Quantitative full time course analysis of nonlinear enzyme cycling kinetics

Wenxiang Cao® & Enrique M. De La Cruz"~

! Department of Molecular Biophysics and Biochemistry, Yale University, New Haven,
Connecticut 06520, USA.

Supplementary Information
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Exact solution: A minimal mechanism describing the catalytic cycle of many enzymes (e.g.
hydrolases (EC3) including ATPases * and nucleotide pyrophosphatase/phosphodiesterase
(NPP) family enzymes *) is comprised of a single substrate (S) that is converted by enzyme (E)
into two products (P and P;) that dissociate independently (Figure Al). This scheme differs
from that assumed by Michaelis and Menten for the glucose hydrolase activity of invertase > in

that it explicitly considers substrate to product transformation .
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Figure Al. Reaction scheme describing the catalytic cycle of enzymes in which a single
substrate (S) is converted by enzyme (E) into two products (P; and P;) that dissociate

independently.



For the chemical reaction depicted in Figure A1, there are 4 independent differential

equations:
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During steady-state cycling, the steady-state condition requires all the intermediates remain
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constants, i.e. in Eqs. A1’-A4’, =0. After rearranging

dt dt dt dt
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Solving [E+P,] in Eq. A1, [E+R] in Eq. A2 and [E-S] in Eq. A4, and substituting in Eq. A3

yields:
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which can be rearranged and simplified to
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Solving [E+P,] in Eq. A1, [E*R] in Eq. A2, and [E-S] in Eq. A4 and substituting them with

[E] (Eq. A5) into the mass balance equation for the total enzyme [E]i Yields:
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and allows for [E+F+P,] in Eq. A6 to be solved according to:
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During steady-state cycling the two product release rates are equal and given by:
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Egs. A2, A4, A5 and A7 were substituted in derivation of Eq. A8. Accordingly, when t —» 0,

[R], [P,]1—0 and [S]—[S]y, the initial substrate concentration, and the initial steady-state

velocity simplifies to:
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which is the familiar Briggs-Haldane equation for the initial substrate concentration-dependent
enzyme cycling in the absence of product inhibition and substrate depletion, with the enzymatic

reaction parameters
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The steady-state kot and Ky expressions in Eq. A10 are identical to those obtained in the absence

of product inhibition *.

Under conditions where there is no initial product (i.e. [R]=[P,]=0at t = 0), and free
substrate and product concentrations are much greater than total enzyme ( i.e.

[S]. [P [P]1>>[E]i ), the two free products are approximately equal ([P,]1~[R]=[P]) and

the free substrate [S]~[S]o —[R]=[S]o —[P] . Eq. A8 can therefore be expressed as:
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where some of the o and £ (i =0, 1, 2, 3) constants depend on the initial substrate concentration.

The third order polynomial function in the numerator of Eq. Al1,
o +o¢1[P]—042[P]2 —a3[P]3, has three roots, which are a positive root, r, and either two

negative roots or a complex conjugate pair of roots °. Therefore, Eq. A1l can be rearranged as

follows
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where the new coefficients g, Ao, A1, Bo, and B; are combinations of o; and £ (i =0, 1, 2, 3) that
may or may not depend on the initial substrate concentration. Integrating both sides of Eq. A12

and incorporating the initial condition [P] = 0 yields:
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Although Egs. A13 and A13’ represent exact analytical solutions of differential equation Eq. All,
the concentration of free enzymatic product [P] is a complicated implicit function of time (t)
composed of a linear, two logarithmic and an inverse tangent or additional logarithmic function,
and thus it is difficult to extract physically meaningful parameters (e.g. ket and Ky). An
approximation approach to obtain a solution of the concentration of free product [P] that allows

for physically meaningful parameters to be extracted is as follows.



First order approximation analysis: Given that the normalized free product x = 1PT <1 and
0

. K . L
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, the differential

equation Eq. A1l of [P] becomes the following differential equation of a small variable x:
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Since x :S_ <1, and is therefore a small variable, the normalized product release rate 3— in
0

Eqg. Al4 can be expanded at x = 0 using the Taylor series expansion.

% = f()[Eloy =( O+ F (©x+0(x) ) [Ely A20

where O(x%) is a very small quantity proportional to the second order of the variable x that can be

ignored in the first order approximation. In Eq. A20, the fact that x is a normalized free product
. ) i dx .
concentration that always increases (i.e. the rate, Py >0), but the increase gradually slows down

due to product inhibition or substrate depletion (i.e. the second derivative of x to t is negative)

leads to

o) =
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At the first order approximation, the solution to the linear differential equation Eq. A20 with the

initial condition x =0 is

v _
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where Vg is the initial steady-state velocity defined as

Q(0
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with ke and Ky expressed as in Eg. 10.

We introduce a new term, 7, to describe the decay of the steady-state cycling rate due to

product inhibition or substrate depletion as:

Q'(0)P(0)-Q(0)P(0)

=—F(O)[Elo =-
n (O)[E] p(0f

[Eliot

which can be expressed in terms of reaction rate constants as follows:
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2
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+(k_1 +K,, )(k+3 +K.s )2 (k—4k+6 +K 4K g ))[S]O
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When 77—0, from Eq. A23, [P] >V, i.e. the time course of product formation becomes linear
with time. Eq. A23 predicts that [P] — Yo ast — oo and the enzymatic reaction reaches
n

equilibrium. In other words, accumulation of product gradually decreases the steady-state
cycling rate to O (i.e., the substrate, enzyme and product(s) are in equilibrium, with no net

conversion of substrate(s) to product(s)).

The value of 7 serves as a valuable experimental diagnostic for assessing time course
non-linearity, specifically identifying the origin of non-linearity (product inhibition vs. substrate

depletion). For non-linearity to be negligible and product formation to be linear across the

observed time range 7, nr<<1; thatis, 7 << 1 . When [S]o — 0, Eqg. A25 simplifies to:
T

kK ,K.,(K.s+K.)[E
+1 +2( +3 T +5>[ ]tOt _ Keat [Eli- A26

n—
Kok + (kg +Kko ) (kg +ks) Ky

Under this condition 7 is independent of product binding and non-linearity arises from substrate

depletion, which is proportional to % When [S]o — o, Eq. A25 simplifies to:
M

k+2 (k+4 K.g (k—z +K,p ) (k+3 K_3K,g +K 4K 5K 5 )
+k+2 k+3k+5 ( k+4 - k+6 ) (k—3k+6 - k+4 k—5 )) [ E]’[Ot

n—
((k—z Koy kg kg )k K +K, o (Kigkus +Kgks ))
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Under this condition the value of 7 and any observed non-linearity in enzyme activity time

courses are dominated by product inhibition. Note that 7 o« [E]wt, which quantitatively predicts
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how reducing the enzyme concentration reduces both substrate depletion and product inhibition

effects.
The rate equation for product formation (Eq. A20) can be rewritten using the definition of
Vo and 7 as follows:

v:%:vo—n[P] A28

If the initial velocity vo and rate constant of the decrease in product formation 7 are obtained
from the analysis of a non-linear time course of product formation by Eq. A23, Eq. A28 provides
a method to calculate the velocity v at any given product concentration [P] for all the initial
substrate concentration [S]o. Subsequently, the plots of v versus [S]o for several different product
(the inhibitor in this case) concentrations can be used to analyze the inhibitor (product) binding
constant(s) using the standard inhibition analysis technique for enzyme kinetics ’ even though

product formation time courses are non-linear, which we demonstrate in the main text.

Second order approximation analysis: The time-dependent product formation Eq. A23 was
derived from applying the first order approximation to the rate equation (Egs. A14 and A20). For

the second order approximation, the rate equation Eq. A20 becomes

d
o= T 00[El =(f(0)+ f '(0)x+% f(0)x° +O(X3)j[E]tot A29

where f(X) is the second partial derivative to x. O(x°) is a small quantity proportional to the third

order of x and is ignored at the second order approximation. Integration of Eq. A29 yields
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f"(0)x+ f'(0) -

Elat_ce™, i (1102 -2 *(0) 1 (0))[E® =47 >0
O+ O+  A30
tot

2 "(0)x+ f '(0) = A tan(A(t;C)} if (f'(0)2—2f"(O)f(O))[E]totzz—A2<0

[Elot

C in Eq. A30 is an arbitrary constant to be determined by the initial conditions. A is defined in
the equation. Since a tangent function is not a physically meaningful solution for the time course
of product formation, the condition f '(0)?> =2 f "(0) f (0) <0 would never occur and the solution

with a tangent function is disregarded. Eq. A30 with the initial condition x = 0 can be written as

—_At 2 % (l_e_At)
[P] _ 2 f (0)[8]0 (1_e ) _ [E]tot
_ 0 f10) |e A n ( A ¢ ]—At
[Eler ”{[Elmf ()}e (Elo [Elx \[Elw [Elo ). A3
2vp(1—e)

- A+77+(A—77)e_At

where vy, r7and A are defined in Egs. A24, A25 and A30, respectively.
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