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Supplementary Information  

Theory. 

Exact solution: A minimal mechanism describing the catalytic cycle of many enzymes (e.g. 

hydrolases (EC3) including ATPases 
1-3

 and nucleotide pyrophosphatase/phosphodiesterase 

(NPP) family enzymes 
4
) is comprised of a single substrate (S) that is converted by enzyme (E) 

into two products (P1 and P2) that dissociate independently (Figure A1).  This scheme differs 

from that assumed by Michaelis and Menten for the glucose hydrolase activity of invertase 
5,6

 in 

that it explicitly considers substrate to product transformation 
7-9

.  

 

Figure A1.  Reaction scheme describing the catalytic cycle of enzymes in which a single 

substrate (S) is converted by enzyme (E) into two products (P1 and P2) that dissociate 

independently. 
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For the chemical reaction depicted in Figure A1, there are 4 independent differential 

equations:  
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During steady-state cycling, the steady-state condition requires all the intermediates remain 

constants, i.e. in Eqs. A1’-A4’, 1 2 1 1 2[ ] [ ] [ ][ ]
0

d E P P d E P d E Pd E S

dt dt dt dt
    . After rearranging 

terms, Eqs. A1’-A4’ become 
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Solving 2[ ]E P  in Eq. A1, 1[ ]E P  in Eq. A2 and [ ]E S  in Eq. A4, and substituting in Eq. A3 

yields: 

 

 

3 1 2 4 2 5 1 2 6 11 2 1 2
2 3 1 5 2

1 2 3 1 4 5 2 6

2 3 5 1 2

[ ] [ ][ ] [ ] [ ][ ][ ][ ] [ ]
[ ] [ ]

[ ] [ ]

[ ]

k E P P k E P k E P P k E Pk E S k E P P
k k P k P

k k k P k k P k

k k k E P P

    
  

     

  

 
 

  

  

 

which can be rearranged and simplified to 
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Solving 2[ ]E P  in Eq. A1, 1[ ]E P  in Eq. A2, and [ ]E S  in Eq. A4 and substituting them with 

[ ]E  (Eq. A5) into the mass balance equation for the total enzyme [E]tot yields: 
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and allows for 1 2[ ]E P P  in Eq. A6 to be solved according to: 
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During steady-state cycling the two product release rates are equal and given by: 
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Eqs. A2, A4, A5 and A7 were substituted in derivation of Eq. A8. Accordingly, when 0t  , 

1 2[ ],  [ ] 0P P   and 0[ ] [ ]S S , the initial substrate concentration, and the initial steady-state 

velocity simplifies to: 
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which is the familiar Briggs-Haldane equation for the initial substrate concentration-dependent 

enzyme cycling in the absence of product inhibition and substrate depletion, with the enzymatic 

reaction parameters  
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The steady-state kcat and KM expressions in Eq. A10 are identical to those obtained in the absence 

of product inhibition 
4
. 

Under conditions where there is no initial product (i.e. 1 2[ ] [ ] 0P P  at t = 0), and free 

substrate and product concentrations are much greater than total enzyme ( i.e. 

1 2[ ],  [ ],  [ ] [ ]totS P P E ), the two free products are approximately equal ( 2 1[ ] ~[ ] [ ]P P P ) and 

the free substrate 0 1 0[ ]~[ ] [ ] [ ] [ ]S S P S P   . Eq. A8 can therefore be expressed as: 
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  A11 

where some of the i and i (i = 0, 1, 2, 3) constants depend on the initial substrate concentration.  

The third order polynomial function in the numerator of Eq. A11,

2 3
0 1 2 3[ ] [ ] [ ]P P P      , has three roots, which are a positive root, r, and either two 

negative roots or a complex conjugate pair of roots 
10

. Therefore, Eq. A11 can be rearranged as 

follows  
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where the new coefficients q, A0, A1, B0, and B1 are combinations of i and i (i = 0, 1, 2, 3) that 

may or may not depend on the initial substrate concentration. Integrating both sides of Eq. A12 

and incorporating the initial condition [P] = 0 yields: 
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Although Eqs. A13 and A13 represent exact analytical solutions of differential equation Eq. A11, 

the concentration of free enzymatic product [P] is a complicated implicit function of time (t) 

composed of a linear, two logarithmic and an inverse tangent or additional logarithmic function, 

and thus it is difficult to extract physically meaningful parameters (e.g. kcat and KM).  An 

approximation approach to obtain a solution of the concentration of free product [P] that allows 

for physically meaningful parameters to be extracted is as follows. 
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First order approximation analysis: Given that the normalized free product 
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with partial derivatives to x as '( )f x , 
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and 
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Since 
0
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  , and is therefore a small variable, the normalized product release rate 
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 in 

Eq. A14 can be expanded at x = 0 using the Taylor series expansion. 
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At the first order approximation, the solution to the linear differential equation Eq. A20 with the 

initial condition x = 0 is 
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where v0 is the initial steady-state velocity defined as 
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with kcat and KM expressed as in Eq. 10. 

We introduce a new term, , to describe the decay of the steady-state cycling rate due to 

product inhibition or substrate depletion as: 
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When 0 , from Eq. A23, 0[ ]P v t , i.e. the time course of product formation becomes linear 

with time. Eq. A23 predicts that 0[ ]
v

P


  as t   and the enzymatic reaction reaches 

equilibrium. In other words, accumulation of product gradually decreases the steady-state 

cycling rate to 0 (i.e., the substrate, enzyme and product(s) are in equilibrium, with no net 

conversion of substrate(s) to product(s)).  

The value of  serves as a valuable experimental diagnostic for assessing time course 

non-linearity, specifically identifying the origin of non-linearity (product inhibition vs. substrate 

depletion).  For non-linearity to be negligible and product formation to be linear across the 

observed time range ,  << 1; that is, 
1




  . When [S]0  0, Eq. A25 simplifies to: 
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Under this condition  is independent of product binding and non-linearity arises from substrate 

depletion, which is proportional to cat

M

k

K
. When [S]0  , Eq. A25 simplifies to: 
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Under this condition the value of  and any observed non-linearity in enzyme activity time 

courses are dominated by product inhibition. Note that   [E]tot, which quantitatively predicts 
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how reducing the enzyme concentration reduces both substrate depletion and product inhibition 

effects. 

The rate equation for product formation (Eq. A20) can be rewritten using the definition of 

v0 and  as follows: 

 0

[ ]
[ ]

d P
v v P

dt
    A28 

If the initial velocity v0 and rate constant of the decrease in product formation  are obtained 

from the analysis of a non-linear time course of product formation by Eq. A23, Eq. A28 provides 

a method to calculate the velocity v at any given product concentration [P] for all the initial 

substrate concentration [S]0. Subsequently, the plots of v versus [S]0 for several different product 

(the inhibitor in this case) concentrations can be used to analyze the inhibitor (product) binding 

constant(s) using the standard inhibition analysis technique for enzyme kinetics 
7
 even though 

product formation time courses are non-linear, which we demonstrate in the main text.  

Second order approximation analysis: The time-dependent product formation Eq. A23 was 

derived from applying the first order approximation to the rate equation (Eqs. A14 and A20). For 

the second order approximation, the rate equation Eq. A20 becomes 

  2 31
( )[ ] (0) '(0) ''(0) [ ]

2
tot tot

dx
f x E f f x f x O x E

dt

 
     

 
 A29 

where f(x) is the second partial derivative to x. O(x
3
) is a small quantity proportional to the third 

order of x and is ignored at the second order approximation. Integration of Eq. A29 yields 
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2 2 2

2 2 2

''(0) '(0)
[ ]

,     if  '(0) 2 ''(0) (0) [ ] 0

''(0) '(0)
[ ]

2 ''(0) '(0) tan     if  '(0) 2 ''(0) (0) [ ] 0
[ ] 2

ttot
tot

tot

tot
tot

f x f
E

Ce f f f E

f x f
E

t C
f x f f f f E

E




 

     
  




   
      

 

. A30 

C in Eq. A30 is an arbitrary constant to be determined by the initial conditions.  is defined in 

the equation. Since a tangent function is not a physically meaningful solution for the time course 

of product formation, the condition 
2'(0) 2 ''(0) (0) 0f f f   would never occur and the solution 

with a tangent function is disregarded. Eq. A30 with the initial condition x = 0 can be written as 

 

 

0

0

0

2 (1 )
2 (0)[ ] (1 ) [ ]

[ ]

'(0) '(0)
[ ] [ ] [ ] [ ] [ ] [ ]

2 (1 )

t
t

tot

t t

tot tot tot tot tot tot

t

t

v
e

f S e E
P

f f e e
E E E E E E

v e

e

 

 




 








 
      

        
   



    

 A31 

where v0,  and  are defined in Eqs. A24, A25 and A30, respectively. 
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