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Web Appendix A Equivalence of conditional
likelihood and a model on
differences

Verbeke et al.[1] proved this equivalence for the mixed effects model,

where Σi = ZiDZ′i + σ2
wI. This model has the special feature that condi-

tional on the random effects, the observations are independent. The DEX

model does not follow this structure. The proof given here is for a general

response covariance matrix, Σi , and thus extends their results. Suppose

that we have subject-specific intercepts ai, which can be fixed or random,

and assume that E (Yi) = ai1 + Xiγ, where 1 is a vector of ones, Xi a

matrix of covariates and γ a vector of regression parameters. Assuming

normality of Yi and V ar (Yi) = Σi, the probability density function has

1



the expression

f (Yi|ai,Xi) =
1

(2π)
r+1
2 |Σi|1/2

exp

(
−1

2
(Yi − ai1−Xiγ)′Σi

−1 (Yi − ai1−Xiγ)

)
=

1

(2π)
r+1
2 |Σi|1/2

exp

(
−1

2

[
(Yi −Xiγ)′Σi

−1 (Yi −Xiγ)− 2 (Yi −Xiγ)′Σi
−1ai1 + a2

i1
′Σi
−1

1
])

.

By the factorization theorem, a sufficient statistic for ai is si = Y′iΣi
−11 =

1′Σi
−1Yi. The sufficient statistic si is distributed as a univariate normal

with expected value 1′Σi
−1ai1 + 1′Σi

−1Xiγ and variance 1′Σi
−11. Then,

the density of Yi conditioning on the sufficient statistic si is

f (Yi|si,Xi) =
f (Yi|ai,Xi)

f (si|ai,Xi)
=

1

(2π)
r+1
2 |Σi|1/2

1

(2π)
1
2 |1′Σi

−11|1/2

exp
(
−1

2

[
(Yi −Xiγ)′Σi

−1 (Yi −Xiγ)− 2 (Yi −Xiγ)′Σi
−1ai1 + a2

i1
′Σi
−11
])

exp

(
− 1

2(1′Σi
−11)

(
1′Σi

−1Yi − 1′Σi
−1ai1− 1′Σi

−1Xiγ
)2
) =

∣∣1′Σi
−11
∣∣1/2

(2π)
r
2 |Σi|1/2

exp

(
−1

2
(Yi −Xiγ)′

[
Σi
−1 −Σi

−11
(
1′Σi

−1
1
)−1

1′Σi
−1

]
(Yi −Xiγ)

)
.

Using property B.3.5 of Seber[2],

Σi
−1 −Σi

−11
(
1′Σi

−1
1
)−1

1′Σi
−1

= ∆′ (∆Σi∆
′)
−1

∆,
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we can write then the conditional likelihood as

L (γ|s1, . . . , sN ,X) =

N∏
i=1

∣∣1′Σi
−11
∣∣1/2

(2π)
r
2 |Σi|1/2

exp

(
−1

2
(Yi −Xiγ)′∆′ (∆Σi∆

′)
−1

∆ (Yi −Xiγ)

)
and the log-likelihood logL (γ|s1, . . . , sN ,X) will then be proportional to

N

2
log
∣∣∣1′Σi

−1
1
∣∣∣−N

2
log |Σi|−

1

2

N∑
i=1

(
(Yi −Xiγ)′∆′ (∆Σi∆

′)
−1

∆ (Yi −Xiγ)
)
.

The maximum likelihood estimator of γ is

γ̂ =

(
N∑
i=1

(
X′i∆

′ (∆Σi∆
′)
−1

∆Xi

))−( N∑
i=1

(
X′i∆

′ (∆Σi∆
′)
−1

∆Yi

))

and

V ar (γ̂) =

(
N∑
i=1

(
X′i∆

′ (∆Σi∆
′)
−1

∆Xi

))−
=

(
N∑
i=1

(X′iMiXi)

)−
,

where the notation A− indicates the generalized inverse of A. Note

that ∆Xi will contain columns of zeros for those variables that are time-

invariant, and first order differences for the time-varying variables. It is

readily seen that, when Σi is known, γ̂ and V ar (γ̂) from the conditional

approach are equivalent to the solution to the regression of ∆Yi on ∆Xi

by GLS using the covariance matrix ∆Σi∆
′.
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Web Appendix B Relationship between corre-
lation coefficient and intra-
class correlation when the ex-
posure prevalence is not con-
stant over time

If the prevalence of exposure is not constant over time

but the exposure process follows CS, we have E [EjEj′ ] =(
ρx
√
pej(1− pej)

√
pej′(1− pej′) + pejpej′

)
, where ρx is the common

correlation between exposures at different time points. From Web

Appendix C, we have
r∑
j=0

∑
j′ 6=j

E [EjEj′ ] = p̄er (r + 1) [p̄e(1− ρe) + ρe].

Therefore, we have that

ρx

r∑
j=0

∑
j′ 6=j

√
pej(1− pej)

√
pej′(1− pej′) +

r∑
j=0

∑
j′ 6=j

pejpej′ =

p̄er (r + 1) [p̄e(1− ρe) + ρe] .

Solving for ρx, we have

ρx =

p̄er (r + 1) [p̄e(1− ρe) + ρe]−
r∑
j=0

∑
j′ 6=j

pejpej′

r∑
j=0

∑
j′ 6=j

√
pej(1− pej)

√
pej′(1− pej′)

.

Note that if pej = pe ∀j then ρx = ρe. Equivalently one can deduce

ρe =

ρx
r∑
j=0

∑
j′ 6=j

√
pej(1− pej)

√
pej′(1− pej′) +

r∑
j=0

∑
j′ 6=j

pejpej′ − p̄2
er (r + 1)

p̄er (r + 1) (1− p̄e)
.
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Web Appendix C Upper bound for ρe

LetEi· =
r∑
j=0

Eij be the total number of exposed periods for subject i. Then,

the intraclass correlation of exposure can be written as

ρe =
E (E2

i·)− (r + 1) p̄e (1 + p̄er)

r(r + 1)p̄e (1− p̄e)

[3]. By the properties of the expectation we have

E [EjEj′ ] = E (E [EijEij′ |Ei·]) = E (P (Eij = 1 ∩ Eij′ = 1|Ei·))

= E
(
Ei· (Ei· − 1)

(r + 1)r

)
=

1

r(r + 1)

[
E
(
E2
i·
)
− E (Ei·)

]
,

and
r∑
j=0

∑
j′ 6=j

E [EjEj′ ] = E (E2
i·)−E (Ei·) = E (E2

i·)− (r + 1) p̄e. Therefore, the

intraclass correlation of exposure can be rewritten as

ρe =
1

1− p̄e


r∑
j=0

∑
j′ 6=j

E [EjEj′ ]

p̄er (r + 1)
− p̄e

 .
For binary variables, we have the constraint E [EjEj′ ] 6

min (pej, pej′) ∀j, j′. Then, it is easily shown that

ρe 6
1

1− p̄e


r∑
j=0

∑
j′ 6=j

min (pej, pej′)

p̄er (r + 1)
− p̄e

 .
Now,

r∑
j=0

∑
j′ 6=j

min (pej, pej′) = 2
(
rpe(0) + (r − 1)pe(1) + · · ·+ pe(r−1)

)
= 2

r−1∑
j=0

(r − j)pe(j),
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where pe(j) is the jth order statistic. Then,

ρe 6
1

1− p̄e


2
r−1∑
j=0

(r − j)pe(j)

p̄er (r + 1)
− p̄e

 .

Web Appendix D Derivation of σ̃2

The derivations in Web Appendix D are valid only when Σi = Σ, and

therefore they are not valid if the covariance of the response is RS and

V (t0) > 0, in which case a distribution for the time variable would need to

be assumed. When the covariance is RS and V (t0) = 0 the derivations in

this appendix apply.

Web Appendix D.1 Derivation of σ̃2 for model (3)

Model E (Yi,j+1|Xi) = γ0 + γttij + γe∗E
∗
ij includes three covariates. As de-

fined in the paper, E∗i,−1 is the cumultive exposure before entering the

study for subject i, so that the cumulative exposure at time j is E∗ij =

E∗i,−1 +
j∑

k=0

Eik.

The [g, h] term of the matrix E [X′iΣ
−1Xi] can be written as

r∑
j=0

r∑
j′=0

(
vjj
′E [xijgxij′h]

)
.

Then, the [1,1] component of E [X′iΣ
−1Xi] is

r∑
j=0

r∑
j′=0

vjj
′ . The [2,1] and [1,2]

components are
r∑
j=0

r∑
j′=0

(
E [tj] v

jj′
)

=
r∑
j=0

r∑
j′=0

(
E [t0 + sj] vjj

′
)

= E (t0)
r∑
j=0

r∑
j′=0

vjj
′
+s

r∑
j=0

r∑
j′=0

jvjj
′
.
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The [3,1] and [1,3] components are

r∑
j=0

r∑
j′=0

(
E
[
E∗j
]
vjj
′
)

= E
[
E∗−1

] r∑
j=0

r∑
j′=0

(
vjj
′
)

+
r∑
j=0

r∑
j′=0

(
vjj
′

j∑
k=0

pek

)
.

The [2,2] component is

E
(
t20
) r∑
j=0

r∑
j′=0

vjj
′
+ 2sE (t0)

r∑
j=0

r∑
j′=0

jvjj
′
+ s2

r∑
j=0

r∑
j′=0

jj′vjj
′
.

The [2,3] and [3,2] components are

r∑
j=0

r∑
j′=0

(
E
[
E∗j tj′

]
vjj
′
)

=
r∑
j=0

r∑
j′=0

(
E

[(
E∗−1 +

j∑
k=0

Ek

)
(t0 + sj′)

]
vjj
′

)
=

r∑
j=0

r∑
j′=0

(
E

[(
E∗−1 +

j∑
k=0

Ek

)
(t0 + sj′)

]
vjj
′

)
= E

(
E∗−1t0

) r∑
j=0

r∑
j′=0

vjj
′
+

sE
(
E∗−1

) r∑
j=0

r∑
j′=0

j′vjj
′
+

r∑
j=0

r∑
j′=0

j∑
k=0

E (Ekt0)vjj
′
+ s

r∑
j=0

r∑
j′=0

j∑
k=0

pekj
′vjj

′
.

The [3,3] component is

E
[
E∗

2

−1

] r∑
j=0

r∑
j′=0

(
vjj
′
)

+
r∑
j=0

r∑
j′=0

j′∑
k′=0

E
(
E∗−1Ek′

)
vjj
′
+

r∑
j=0

r∑
j′=0

j∑
k=0

E
(
E∗−1Ek

)
vjj
′
+

r∑
j=0

r∑
j′=0

j∑
k=0

j′∑
k′=0

E (EkEk′)v
jj′ .

Then, E [X′iΣ
−1Xi] needs to be inverted, and the [3,3] component of

the inverse is σ̃2.

Web Appendix D.1.1 Derivation of σ̃2 for model (3) when E∗i,−1 = 0 ∀i
and V (t0) = 0

If E∗i,−1 = 0 ∀i then E
[
E∗−1

]
= 0, E

[
E∗

2

−1

]
= 0, E

(
E∗−1Ek′

)
= 0, E

(
E∗−1Ek

)
=

0 and E
(
E∗−1t0

)
= 0. If, in addition, ti0 = 0 ∀i, then E (t0) = 0, E (t20) = 0
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and E (Ekt0) = 0. Using this and the results in Web Appendix D.1, we

obtain the following symmetric matrix,

E
[
X′iΣ

−1Xi

]
=

r∑
j=0

r∑
j′=0

vjj
′

s
r∑
j=0

r∑
j′=0

jvjj
′

s2
r∑
j=0

r∑
j′=0

jj′vjj
′

r∑
j=0

r∑
j′=0

(
vjj
′
j∑

k=0

pek

)
s

r∑
j=0

r∑
j′=0

j∑
k=0

pekj
′vjj

′
r∑
j=0

r∑
j′=0

j∑
k=0

j′∑
k′=0

E (EkEk′)v
jj′


,

and all its elements are determined by just knowing vjj′ , pej′ and E [EjEj′ ]

for all j, j′. Then, to derive σ̃2 one needs to invert this matrix and take the

[3,3] component.

Web Appendix D.2 Derivation of σ̃2 for model (4)

Model E (Yi,j+1 − Yi,j|Xi) = γWt + γWe∗Eij includes two covariates. The vec-

tor of differences Yi,j+1 − Yi,j , ∆Yi, has covariance matrix ∆Σ∆′. Let wjj′

be [j, j′] element of (∆Σ∆′)−1, j = 1, . . . , r ; j′ = 1, . . . , r. Then,

ΣΓ =
(
E
[
X′i (∆Σ∆′)

−1
Xi

])−1

.

The [1,1] component of the matrix E
[
X′i (∆Σ∆′)−1 Xi

]
is

r∑
j=1

r∑
j′=1

wjj
′ ; The

[2,1] and [1,2] components are
r∑
j=1

r∑
j′=1

pejw
jj′ ; and the [2,2] component is

r∑
j=1

r∑
j′=1

(
E [EjEj′ ]w

jj′
)
. All the elements of E

[
X′i (∆Σ∆′)−1 Xi

]
are deter-

mined by just knowing wjj′ , pej′ and E [EjEj′ ] for all j, j′. The [2,2] compo-
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nent of the inverse of E
[
X′i (∆Σ∆′)−1 Xi

]
is

σ̃2 =

r∑
j=1

r∑
j′=1

wjj
′

(
r∑
j=1

r∑
j′=1

wjj′
)(

r∑
j=1

r∑
j′=1

(E [EjEj′ ]wjj
′)

)
−

(
r∑
j=1

r∑
j′=1

pejwjj
′

)2 .

Web Appendix D.2.1 Proof that σ̃2 is minimized at the upper bound of
ρe if wjj′ > 0 ∀j 6= j′ for model (4). Proof that this
condition hold for CS and DEX but not for RS

For model (4) we have from Web Appendix D.2 that

σ̃2 =

r∑
j=1

r∑
j′=1

wjj
′

(
r∑
j=1

r∑
j′=1

wjj′
)(

r∑
j=1

r∑
j′=1

(E [EjEj′ ]wjj
′)

)
−

(
r∑
j=1

r∑
j′=1

pejwjj
′

)2 ,

where wjj′ is the [j, j′] element of (∆Σ∆′)−1. When pej ∀j are fixed, only
r∑
j=1

r∑
j′=1

(
E [EjEj′ ]w

jj′
)

is affected by changes in the exposure distribution,

so σ̃2 will be affected by changes on ρe only through
r∑
j=1

r∑
j′=1

(
E [EjEj′ ]w

jj′
)
.

Since (∆Σ∆′)−1 is positive definite then
r∑
j=1

r∑
j′=1

wjj
′
> 0 and an increase in

r∑
j=1

r∑
j′=1

(
E [EjEj′ ]w

jj′
)

decreases σ̃2, so in order to minimize σ̃2 we need

to maximize
r∑
j=1

r∑
j′=1

(
E [EjEj′ ]w

jj′
)
. In addition, since E [EjEj] = pej

and pej ∀j are fixed, only
r∑
j=1

∑
j′ 6=j

E [EjEj′ ]w
jj′ need to be maximized. If

wjj
′

> 0 ∀j 6= j′, then
r∑
j=1

∑
j′ 6=j

E [EjEj′ ]w
jj′ will be maximized when all

terms E [EjEj′ ] ∀j 6= j′ take their upper bound, min (pej, pej′). It can be
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derived that

ρe =
1

(1− p̄e)


r∑
j=1

∑
j′ 6=j

E (EjEj′)

p̄er (r − 1)
− p̄e


(Web Appendix C). Therefore, when all terms E [EjEj′ ] ∀j 6= j′ are equal

to their upper bound, so does ρe. So, σ̃2 will be minimum when ρe takes its

maximum (i.e. ρe = 1, the time-invariant exposure case, if the prevalence

is constant over time), and equivalently, it can be derived that σ̃2 takes its

maximum when ρe takes its minimum.

As derived in Web Appendix D.2.2, the off-diagonal elements of

(∆Σ∆′)−1 when Σ has a CS structure are equal to

wjj
′
=

1

σ2(1− ρ)(r + 1)
[j(r + 1− j′)]

for j < j′, and therefore they are all positive. For DEX, we performed a

grid search for values of r 6 50 and ρ and θ in [0,1] and found that the

off-diagonal elements of (∆Σ∆′)−1 where always greater or equal than

zero. For RS, examples can be found where some off-diagonal elements

of (∆Σ∆′)−1 are negative. For example, for r = 3, σ2
w = 0.1, σ2

b0
= 0.12,

σ2
b1

= 0.15, ρb0b1 = −0.52,

(∆Σ∆′)
−1

=

 3.52 −0.29 −1.47
−0.29 2.94 −0.29
−1.47 −0.29 3.52

 .
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Web Appendix D.2.2 Derivation of σ̃2 for model (4) when both the re-
sponse and the exposure follow CS and pej =
pe ∀j

If pej = pe ∀j then the expression for σ̃2 reduces to

1(
r∑
j=1

r∑
j′=1

(E [EjEj′ ]wjj
′)

)
− p2

e

r∑
j=1

r∑
j′=1

wjj′
.

Under CS, the matrix ∆Σ∆′ is a r × r tridiagonal matrix of the form

σ2(1− ρ)



2 −1 0 · · · 0

−1 2 −1
. . . ...

0 −1 2
. . . 0

... . . . . . . . . . −1
0 · · · 0 −1 2

 .

The [j, j′] element of (∆Σ∆′)−1, i.e. wjj′ , is of the form

1

4σ2(1− ρ)(r + 1)
[(j + j′ − |j′ − j|) (2r + 2− |j′ − j| − j − j′)]

for j, j′ = 1, . . . , r [4], which can be rewritten as

1

2σ2(1− ρ)(r + 1)
[(r + 1)j + (r + 1)j′ − 2jj′ − (r + 1) |j′ − j|] .

From this formula, we have that, if j = j′ then

wjj =
1

σ2(1− ρ)(r + 1)
[j(r + 1− j)] ;

if j < j′ then

wjj
′
=

1

σ2(1− ρ)(r + 1)
[j(r + 1− j′)] ;

11



and if j > j′ then

wjj
′
=

1

σ2(1− ρ)(r + 1)
[j′(r + 1− j)] .

Then we can derive

r∑
j=1

r∑
j′=1

wjj
′
=

r∑
j=1

1

σ2(1− ρ)(r + 1)
[j(r + 1− j)]+2

r−1∑
j=1

r∑
j′=j+1

1

σ2(1− ρ)(r + 1)
[j(r + 1− j′)]

=
1

σ2(1− ρ)(r + 1)

[
(r + 1)

r∑
j=1

j −
r∑
j=1

j2 + 2(r + 1)
r−1∑
j=1

r∑
j′=j+1

j − 2
r−1∑
j=1

r∑
j′=j+1

jj′

]
.

Since

r∑
j=1

j =
r(r + 1)

2

r∑
j=1

j2 =
r(r + 1)(2r + 1)

6

r−1∑
j=1

r∑
j′=j+1

j =
r(r − 1)(r + 1)

6

r−1∑
j=1

r∑
j′=j+1

jj′ =
r(r + 1)(r − 1)(2 + 3r)

24
,

we can deduce that

r∑
j=1

r∑
j′=1

wjj
′
=
r(r + 1)(r + 2)

12(1− ρ)σ2
.

Also, if we assume that the exposure process follows CS, the matrix

E [EjEj′ ] has diagonal elements pe and off-diagonal elements ρepe(1−pe)+

p2
e. Therefore, the matrix with elements E [EjEj′ ]w

jj′ has diagonal ele-

ments equal to

pe
1

σ2(1− ρ)(r + 1)
[j(r + 1− j)]
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and off-diagonal elements equal to

(
ρepe(1− pe) + p2

e

) 1

σ2(1− ρ)(r + 1)
[j(r + 1− j′)]

if j < j′ and

(
ρepe(1− pe) + p2

e

) 1

σ2(1− ρ)(r + 1)
[j′(r + 1− j)]

if j > j′. Then,

r∑
j=1

r∑
j′=1

(
E [EjEj′ ]w

jj′
)

=

r∑
j=1

pe
1

σ2(1− ρ)(r + 1)
[j(r + 1− j)]+2

r−1∑
j=1

r∑
j′=j+1

(ρepe(1− pe) + p2
e)

σ2(1− ρ)(r + 1)
[j(r + 1− j′)].

Using the previous results we derived in this section, we can derive
r∑
j=1

r∑
j′=1

(
E [EjEj′ ]w

jj′
)

=
per(r + 2) (2 + pe(r − 1)(1− ρe)− ρe + rρe)

12(1− ρ)σ2
.

Then,

σ̃2 =
1(

r∑
j=1

r∑
j′=1

(E [EjEj′ ]wjj
′)

)
− p2

e

r∑
j=1

r∑
j′=1

wjj′
=

12(1− ρ)σ2

pe(1− pe)r(r + 2) (2 + (r − 1)ρe)
.

Web Appendix D.3 Derivation of σ̃2 for model (5)

Model E (Yi,j+1|Xi) = γ0 +γttij +γeEij +γte (Eij × tij) includes four covari-

ates. The [1,1] component of E [X′iΣ
−1Xi] is

r∑
j=0

r∑
j′=0

vjj
′ . The [2,1] and [1,2]

components are
r∑
j=0

r∑
j′=0

(
E [tj] v

jj′
)

=
r∑
j=0

r∑
j′=0

(
E [t0 + sj] vjj

′
)

= E (t0)
r∑
j=0

r∑
j′=0

vjj
′
+s

r∑
j=0

r∑
j′=0

jvjj
′
.
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The [3,1] and [1,3] components are
r∑
j=0

r∑
j′=0

(
E [Ej] v

jj′
)

=
r∑
j=0

r∑
j′=0

pejv
jj′ . The

[4,1] and [1,4] components are

r∑
j=0

r∑
j′=0

(
E [Ejtj] v

jj′
)

=
r∑
j=0

r∑
j′=0

(
E [Ej (t0 + sj)] vjj

′
)

=

=
r∑
j=0

r∑
j′=0

(
E [Ejt0] vjj

′
)

+ s

r∑
j=0

r∑
j′=0

jpejv
jj′ .

The [2,2] component is

r∑
j=0

r∑
j′=0

(
E [tjtj′ ] v

jj′
)

=
r∑
j=0

r∑
j′=0

(
E [(t0 + sj) (t0 + sj′)] vjj

′
)

=
r∑
j=0

r∑
j′=0

((
E
(
t20
)

+ s(j + j′)E (t0) + s2jj′
)
vjj
′
)

= E
(
t20
) r∑
j=0

r∑
j′=0

vjj
′
+ 2sE (t0)

r∑
j=0

r∑
j′=0

jvjj
′
+ s2

r∑
j=0

r∑
j′=0

jj′vjj
′
.

The [2,3] and [3,2] components are

r∑
j=0

r∑
j′=0

(
E [Ejtj′ ] v

jj′
)

=
r∑
j=0

r∑
j′=0

(
E [Ej (t0 + sj′)] vjj

′
)

=
r∑
j=0

r∑
j′=0

(
E [Ejt0] vjj

′
)

+ s
r∑
j=0

r∑
j′=0

(
j′pejv

jj′
)
.

The [2,4] and [4,2] components are

r∑
j=0

r∑
j′=0

(
E [tjEj′tj′ ] v

jj′
)

=
r∑
j=0

r∑
j′=0

(
E
[
Ej′
(
t20 + s (j + j′) t0 + s2jj′

)]
vjj
′
)

=
r∑
j=0

r∑
j′=0

(
E
[
Ej′t

2
0

]
vjj
′
)

+s
r∑
j=0

r∑
j′=0

(
jE [Ej′t0] vjj

′
)

+s
r∑
j=0

r∑
j′=0

(
j′E [Ej′t0] vjj

′
)

+

s2

r∑
j=0

r∑
j′=0

(
jj′pej′v

jj′
)
.
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The [3,3] component is
r∑
j=0

r∑
j′=0

(
E [EjEj′ ] v

jj′
)
. The [3,4] and [4,3] compo-

nents are

r∑
j=0

r∑
j′=0

(
E [EjEj′tj′ ] v

jj′
)

=
r∑
j=0

r∑
j′=0

(
E [EjEj′ (t0 + sj′)] vjj

′
)

=
r∑
j=0

r∑
j′=0

(
E [EjEj′t0] vjj

′
)

+ s
r∑
j=0

r∑
j′=0

(
j′E [EjEj′ ] v

jj′
)
.

Finally, the [4,4] component is

r∑
j=0

r∑
j′=0

(
E [EjtjEj′tj′ ] v

jj′
)

=

r∑
j=0

r∑
j′=0

(
E
[
EjEj′

(
t20 + s (j + j′) t0 + s2jj′

)]
vjj
′
)

=
r∑
j=0

r∑
j′=0

(
E
[
EjEj′t

2
0

]
vjj
′
)

+

+ 2s
r∑
j=0

r∑
j′=0

(
jE [EjEj′t0] vjj

′
)

+ s2

r∑
j=0

r∑
j′=0

(
jj′E [EjEj′ ] v

jj′
)
.

Now, let us call a =
r∑
j=0

r∑
j′=0

vjj
′ , b =

r∑
j=0

r∑
j′=0

jvjj
′ , c =

r∑
j=0

r∑
j′=0

jj′vjj
′ ,

d =
r∑
j=0

r∑
j′=0

(pejvjj′), e =
r∑
j=0

r∑
j′=0

(
E [EjEj′ ] v

jj′
)
, f =

r∑
j=0

r∑
j′=0

j ′pejv
jj′ ,

g =
r∑
j=0

r∑
j′=0

(
E [Ejt0] vjj

′), h =
r∑
j=0

r∑
j′=0

j pejv
jj′ ,

k =
r∑
j=0

r∑
j′=0

(
jj′pej′v

jj′
)
,

l =
r∑
j=0

r∑
j′=0

(
E [Ej′t

2
0] vjj

′), m =
r∑
j=0

r∑
j′=0

(
jE [Ej′t0] vjj

′),
n =

r∑
j=0

r∑
j′=0

(
j′E [Ej′t0] vjj

′), o =
r∑
j=0

r∑
j′=0

(
E [EjEj′t0] vjj

′),
p =

r∑
j=0

r∑
j′=0

(
j′E [EjEj′ ] v

jj′
)
, q =

r∑
j=0

r∑
j′=0

(
E [EjEj′t

2
0] vjj

′),
u =

r∑
j=0

r∑
j′=0

(
jj′E [EjEj′ ] v

jj′
)
, v =

r∑
j=0

r∑
j′=0

(
jE [EjEj′t0] vjj

′). Without

loss of generality, the time variable can be centered at the mean initial
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time so that E [t0] = 0 and E [t20] = V (t0). Then, we get the following

symmetric matrix,

E
[
X′iΣ

−1Xi

]
=


a
sb V (t0)a+ s2c
d g + sf e

g + sh l + sm+ sn+ s2k o+ sp q + 2sv + s2u

 ,

and we are interested in the [4,4] component of its inverse, which has a

very complicated expression.

Web Appendix D.3.1 Derivation of σ̃2 for model (5) when V (t0) = 0

If V (t0) = 0 and we assume, without loss of generality, that t0 = 0, we

have that

g =
r∑
j=0

r∑
j′=0

(
E [Ejt0] vjj

′)
= 0; l =

r∑
j=0

r∑
j′=0

(
j′E [Ej′t

2
0] vjj

′)
= 0;

m =
r∑
j=0

r∑
j′=0

(
jE [Ej′t0] vjj

′)
= 0 ; n =

r∑
j=0

r∑
j′=0

(
j′E [Ej′t0] vjj

′)
= 0;

o =
r∑
j=0

r∑
j′=0

(
E [EjEj′t0] vjj

′)
= 0; q =

r∑
j=0

r∑
j′=0

(
E [EjEj′t

2
0] vjj

′)
= 0;

and v =
r∑
j=0

r∑
j′=0

(
jE [EjEj′t0] vjj

′)
= 0. Then, the matrix to invert has

the form

E
[
X′iΣ

−1Xi

]
=


a sb d sh
sb s2c sf s2k
d sf e sp
sh s2k sp s2u

 ,

and all its elements are determined by just knowing vjj′ , pej′ and E [EjEj′ ]

for all j, j′. The form of the [4,4] component of the inverse is still quite

complicated.
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Web Appendix D.3.2 Derivation of σ̃2 for model (5) when V (t0) = 0,
pej = pe ∀j and both the response and the expo-
sure process follow CS

In addition to the reduction in terms derived in Web Appendix D.3.1 due

to the fact that V (t0) = 0, when pej = pe ∀j we have d =
r∑
j=0

r∑
j′=0

(
pejv

jj′
)

=

pe
r∑
j=0

r∑
j′=0

vjj
′
= pea;

f =
r∑
j=0

r∑
j′=0

j ′pejv
jj′ = pe

r∑
j=0

r∑
j′=0

j ′vjj
′
= peb ;

h =
r∑
j=0

r∑
j′=0

j pe,jv
jj′ = pe

r∑
j=0

r∑
j′=0

j vjj
′
= peb;

and k =
r∑
j=0

r∑
j′=0

(
jj′pej′v

jj′
)

= pe
r∑
j=0

r∑
j′=0

jj′vjj
′
= pec. Therefore,

E
[
X′iΣ

−1Xi

]
=


a sb pea speb
sb s2c speb s2pec
pea speb e sp
speb s2pec sp s2u

 ,

and the [4,4] component of the inverse is

ap2
e − e

s2 (p2 − 2bpp2
e + (b2 − ac) p4

e + e (cp2
e − u) + ap2

eu)
.

In addition if Σ has CS structure, then Σ−1 has diagonal elements equal to

1

σ2

1 + ρ(r − 2)− ρ2(r − 1)

(1− ρ)2 (1 + rρ)

and off-diagonal elements equal to

1

σ2

−ρ
(1− ρ) (1 + rρ)

.

Importantly, the sum of every row or column is the same and equal to
r∑
j=0

vjj
′
=

r∑
j′=0

vjj
′
=

1

σ2 (1 + rρ)
,
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and the sum of all elements of the inverse matrix is

r∑
j=0

r∑
j′=0

vjj
′
=

r + 1

σ2 (1 + rρ)
.

Then, it can be deduced that

a =
r∑
j=0

r∑
j′=0

vjj
′
=

r + 1

σ2 (1 + rρ)
, b =

r∑
j=0

r∑
j′=0

jvjj
′
=

r(r + 1)

2σ2 (1 + rρ)

c =
r∑
j=0

r∑
j′=0

jj′vjj
′
=
r(r + 1) (2 + r(4 + (r − 1)ρ)

12σ2(1− ρ) (1 + rρ)
.

Also,

r∑
j=0

r∑
j′=0

(
vjj
′E [EjEj′ ]

)
=

(r − 1)ρ+ 1

σ2 [1 + ρ(r − 1)− ρ2r]

r∑
j=0

E
(
E2
j

)
− ρ

σ2 (1 + ρ(r − 1)− ρ2r)

r∑
j=0

∑
j′ 6=j

E (EjEj′)

and since
r∑
j=0

∑
j′ 6=j

E (EjEj′) = per (r + 1) [pe(1− ρe) + ρe] (Web Appendix C)

we have

e =
pe(r + 1) [1 + ρ (r − 1− per(1− ρe)− ρer)]

(1− ρ)σ2 (1 + rρ)
.

If, in addition, we assume that the exposure process also follows CS, then

p =
r∑
j=0

r∑
j′=0

(
j′E [EjEj′ ] v

jj′
)

=

r∑
j′=0

{
j′
(
pe
σ2

(r − 1)ρ+ 1

[1 + ρ(r − 1)− ρ2r]
+
ρ (ρepe(1− pe) + p2

e)

σ2(1− ρ) (1 + rρ)

)
+

−ρr(r + 1) (ρepe(1− pe) + p2
e)

2σ2(1− ρ) (1 + rρ)

}
=

r(r + 1)pe
2σ2(1− ρ) (1 + rρ)

[1− ρ (1− (1− pe)r(1− ρe))] ;
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and

u =
r∑
j=0

r∑
j′=0

(
jj′E [EjEj′ ] v

jj′
)

=

r∑
j′=0

{
j′2
(
pe
σ2

(r − 1)ρ+ 1

[1 + ρ(r − 1)− ρ2r]
+
ρ (ρepe(1− pe) + p2

e)

σ2(1− ρ) (1 + rρ)

)
+

j′
−ρr(r + 1) (ρepe(1− pe) + p2

e)

2σ2(1− ρ) (1 + rρ)

}
=

r(r + 1)

σ2(1− ρ) (1 + rρ){
pe (1 + (pe + r − 1)ρ+ (1− pe)ρρe) (2r + 1)

6
− ρr(r + 1) (ρepe(1− pe) + p2

e)

4

}
.

As derived above, the [4,4] component of the inverse of E [X′iΣ
−1Xi] is

ap2
e − e

s2 (p2 − 2bpp2
e + (b2 − ac) p4

e + e (cp2
e − u) + ap2

eu)
,

which, using the simplifications derived in this section, reduces to

12σ2(1− ρ)(1 + rρ)

pe(1− pe)s2r(r + 1)(r + 2) [1 + rρ− ρ(1− ρe)]
.

Web Appendix D.4 Derivation of σ̃2 for model (6)

The variance of the coefficients under model (6) can be obtained as ΣB =

(E [X′iMXi])
−, where M = ∆′ (∆Σ∆′)−1 ∆ (Web Appendix A). Since

∆1 = 0, the sum of a column or a row of M is zero, and the first row

and column of E [X′iMXi] will be zero. The [2,2] component of E [X′iMXi]
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is
r∑
j=0

r∑
j′=0

mjj′E [EjEj′ ]. The [2,3] and [3,2] components are

r∑
j=0

r∑
j′=0

mjj′E [Ejtj′ ] =
r∑
j=0

r∑
j′=0

mjj′E [Ej(t0 + sj′)]

=
r∑
j=0

r∑
j′=0

mjj′E [Ejt0] + s

r∑
j=0

r∑
j′=0

pejj
′mjj′

=
r∑
j=0

E [Ejt0]
r∑

j′=0

mjj′ + s

r∑
j=0

r∑
j′=0

pejj
′mjj′ = s

r∑
j=0

r∑
j′=0

pejj
′mjj′

since
r∑

j′=0

mjj′ = 0. The [3,3] component is

r∑
j=0

r∑
j′=0

mjj′E [tjtj′ ] =
r∑
j=0

r∑
j′=0

mjj′E [(t0 + sj)(t0 + sj′)] = E
[
t20
] r∑
j=0

r∑
j′=0

mjj′+

2sE [t0]
r∑
j=0

r∑
j′=0

jmjj′ + s2

r∑
j=0

r∑
j′=0

jj′mjj′ = s2

r∑
j=0

r∑
j′=0

jj′mjj′ ,

since
r∑
j=0

r∑
j′=0

mjj′ = 0 and
r∑
j=0

r∑
j′=0

jmjj′ = 0. The [2,4] component is

r∑
j=0

r∑
j′=0

mjj′E [EjEj′tj′ ] =
r∑
j=0

r∑
j′=0

mjj′E [EjEj′(t0 + sj′)] =

r∑
j=0

r∑
j′=0

mjj′E [EjEj′t0] + s

r∑
j=0

r∑
j′=0

j′mjj′E [EjEj′ ].
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The [3,4] component is

r∑
j=0

r∑
j′=0

mjj′E [tjEj′tj′ ] =
r∑
j=0

r∑
j′=0

mjj′E [(t0 + sj)(t0 + sj′)Ej′ ]

=
r∑
j=0

r∑
j′=0

mjj′E
[
t20Ej′

]
+ s

r∑
j=0

r∑
j′=0

mjj′jE [t0Ej′ ] + s

r∑
j=0

r∑
j′=0

j′mjj′E [t0Ej′ ]

+ s2

r∑
j=0

r∑
j′=0

jj′mjj′pej′ =
r∑
j=0

E
[
t20Ej

] r∑
j′=0

mjj′ + s
r∑
j=0

r∑
j′=0

mjj′jE [t0Ej′ ]

+ s
r∑
j=0

jE [t0Ej]
r∑

j′=0

mjj′ + s2

r∑
j=0

r∑
j′=0

jj′mjj′pej′

= s
r∑
j=0

r∑
j′=0

jmjj′E [t0Ej′ ] + s2

r∑
j=0

r∑
j′=0

jj′mjj′pej′

since
r∑

j′=0

mjj′ = 0. The [4,4] component is

r∑
j=0

r∑
j′=0

mjj′E [EjtjEj′tj′ ] =
r∑
j=0

r∑
j′=0

mjj′E [(t0 + sj)(t0 + sj′)EjEj′ ] =

r∑
j=0

r∑
j′=0

mjj′E
[
EjEj′t

2
0

]
+2s

r∑
j=0

r∑
j′=0

jmjj′E [t0EjEj′ ]+s
2

r∑
j=0

r∑
j′=0

jj′mjj′E [EjEj′ ].

Then, one needs to compute the generalized inverse of E [X′iMXi], and the

[4,4] component is σ̃2.

Web Appendix D.4.1 Derivation of σ̃2 for model (6) when V (t0) = 0

When V (t0) = 0 and we assume, without loss of generality, that t0 = 0,

some of the terms derived in Web Appendix D.4.1 have a simpler expres-

sion. In particular, the [2,4] component reduces to s
r∑
j=0

r∑
j′=0

j′mjj′E [EjEj′ ],
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the [3,4] component reduces to s2
r∑
j=0

r∑
j′=0

jj′mjj′pej′ and the [4,4] compo-

nent reduces to s2
r∑
j=0

r∑
j′=0

jj′mjj′E [EjEj′ ]. Then, σ̃2 only depend on the

exposure through pej ∀j and E [EjEj′ ] ∀j, j′.

Web Appendix D.4.2 Derivation of σ̃2 for model (6) when V (t0) = 0,
pej = pe ∀j and both the response and the expo-
sure process follow CS

When the response covariance is CS, we derived in Web Appendix D.2.2

that the [j, j′] element of (∆Σ∆′)−1, is

1

2σ2(1− ρ)(r + 1)
[(r + 1)j + (r + 1)j′ − 2jj′ − (r + 1) |j′ − j|] .

If we pre-multiply by ∆′, the [j, j′] element of ∆′ (∆Σ∆′)−1 is

1

2σ2(1− ρ)(r + 1)
r∑

k=1

(I {k = j} − I {k = j + 1}) ((r + 1)k + (r + 1)j′ − 2kj′ − (r + 1) |j′ − k|),

where I {k = j} is an indicator function that is one if k = j and zero other-

wise. The last expression can be simplified to

1

2σ2(1− ρ)(r + 1)
((r + 1) [|j′ − j − 1| − |j′ − j| − 1] + 2j′) ,

for j = 0, . . . , r; j′ = 1, . . . , r. Now, post-multiplying the result by ∆ we

can derive the [j, j′] element of ∆′ (∆Σ∆′)−1 ∆, which is

1

2σ2(1− ρ)(r + 1)
r∑

k=1

((r + 1) [|k − j − 1| − |k − j| − 1] + 2k) (I {k = j′} − I {k = j′ + 1})
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for j = 0, . . . , r; j′ = 0, . . . , r. The last expression simplifies to

1

2σ2(1− ρ)(r + 1)
((r + 1) [|j′ − j − 1|+ |j′ − j + 1| − 2 |j′ − j|]− 2) .

Note that this expression is r
σ2(1−ρ)(r+1)

for j′ = j and −1
σ2(1−ρ)(r+1)

for j′ 6= j.

Therefore, the matrix M = ∆′ (∆Σ∆′)−1 ∆ has diagonal elements

r

σ2(1− ρ)(r + 1)

and off-diagonal elements

−1

σ2(1− ρ)(r + 1)
.

It is then easily proven that the sum of any row or column of M is zero.

When both the response and the exposure have CS covariance, the

components of ΣB derived in Web Appendix D.4 and Web Appendix D.4.1

simplify. The [2,2] component becomes

r∑
j=0

r∑
j′=0

mjj′E [EjEj′ ] =
r∑
j=0

mjjpej +
r∑
j=0

∑
j′ 6=j

mjj′E [EjEj′ ]

=
r

σ2(1− ρ)(r + 1)

r∑
j=0

pej −
1

σ2(1− ρ)(r + 1)

r∑
j=0

∑
j′ 6=j

E [EjEj′ ].

Now,
r∑
j=0

pej = (r+1)p̄e,
r∑
j=0

∑
j′ 6=j

E [EjEj′ ] = p̄er (r + 1) [p̄e(1− ρe) + ρe] (Web

Appendix C). Therefore,

r∑
j=0

r∑
j′=0

mjj′E [EjEj′ ] =
r(r + 1)p̄e

σ2(1− ρ)(r + 1)
− p̄er (r + 1) [p̄e(1− ρe) + ρe]

σ2(1− ρ)(r + 1)

=
p̄e(1− p̄e)r(1− ρe)

σ2(1− ρ)
.
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Since the prevalence is constant over time, the [2,3] component is

s
r∑
j=0

r∑
j′=0

pejj
′mjj′ = spe

r∑
j=0

r∑
j′=0

j′mjj′ = 0,

because
r∑
j=0

r∑
j′=0

j′mjj′ = 0. The [3,3] component becomes

s2

r∑
j=0

r∑
j′=0

jj′mjj′ =
s2

σ2(1− ρ)(r + 1)

r∑
j=0

j

(
rj −

(
r(r + 1)

2
− j
))

=
s2

σ2(1− ρ)(r + 1)

[
(r + 1)

r∑
j=0

j2 − r(r + 1)

2

r∑
j=0

j

]

=
s2

σ2(1− ρ)(r + 1)

[
r(r + 1)2(2r + 1)

6
− r2(r + 1)2

4

]
=
s2r(r + 1)(r + 2)

12σ2(1− ρ)
.

The [2,4] component is s
r∑
j=0

r∑
j′=0

j′mjj′E [EjEj′ ]. Under CS of exposure,

E [EjEj′ ] is pe for j = j′ and (ρepe(1− pe) + p2
e) for j 6= j′. So,

r∑
j′=0

j′mjj′E [EjEj′ ] =
pe

σ2(1− ρ)(r + 1)

[
− (ρe(1− pe) + pe)

(
r(r + 1)

2
− j
)

+ rj

]
and

s

r∑
j=0

r∑
j′=0

j′mjj′E [EjEj′ ] =

spe
σ2(1− ρ)(r + 1)

[
− (ρe(1− pe) + pe)

[
r(r + 1)2

2
− r(r + 1)

2

]
+
r2(r + 1)

2

]
=

sper
2

2σ2(1− ρ)
(1− ρe(1− pe)− pe) .

The [3,4] component becomes

s2

r∑
j=0

r∑
j′=0

jj′mjj′pej′ = s2pe

r∑
j=0

r∑
j′=0

jj′mjj′ ,
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and using the results derived for the [3,3] component, it becomes

s2per(r + 1)(r + 2)

12σ2(1− ρ)
.

For the [4,4] component, using some results derived for the [2,4] compo-

nent, we can deduce

s2

r∑
j=0

r∑
j′=0

jj′mjj′E [EjEj′ ] =

s2pe
σ2(1− ρ)(r + 1)

r∑
j=1

j

[
− (ρe(1− pe) + pe)

(
r(r + 1)

2
− j
)

+ rj

]
=

s2pe
σ2(1− ρ)(r + 1)[

− (ρe(1− pe) + pe)

(
r2(r + 1)2

4
− r(r + 1)(2r + 1)

6

)
+
r2(r + 1)(2r + 1)

6

]
=

s2per(r + 1)

12σ2(1− ρ)(r + 1)
[(pe(r − 1)(2 + 3r)(−1 + ρe) + 2ρe + r (2 + r(4− 3ρe) + ρe)] .

Then, the [4,4] component of the generalized inverse of E [X′iMXi] is

σ̃2 =
12(1− ρ)σ2

pe(1− pe)s2r(r + 2)(r + ρe)
.

Web Appendix E Generation of arbitrary preva-
lence vectors and correlation
matrices

Arbitrary prevalence vectors can easily be generated by drawing num-

bers from a Uniform[0, 1]. Arbitrary correlations matrices for binary data

are more difficult to generate because they involve a lot of constraints

[5]. Thus, we proceeded by first generating valid arbitrary covariance
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matrices for a multivariate normal distribution, and then deriving the co-

variance matrix that results from dichotomizing each of the normal vari-

ables so that a given prevalence at each time point is obtained. To gen-

erate arbitrary correlations matrices, random numbers were drawn from

a Uniform[−1, 1] for each pair of time points. If the resulting correlation

matrix was not positive definite, it was transformed to the nearest positive

definite one [6]. The process of obtaining the prevalence vector and the

covariance matrix of the dichotomized variables is described by Leisch et

al.[5]. To ensure that the space of possible values of (p̄e, ρe) was evenly cov-

ered, prevalence vectors with a narrow range of prevalences and correla-

tion matrices with positive and high correlations were given more weight.

Web Appendix F Demonstration of program use

More information can be found in a detailed user’s manual at http://

www.hsph.harvard.edu/faculty/spiegelman/optitxs.html.

Here, we showed how to compute the required sample size for a study

with 31 partiticipants and 14 post-baseline measures to detect a 5 L/min

decrease in PEF associated with the use of air-freshener sprays with 90%

power, assuming DEX covariance structure of the response. We assume

the rates of change vary by exposure and a cumulative exposure effect,

and we want to estimate the within-subject effect of exposure, so we

assume the model E (Yij − Yi,j−1|Xi) = γWt +γWe∗Eij . This example is based

on a study on respiratory function and cleaning tasks/products [7].
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> long.N()

* By just pressing <Enter> after each question, the default value,
shown between square brackets, will be entered.

* Press <Esc> to quit

Enter the number of post-baseline measures (r) [1]: 14

Enter the desired power (0<Pi<1) [0.8]: .9

Enter the time between repeated measures (s) [1]: 1

Is the exposure time-invariant (1) or time-varying (2) [1]? 2

Do you assume that the exposure prevalence is constant over
time (1), that it changes linearly with time (2), or you want
to enter the prevalence at each time point(3) [1]? 2

Enter the exposure prevalence at time 0 (0<pe0<1) [0.5]: .35

Enter the exposure prevalence at time 14 (0<pe14<1) [0.5]: .45

Enter the intraclass correlation of exposure
(-0.071<rho.e<0.808) [0.5]: .13

Constant mean difference (1) or Linearly divergent difference (2)
[1]: 2

Which model are you basing your calculations on:
(1) Cumulative exposure effect model. No separation of between-

and within-subject effects
(2) Cumulative exposure effect model. Within-subject contrast only
(3) Acute exposure effect model. No separation of between- and

within-subject effects
(4) Acute exposure effect model. Within-subject contrast only
Model [1]: 2

Will you specify the alternative hypothesis on the absolute (beta
coefficient) scale (1) or the relative (percent) scale (2) [1]? 1

Enter the interaction coefficient (gamma3) [0.1]: 5

Which covariance matrix are you assuming: compound symmetry (1),
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damped exponential (2) or random slopes (3) [1]? 2

Enter the residual variance of the response given the assumed
model covariates (sigma2) [1]: 4570

Enter the correlation between two measures of the same subject
separated by one time unit (0<rho<1) [0.8]: .88

Enter the damping coefficient (theta) [0.5]: .12

Sample size = 28

Do you want to continue using the program (y/n) [y]? n
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