J J mJ J J J J mJ J J J J mJ J O J

 

   
 

which holds from Eq. X(A29) X. 

Finally, we consider multiplicative changes in the strengths of excitatory or inhibitory 

synapses projecting from a given population that might, for example, correspond to changes in 

presynaptic transmission or loss of a fraction of a subpopulation of neurons.  For example, if the 

strengths of all synapses from E1 are uniformly increased by m, the balance condition becomes 

Eq. X(A29) X multiplied by m and is satisfied.  However, note that, for example, if the excitatory 

receptors change only within the same population but not across to the other population, that is, 

1 1,E EJ  and 
1 1,I EJ  are multiplied by m but

2 1,I EJ  remains the same, then the condition for the 

persistent activity is not maintained, suggesting that this is a perturbation to which the network 

would be sensitive. 

 

4B3. Analysis of spiking network models 

Here, we provide a simple analytical description of spiking network activity that enables 

us to find conditions on the network connectivity for balanced excitation and inhibition.  Based 

on previous work [19], we describe the network activity through a mean-field approximation that 

takes into account the mean presynaptic input received by all neurons of a given population (E 

and I). Within this framework, we find a condition on synaptic strengths for persistent firing to 

be maintained that has the same form as the balance condition in the firing rate model of Section 

1.  

For simplicity, we assume that each connection consists of one type of synapse, slow 

excitatory synapses from E to E, fast excitatory synapses from E to I, and fast synapses for all 

inhibitory synapses.  Then Eq. (9) and Eq. (10) in the online methods can be rewritten as  
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 (A31) 

where 
l

ijI  denotes the total synaptic current from population j to neuron l in population i.  

 To obtain the mean-field description of the average firing rates of the excitatory and 

inhibitory populations, we assume neurons exhibit independent, irregular firing with Poisson 
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statistics, as has been suggested to occur in sparsely connected balanced networks with strong 

synapses [20].  Note, however, that unlike previous works that used synapses with instantaneous 

dynamics, synapses in our model have time constants comparable to or much longer than the 

membrane time constant.  This may result in temporal correlations in spike trains [21-22] and 

may violate the assumption of Poisson statistics of firing activity. Thus, although the mean-field 

theory description below was sufficient to produce a memory network with graded persistent 

firing, a more precise description of network activity may additionally require an analysis of 

higher order moments of firing activity (see [23] for such an analysis in networks with 

instantaneous synapses). 

Using the independent, Poisson assumption, we can obtain simple expressions for the 

dynamics of the population-averaged synaptic currents.  Taking the population average of the 

dynamics of 
l

ijI  for i,j = E,I in Eq. (A31) gives   

 
1

( ) ,

m

j

ij lm

ij ij i

N

ij

m

j m

t

I J p t t
dI

dt
 



     (A32) 

where < > denotes the average across the population and ijI is l

ijI . Since firing rates of 

excitatory and inhibitory neurons do not change much during persistent activity, we assume that 

the spike train of each neuron is generated from a stationary Poisson process with average rates 

rE or rI for the excitatory or inhibitory population, respectively.  Since 
lm

ijp  is a binary random 

variable with probability p, the average number of synaptic contacts from j to i is Njp, so that the 

temporal mean and variance of the input are given by  
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 (A33) 

We note that the term 
ij jJ pN  multiplying the presynaptic firing rate rj in the above expression 

represents the strength of the mean synaptic input from population j to population i, and is 

analogous to the strength of synaptic input Jij in the firing rate models.  Thus, we denote 
ij jJ pN  

as Jij. 

To find the tuning condition on the network parameters, we approximate the arrival of 

presynaptic spikes as a continuous stochastic, white noise process [19].  This approximation is 

valid when the number of presynaptic contacts is large and the contribution of each presynaptic 

spike is small.  Then Eq. (A32) becomes 
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where μij and σij are defined in Eq. (A33) and ( )ij t is a white noise process with zero mean and 

unit variance.  Thus, each synaptic current becomes an Ornstein-Uhlenbeck process [24] and, in 

steady state, the mean and variance of Iij become 
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Next, we derive a necessary condition on the network parameters to maintain persistent 

activity in the absence of external input.  Under the diffusion approximation, the temporal mean 

of the total input to a neuron is expressed in terms of the average firing rates of the excitatory 

and inhibitory populations as  

 
mean( )

mean( )

,

.

EEE

IE

I

II

EE E E EI I I

IE E

EE EI I I

IE II I I E II I I

I I J pN r J pN r

I I J pN r J pN r

 

 

   

   
 (A35) 

 Below, we denote the population average numbers pNE and pNI of synaptic contacts from E and I 

as KE and KI, respectively. Assuming 
ijJ  scales inversely proportionally to Kj  as ˆ /ij ij jJ J K , 

where ˆ
ijJ  is a constant, so that the variance of the input remains finite with increasing network 

size [20],  
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The mean excitatory and inhibitory recurrent inputs to each neuron increase with the network 

size, and therefore, with KE and KI.  Thus, to have the mean input of the same order as the leak 

currents, that is, of order 1, the excitatory and inhibitory currents should nearly cancel each other 

as  
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For large KE and KI , nonzero rE and rI can occur when the strengths of the recurrent synapses 

satisfy 

 ˆ ˆ ˆ ˆ/ ~1,EE EI I EI IJ J J J  (A38) 

and with 
ij ijjJ pN J , Eq. (A37) becomes 

 /   for lar~1 ge  .EE II EI IEJJ J J J s  (A39) 

Thus, we find that the balance condition for the spiking networks has a similar form to 

that obtained previously in the firing rate models (Eq. (3) of the main text).  We note that the 

balance condition above is different from that obtained in previous work [20] in which the 

recurrent inhibitory input is balanced by recurrent and external excitatory inputs, and the network 

is quiescent in the absence of external input.  A similar tuning condition for persistent firing has 

been suggested in [23] but, since this previous work did not utilize different dynamics for 

excitation and inhibition, the system was not stable across a graded range of firing rates.  Also 

note that even though Eqs. (A38) and (A39) impose a tight tuning condition on the average 

strength of connections between populations, the total amount of excitatory and inhibitory input 

onto an individual neuron can vary widely due to the random connectivity.  Thus, the system can 

be stable even in the presence of heterogeneity of network connectivity onto individual neurons. 

 

5B4. Parameters  

16B4.1. Firing rate model of a single population 

In all firing rate models, the intrinsic time constants of excitatory and inhibitory neurons 

are E  = 20ms and I  = 10ms.  The decay time constants for recurrent synapses are EE  = 

100ms, IE  = 25ms for excitatory synapses, and EI  = II  = 10ms for inhibitory synapses.  For 

the currents driven by NMDA- and AMPA-type excitatory synapses in Figs. 3 and 4, the time 

constants onto the excitatory population were N

EE  = 150ms and A

EE  = 50ms, and those onto the 

inhibitory population were N

IE  = 45ms and A

IE  = 20ms.  As noted in the Online Methods, we 

note that these time constants represent the observed decay times of NMDA-receptor driven and 

AMPA-receptor driven EPSP’s observed experimentally at the soma of prefrontal cortical 

neurons following synaptic stimulation [15], and almost certainly represent a mixture of receptor 

kinetics plus local intrinsic processing that effectively extend the time scales of decay of the 

synaptic currents.   The fractions of NMDA-type synapses onto excitatory and inhibitory 

synapses were EEq  = 0.5 and IEq  = 0.2, and these were chosen to approximately match the 

temporally integrated current observed experimentally for excitatory to excitatory and excitatory 

to inhibitory connections in the same prefrontal cortical slice experiments used to derive the time 
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constants of the synaptically driven currents [15].  External inputs i(t) to the excitatory and 

inhibitory populations were given by square pulses of twindow=100 ms duration for pulse-like 

inputs or 5 sec for step inputs, filtered by an exponential filter of time constant ext = 100 ms.   

For the nonlinear function of Naka-Rushton form in Eq. (6), the maximal response M = 

100, the half-activation parameter x0 = 30, and the input threshold xθ = 10 (Fig. 2c-d, bottom, 

Supplementary Fig. S1). 

The connectivity strengths for each model are summarized in the following table. 

Connectivity strength for firing rate model 

Population 

structure 

Model type Recurrent connection Connection from external 

input 

One exc. 

and one inh. 

population 

Der. fdbk. 

network 
EEJ  = IEJ  = 150, EIJ  = IIJ  = 300 

in Fig. 2 

EEJ   = 150, IEJ  = 150, EIJ  = 300, IIJ  

= 300-1 for purely der. model,
 EEJ   = 

151, IEJ  = 150, EIJ  = 300, IIJ  = 300-

1 for hybrid model, 

iEJ  = IEJ  = 150, EIJ  = IIJ  = 600 

in Fig. 3 and Supplementary Fig. S2 

EOJ  = 1500-4500, IOJ = 0 

for pulse-like input  

EOJ  = 100-300, IOJ = 0 for 

step-like input 

Pos. fdbk. 

network 
EEJ  = 1, IEJ  = EIJ  = IIJ  = 0 EOJ  = 30-90, IOJ = 0  

for pulse-like input 

EOJ  = 20-60, IOJ = 0  

for step-like input 

Two 

competing 

populations 

Der. fdbk. 

network 
i iE EJ = 300, 

i iI EJ =450, 
i iE IJ =900, 

i iI IJ

= 900, 
jiE EJ =150, 

jiI EJ =300   

,i tE onicJ = 9000 

1E OJ =3000,
2E OJ = 0-6000  

Pos. fdbk. with 

direct mutual 

inhibition 

i iE EJ = 0.5, 
jiI EJ =1,

iiE IJ =0.5 ,i tE onicJ = 30 

1E OJ = 15,
 2E OJ = 0-30 

Pos. fdbk. with 

common 

inhibitory pool 

i iE EJ = 1, 
iIEJ =1, 

iE IJ =0.5 ,i tE onicJ = 30 

1E OJ = 30, 
2E OJ = 0-60  
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4.2 Spiking network model with leaky integrate-and-fire neurons 

In the simulations, NE = 16000, NI = 4000, and NO = 20000.  The probability of 

connection p = 0.1 uniformly across the population.  The time constants of excitatory and 

inhibitory neurons were 20ms and 10ms, respectively.  The remaining parameters of the 

integrate-and-fire neuron, which were the same for both excitatory and inhibitory neurons, were 

VL = -60mV, Vθ = -40mV, and Vreset = 52 mV with a refractory period τref = 2 ms.   
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The time constants of the synaptic variables were N

EE =150ms, A

EE = 100ms, N

IE = 45ms, 

A

IE = 20ms, and EI = II = 10ms.  The fractions of the NMDA-type synapses were EEq =0.5 and 

IEq =0.2, as in the firing rate models.  For the filtering of the external input, τiO = 100ms.  For the 

synaptic strengths, 300 / 1600 7/ .5ˆ
iE iE E pJ J N    and ˆ / 400 / 400iI iI IJ J N p  = 20.   

In Fig. 5, the transient input from the external population was present for a duration  

twindow=100ms starting at time 0.  The columns from left to right correspond to input firing rates 

rO = 50Hz, 100Hz, or 200Hz with Poisson statistics, respectively, and the synapses from the 

external input have strengths 20 / 20ˆ / 00 ~ 0.45OEO EO pJ J N   and 0IOJ  .  In 

Supplementary Fig. S4, the step-like input was present from time 0, the input firing rates rO = 

10Hz, 20Hz or 30Hz, and the synaptic strengths 0 / 20ˆ / 01 0 ~ 0.22OEO EO pJ J N   and 

0IOJ  . 
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