Supporting Online Material

Borrelia burgdorferi Oxidative Stress Regulator BosR Directly Represses Lipoproteins Primarily Expressed in the Tick during Mammalian Infection

Peng Wang,¹ Poonam Dadhwal,² Zhihui Cheng,¹ Michael R. Zianni,³

Yasuko Rikihisa,¹ Fang Ting Liang, ² and Xin Li ^{1,*}

¹ Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA.

² Department of Pathobiological Sciences, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA.

³ Plant-Microbe Genomics Facility, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.

* For correspondence. E-mail xin.li@cvm.osu.edu; Tel. (614) 292-6524; Fax (614) 292-6473.

 Table S1. Oligos used in this study.

Name ^a	Sequence (5' – 3')	Purpose
<i>flaB_</i> +441_For	AGCTGAAGAGCTTGGAATGC	q PCR
flaB_+543_Rev	TTGGTTTGCTCCAACATGAA	q PCR
bosR_+41_For	AAGTCGGCATTACAAACGAT	q PCR
bosR_+153_Rev	TTTTGGGTTTGATGCTATGTAT	q PCR
ospA_+166_For	GCAACAGTAGACAAGCTTGAGC	q PCR
ospA_+295_Rev	GTGTGGTTTGACCTAGATCGTCA	q PCR
ospC_+12_For	TACATTAAGTGCAATATTAATGACT	q PCR
ospC_+125_Rev	AGATTAGGCCCTTTAACAGA	q PCR
rpoS_+108_For	AGGCAATGCAAAAGCAAAAA	q PCR
rpoS_+232_Rev	ATCCCAAGTTGCCTTCTTGA	q PCR
bosR_+4_For	GCGGATCCAACGACAACATAATAGACGTA	Cloning
bosR_+531_Rev	CGCTCGAGTCATAA AGTGATTTCCTTGTT	Cloning
1 st Lys_For	AAGAGGAGAAATTAACTATGAAACATCACCATCACCATCA	Mutagenesis
1 st Lys_Rev	TGATGGTGATGGTGATGTTTCATAGTTAATTTCTCCTCTT	Mutagenesis
2 nd Lys_For	ATCACCATCACCATCACAAAAACGACAACATAATAGA	Mutagenesis
2 nd Lys_Rev	TCTATTATGTTGTCGTTTTTGTGATGGTGATGGTGAT	Mutagenesis

ospA330_For_B	ATCAAGACAAACATTGCTGCTTTAA	EMSA, q PCR
ospA_+20_Rev_B	CCCAATAAATATTTTTCATAATATATTCTCCTT	EMSA, q PCR
ospA330_For_F	ATCAAGACAAACATTGCTGCTTTAA	Footprint
ospA_+20_Rev_V	ТТСССААТАААТАТТТТТТСАТААТАТАТТСТССТТ	Footprint
rpoS277_For_B	CTTGTGTTCTCTTACTGATTTTAAATATATGTTT	EMSA, q PCR
rpoS_+60_Rev_B	TGCTAAACGGAGGCCAAGTA	EMSA, q PCR
bosR183_For_B	TGTCGTTCATATGATTATACCTTTTTTGT	EMSA, q PCR
bosR_+10_Rev_B	СТБААТТСАААААТАААААТТТААТТТТАТАСТ	EMSA, q PCR
bicA170_For_B	TCTTCTTTTGTATCTATTTTATGCATTGT	EMSA, q PCR
<i>bicA_</i> +159_Rev_B	AGTTTTTTGTGAATAACAAAGAAATTGGT	EMSA, q PCR
<i>bicA_</i> -1_Rev_B	ΑΑCΤΑΤCTCCTTTATATAATTATTATAATAC	q PCR
53%G+C_For_B	CTATTCTGGACTACCTGCTGA	EMSA
53%G+C_Rev	CAATGTCTTTGCGTTTCGCTT	EMSA
ospD231_For_B	AGCATCATTAAACATCCTTTCAATACTCA	EMSA
ospD_+68_Rev_B	ATCATGAACACAAGATATTGAGAGCAAT	EMSA
Rnd_For	GGGTATGAGTCAATGAAGATGACTGGG	EMSA, FA
Rnd_Rev	CCCAGTCATCTTCATTGACTCATACCC	EMSA
Rnd_Rev_F	CCCAGTCATCTTCATTGACTCATACCC	FA

Fur_For	GGGAAATGATAATAATTATCATTTGGG	EMSA
Fur_Rev	CCCAAATGATAATTATTATCATTTCCC	EMSA
Per_For	GGGAATTTATAATTATTATAAATTGGG	EMSA
Per_Rev	CCCAATTTATAATAATTATAAATTCCC	EMSA
DR_For	GGGTAAATTAAATTAAATTGGG	EMSA
DR-Rev	CCCATTTAATTTAATTTAATTTACCC	EMSA
RndAT_For	GGGTATAATATATTTAAAATAAAGGG	EMSA, FA
RndAT_Rev	CCCTTTATTTTAAATATATATATACCC	EMSA
RndAT_Rev_F	CCCTTTATTTTAAATATATTATACCC	FA
Per/7-0-7_For	GGGAATTTATAATATTATAAATTGGG	EMSA
Per/7-1-7_Rev	CCCAATTTATAATATTATAAATTCCC	EMSA
Per/7-2-7_For	GGGAATTTATAATTTATTATAAATTGGG	EMSA
Per/7-2-7_Rev	СССААТТТАТААТАААТТАТАААТТССС	EMSA
ospA60_For_F	ΤΑΑΤCTTATAATATAATTATACTT	FA
ospA37_Rev	AAGTATAATTATATAAAGATTA	FA
ospD85_For_F	ΑΤΑΑΤΤGΑΤΑΤΤΑΑΑΑΤΑΤΑΑΤΤGΑΤ	FA
ospD60_Rev	ΑΤCΑΑΤΤΑΤΑΤΤΤΤΑΑΤΑΤCΑΑΤΤΑΤ	FA

^a Indicates the target gene (when applicable), direction (For, forward; Rev, reverse), and 5'modification (B, biotin; F, 6-FAM; V, VIC) of the oligo.

Gene	Loo	catic	on ^a	Spacer ^b	Mismatch ^c	Sequence
BB_0001	-36	~	-23	0	2	ΑΤΑΤΑΑΤΑΤΤΑΤΤΑ
BB_0026	-115	~	-101	1	2	TTAAAATTATTATCC
BB_0027	-29	~	-15	1	2	GGATAATAATTTTAA
BB_0045	-69	~	-55	1	2	ΤΤΤΤΑΤΤΤΑΤΤΑΤΑΑ
BB_0046	-37	~	-23	1	2	ΤΤΑΤΑΑΤΑΑΑΤΑΑΑΑ
BB_0050	-157	~	-144	0	2	TTACAATATTAACA
BB_0061	-70	~	-55	2	2	ТТАТААТТССТТАТТА
BB_0062	-19	~	-4	2	2	TAATAAGGAATTATAA
BB_0083	-106	~	-92	1	2	ΤΤΑΑΑΑΤΑΑΤΤΑΤΤΑ
	-148	~	-134	1	2	ΤΤΤΤΑΑΤΤΑΤΤΑΤΑΤ
BB_0084	-91	~	-77	1	2	ΤΑΑΤΑΑΤΤΑΤΤΤΤΑΑ
	-49	~	-35	1	2	ΑΤΑΤΑΑΤΑΑΤΤΑΑΑΑ
BB_0096	-112	~	-99	0	2	TTTTAATATTGTAA
BB_0106	-99	~	-85	1	2	TTATTCTTATTATCA
BB_0123	-147	~	-134	0	2	TGATAATTTTATTA
	-80	~	-67	0	2	ΤΤΑΤΑΤΤΟΤΤΑΤΑΑ

 Table S2. Putative BosR-binding sites.

BB_0133	-154	~	-141	0	1	ΤΤΤΤΑΑΤΑΤΤΑΤΑΑ
BB_0134	-43	~	-30	0	1	ΤΤΑΤΑΑΤΑΤΤΑΑΑΑ
BB_0142	-58	~	-43	2	2	ТТАТААТААТТААТСА
BB_0143	-34	~	-19	2	2	TGATTAATTATTATAA
BB_0142	-63	~	-50	0	2	ΤΤΑΤΑΑΑΤΤΑΤΑΑΤΑΑ
BB_0143	-27	~	-14	0	2	ΤΤΑΤΤΑΤΑΑΤΑΤΑΑ
BB_0142	-68	~	-53	2	2	TTGTATTATATTATAA
BB_0143	-24	~	-9	2	2	ТТАТААТАТААТАСАА
BB_0166	-60	~	-45	2	2	ΤΤΑΤΤΑΤΑΑΤΤΤΑΤΑΑ
BB_0167	-119	~	-104	2	2	ΤΤΑΤΑΑΑΤΤΑΤΑΑΤΑΑ
BB_0166	-66	~	-52	1	1	TGATATTTATTATAA
BB_0167	-112	~	-98	1	1	ТТАТААТАААТАТСА
BB_0179	-17	~	-2	2	2	TTATAATACATTAAAG
	-69	~	-54	2	1	ТТАТААĞСТАТТАТАА
	-78	~	-64	1	2	TGAAATTAATTATAA
BB_0180	-82	~	-67	2	2	CTTTAATGTATTATAA
	-30	~	-15	2	1	ТТАТААТАGCTTATAA

	-20	~	-6	1	2	TTATAATTAATTTCA
BB_0204	-81	~	-66	2	2	ТТАТТАТСТАСТАТАА
	-71	~	-57	1	2	CTATAAAGATTATAA
BB_0211	-37	~	-24	0	2	TGAAAATATTAAAA
BB_0217	-62	~	-47	2	2	ТТАТААТСААТТСТАТ
BB_0226	-92	~	-77	2	2	TTATAAGATATTATAT
BB_0227	-53	~	-38	2	2	АТАТААТАТСТТАТАА
BB_0233	-25	~	-12	0	2	ΤΑΑΤΑΑΤΑΤΤΑΤΤΑ
BB_0253	-90	~	-77	0	2	ΤΤΑΤΤΑΤΤΤΤΑΤΑΑ
BB_0254	-199	~	-186	0	2	ΤΤΑΤΑΑΑΑΤΑΑΤΑΑ
BB_0260	-84	~	-70	1	2	TTATAGTTATAATAA
	-94	~	-79	2	2	TTATATTATATTATAG
BB_0261	-149	~	-135	1	2	ΤΤΑΤCΑΤΤΑΤΤΑΤΤΑ
	-131	~	-116	2	2	СТАТААТАТААТАТАА
BB_0309	-159	~	-145	1	2	TTATAAGGATTTTAA
	-103	~	-90	0	2	ΤΤΑΤΑΑΑΤΤΤΑΤΑΑ
BB_0328	-73	~	-58	2	2	ТТААААТТТАТТАААА

BB_0330	-34	~	-19	2	2	ΤΤΑΤΑΑΑΤΑΑΤΤΤΤΑΑ
	-131	~	-118	0	2	ΤΤΑΤΑΑΤΑΤΤΑΑΑΤ
BB_0358	-109	~	-95	1	2	TTTTAATTACTATCA
BB_0360	-175	~	-160	2	2	TGATAACTTATTATTA
	-18	~	-5	0	2	ΑΤΑΤΑΑΤΑΤΤΤΤΑΑ
BB_0381	-46	~	-32	1	2	ΤΤΑΤΑΑΤΑΑΑΤΑGAA
BB_0399	-97	~	-82	2	2	ТТАТААТGACCTATAA
BB_0403	-127	~	-114	0	2	TGATATTATTTTAA
BB_0404	-97	~	-84	0	2	ΤΤΑΑΑΑΤΑΑΤΑΤΟΑ
BB_0421	-96	~	-83	0	2	ΑΤΑΤΑΑΤΑΤΤΑΤΤΑ
BB_0431	-64	~	-50	1	2	TTATTATTTTTATCA
	-72	~	-59	0	2	ΤΤΑΑΑΑΤΑΤΤΑΤΤΑ
BB_0445	-59	~	-44	2	2	GTATAATTTATTATAG
BB_0473	-245	~	-230	2	2	ΤΤΑΤΤΑΤΤΤΑΤΤΑΤΑΤ
BB_0512	-68	~	-54	1	2	TTTTCATGATTATAA
BB_0524	-36	~	-21	2	2	TTAGAATTTATTATTA
BB_0543	-77	~	-63	1	2	TGGTAATTATTATAT

	-71	~	-58	0	2	ΤΤΑΤΤΑΤΑΤΑΑΤΑΑ
BB_0551	-85	~	-72	0	2	AGACAATATTATAA
	-219	~	-206	0	2	TTATTATTTATCA
BB_0552	-170	~	-157	0	2	TTATAATATTGTCT
	-36	~	-23	0	2	ΤGΑΤΑΑΑΑΤΑΑΤΑΑ
BB_0554	-238	~	-225	0	2	TTATAATGTTAGCA
BB_0557	-69	~	-54	2	2	TTTTTATGTATTATAA
BB_0560	-51	~	-36	2	2	TTATGTTATATTATAA
BB_0561	-77	~	-62	2	2	ТТАТААТАТААСАТАА
BB_0574	-178	~	-164	1	2	ΤΑΑΤΑΑΑΑΑΤΤΑΤΑΑ
	-169	~	-156	0	2	TTATAAGATTAAAA
BB_0576	-47	~	-33	1	2	ΑΤΑΤΑCΤΑΑΤΤΑΤΑΑ
BB_0577	-107	~	-93	1	2	TTATAATTAGTATAT
BB_0582	-25	~	-10	2	2	СТААААТАТАТТАТАА
BB_0583	-109	~	-94	2	2	TTATAATATATTTTAG
BB_0591	-14	~	-1	0	2	ΤΑΑGΑΑΤΑΤΤΑΤΑΑ
	-37	~	-22	2	2	ΑΤΑΤΑΑΤΤΑΤΤΤΑΤΑΑ

BB_0592	-115	~	-102	0	2	ΤΤΑΤΑΑΤΑΤΤΟΤΤΑ
	-94	~	-79	2	2	ТТАТАААТААТТАТАТ
BB_0603	-106	~	-91	2	2	TGTTAATATATTATAC
	-134	~	-121	0	2	ΤΤΤΤΑΑΤΑΤΤΑΤΑΤ
BB_0604	-69	~	-56	0	2	TTGTAATATTAAAA
BB_0605	-42	~	-29	0	2	TTTTAATATTACAA
BB_0608	-66	~	-51	2	2	ΑΤΑΤΤΑΤΤΑΑΤΤΑΤΑΑ
BB_0610	-40	~	-26	1	1	TTTTAATAATTATCA
BB_0620	-122	~	-108	1	2	ТССТААТАААТАТАА
	-150	~	-135	2	2	TTATTATAAAGTATAA
BB_0621	-191	~	-177	1	2	TTATATTTATTAGCA
	-164	~	-149	2	2	ТТАТАСТТТАТААТАА
BB_0628	-46	~	-31	2	2	ΑΤΑΤΑΤΤΟΤΑΤΤΑΤΑΑ
BB_0647	-133	~	-120	0	2	ТТАТАСТААТАТАА
BB_0649	-237	~	-224	0	2	ΤΑΑΤΑΑΤΑΑΤΑΤΑΑ
BB_0657	-116	~	-102	1	2	ТАСТААТААТТАТАА
BB_0658	-47	~	-33	1	2	TTATAATTATTAGTA

Bb_0660	-58	~	-43	2	1	ΑΤΑΤΑΑΤΤΑΑΤΤΑΤΑΑ
BB_0661	-62	~	-47	2	1	ТТАТААТТААТТАТАТ
BB_0664	-28	~	-14	1	2	ТТАТААТААТСАТАТ
BB_0665	-44	~	-30	1	2	ATATGATTATTATAA
BB_0664	-48	~	-34	1	2	ТТААААТССТТАТАА
BB_0665	-24	~	-10	1	2	TTATAAGGATTTTAA
BB_0676	-190	~	-175	2	2	ТТСТААТБАААТАТАА
BB_0677	-68	~	-53	2	2	TTATATTTCATTAGAA
BB_0680	-150	~	-135	2	2	ΤΑΑΤΑΑΤΑGTTTΑΤΑΑ
BB_0682	-65	~	-52	0	2	GTATTATATTATAA
BB_0683	-42	~	-29	0	2	ТТАТААТАТААТАС
BB_0689	-62	~	-47	2	2	TTATAATACATAATGA
	-71	~	-57	1	1	ΑΤΑΤΑΑΤΤΑΤΤΑΤΑΑ
BB_0690	-38	~	-23	2	2	TCATTATGTATTATAA
	-28	~	-14	1	1	ΤΤΑΤΑΑΤΑΑΤΤΑΤΑΤ
BB_0709	-101	~	-86	2	2	TTATTATTGGTTATAA
BB_0727	-25	~	-12	0	2	ТТАТААТТСТАТАА

BB_0734	-97	~	-84	0	2	ΤΤΑΤΑΑΤΑΤΑΑΑΑΑ
	-100	~	-87	0	2	ΤΤΑΤΤΑΤΑΑΤΑΤΑΑ
BB_0735	-22	~	-9	0	2	ΤΤΤΤΤΑΤΑΤΤΑΤΑΑ
	-19	~	-6	0	2	ΤΤΑΤΑΤΤΑΤΑΑΤΑΑ
BB_0756	-167	~	-152	2	2	ΤΤΑΤΑΑΤΤGAAAATAA
	-177	~	-162	2	2	ΤΑΑΤGΑΤΑΤΑΤΤΑΤΑΑ
BB_0757	-49	~	-34	2	2	ΤΤΑΤΤΤΤΟΑΑΤΤΑΤΑΑ
	-39	~	-24	2	2	ТТАТААТАТАТСАТТА
BB_0785	-102	~	-87	2	2	ΤΤΑΑΑΑΤΤΑΑΤΤΑΑΑΑ
BB_0793	-73	~	-59	1	2	CGATAATTATTATTA
	-64	~	-51	0	2	ΤΤΑΤΤΑΤΑΤΑΑΤΑΑ
BB_0804	-147	~	-132	2	2	ΤΑΑΤΑΑΤΤΤΑΤΤΑΤΤΑ
BB_0828	-31	~	-16	2	2	ТТАТААТАСААТАТАТ
BB_0829	-59	~	-44	2	2	ΑΤΑΤΑΤΤGTATTATAA
BB_0835	-66	~	-51	2	1	ΑΤΑΤΑΑΤΤCΑΤΤΑΤΑΑ
	-89	~	-74	2	2	ТGATAATAAATTCTAT
BB_0840	-106	~	-93	0	2	ΤΑΑΤΑΑΤΑΤΤΑΑΑΑ

BB_0841	-86	~	-73	0	2	ΤΤΤΤΑΑΤΑΤΤΑΤΤΑ
BB_A03	-106	~	-91	2	2	ΤΑΑΤΑΑΤΤΑΑΤΑΑΤΑΑ
	-35	~	-21	1	2	ΤΑΑΤΑΑΤΑΑΤΤΑΑΑΑ
BB_A15	-63	~	-50	0	2	ТGTTAATCTTATAA
	-28	~	-15	0	2	ΤΤΑΤΑΤΤΑΑΤΑΤΑΑ
BB_A38	-138	~	-125	0	2	ΤΤΑΤΑΑΑΑΤΤΤΤΑΑ
	-78	~	-64	1	2	ΤΑΑΤΑΑΤΤΑΑΤΑΤΟΑ
BB_A61	-53	~	-40	0	2	ΤΤΤΤΑΑΤΑΤΤΤΤΑΑ
	-219	~	-204	2	2	ΤΤΑΤΑΤΤΑΑΑΑΤΑΤΑΑ
	-224	~	-209	2	2	ΤGΑΤΑΤΤΑΤΑΤΤΑΑΑΑ
BB_A62	-208	~	-195	0	2	ΤΤΑΑΑΑΤΑΤΤΑΑΑΑ
	-44	~	-29	2	2	ΤΤΑΤΑΤΤΤΤΑΑΤΑΤΑΑ
	-39	~	-24	2	2	ТТТТААТАТААТАТСА
BB_A66	-36	~	-21	2	2	ТТААААТТСАТТАААА
	-72	~	-57	2	2	ΤΑΑΤΑΑΤΤΑΑΤΤΤΑΑ
BB_A68	-81	~	-67	1	2	TGACAATTATTGTAA
BB_A69	-62	~	-49	0	2	ΤΤΑΤΑΑΤΑΤΤΑΤΤΤ

	-71	~	-57	1	2	ΤΤΑΑΤΑΤΑΑΤΤΑΤΑΑ
	-101	~	-88	0	2	ΤΑΑΤΑΑΤΑΤΤΑΤΤΑ
BB_A0078	-152	~	-139	0	2	ΤΤΑΑΑΑΤΑΤΤΑΑΑΑ
BB_B01	-85	~	-70	2	2	ΤΤΑΑΑΑΤΑΤΑΑΤΑΤΑΑ
BB_B04	-70	~	-57	0	2	ΤΤΑΤΑΤΤΑΤΑΑΤΑΑ
BB_B04	-128	~	-114	1	2	TTATAAATATTGTAA
BB_B04	-223	~	-210	0	2	ΑΤΑΤΤΑΤΑΤΑΤΑΑ
BB_B05	-229	~	-216	0	2	ΤΤΑΤΤΑΤΑΑΤΑΤΑΑ
BB_B05	-172	~	-158	1	2	ТТАСААТАТТТАТАА
BB_B05	-76	~	-63	0	2	ΤΤΑΤΑΑΤΑΤΑΑΤΑΤ
BB_B16	-169	~	-156	0	2	ТТАТААТСТТТТСА
BB_D001	-50	~	-37	0	1	СТАТААТАТТАТАА
BB_D04	-222	~	-207	2	2	ATATGATTTATTATAA
BB_D10	-36	~	-22	1	2	ΤΤΑΑΑΑΤΑΑΑΤΑΤΑΑ
BB_D15	-158	~	-143	2	2	ТТАТАТТТСТТТАТАА
	-220	~	-207	0	2	TGATAATAATTTAA
BB_E17	-40	~	-27	0	2	TTAGAATAGTATAA

BB_F06	-225	~	-210	2	1	ΑΤΑΤΑΑΤΤΤΑΤΤΑΤΑΑ
BB_F20	-129	~	-115	1	2	ΤΤΤΤΑΑΤΤΑΤΤΑΑΑΑ
BB_G01	-101	~	-86	2	2	TTATATTTTATTGTAA
BB_G07	-105	~	-92	0	2	TTAGAATATAATAA
	-85	~	-71	1	2	ΤΑΑΤΑΑΤΑΑΤΤΑΤΤΑ
	-73	~	-58	2	2	TTATTATGAATTATTA
BB_H02	-168	~	-155	0	1	СТАТААТАТТАТАА
BB_H04	-129	~	-116	0	2	CTATAATATTATGA
BB_H40	-18	~	-4	1	2	ΤΤΑΤΑΑΤΤΑΤΑΑΑΑΑ
BB_102	-126	~	-111	2	2	TGTAAATACATTATAA
BB_I12	-34	~	-20	1	2	СТАТААТААТТТТАА
BB_I16	-237	~	-223	1	2	ΤΤΤΑΑΑΤΑΑΤΤΑΤΑΑ
	-55	~	-41	1	1	ΤΤΑΤΑΑΤΑΑΑΤΑΤΑΑ
BB_I36	-64	~	-51	0	1	TTGTAATATTATAA
	-80	~	-67	0	1	TGATAATAATATCA
BB_l38	-64	~	-51	0	1	TTGTAATATTATAA
	-80	~	-67	0	1	TGATATTATTATCA

BB_139	-64	~	-51	0	2	TTGTAATATTATAT
	-74	~	-59	2	2	TGATATTAAATTGTAA
BB_l41	-21	~	-7	1	2	ΑΤΑΤΤΑΤΑΑΤΤΑΤΑΑ
	-26	~	-13	0	2	ΑΤΑΤGΑΤΑΤΤΑΤΑΑ
BB_J08	-116	~	-101	2	2	ТТАТАТТТТАТТСТАА
	-66	~	-51	2	2	ΤΤΑΤΤΑΤΤΑΤΤΑΤΑΑ
BB_J09	-148	~	-133	2	2	ΤGΑΤΑΤΤΑΑΑΑΤΑΤΑΑ
	-131	~	-116	2	2	ΤGΑΤΑΤΤΑΑΑΑΤΑΤΑΑ
	-114	~	-99	2	2	ΤGΑΤΑΤΤΑΑΑΑΤΑΤΑΑ
	-97	~	-82	2	2	ΤGΑΤΑΤΤΑΑΑΑΤΑΤΑΑ
	-80	~	-65	2	2	ΤGΑΤΑΤΤΑΑΑΑΤΑΤΑΑ
	-63	~	-48	2	2	TGATATTGAAATATAA
	-46	~	-31	2	2	ΤGΑΤΑΤΤΑΑΑΑΤΑΤΑΑ
BB_J19	-37	~	-23	1	2	ΤΑΑΤΑΑΤΑΑΤΤΑΤΤΑ
BB_J0056	-114	~	-100	1	2	ΤΑΑΤΑΑΤΤΑΤΤΑΤΤΑ
BB_J36	-54	~	-41	0	2	ΤΤΑΤΑΑΤΑΑΑΤΑΑ
BB_J41	-64	~	-51	0	2	TTGTAATATTATTA

BB_J46	-41	~	-28	0	1	ΤΤΑΤΑΑΤΑΤΤΑΤΑΤ
BB_K01	-41	~	-27	1	2	TTATAATAATTATTC
	-48	~	-33	2	2	ΤΤΑΤΤΑΤΤΑΤΑΑΤΑΑ
	-101	~	-86	2	2	TTACAATTTATTGTAA
BB_K15	-208	~	-194	1	2	TTATAATGATTACTA
	-191	~	-177	1	2	ΤΑΑΤΑΤΤΤΑΤΤΑΤΑΑ
BB_K47	-79	~	-65	1	1	ΤΤΑΤΑΑΤΤΑΤΤΑΤΤΑ
	-87	~	-74	0	2	ΤΤΤΤΤΑΤΑΤΤΑΤΑΑ
BB_K49	-79	~	-65	1	1	ΤΤΑΤΑΑΤΤΑΤΤΑΤΤΑ
	-87	~	-74	0	2	ΤΤΤΤΤΑΤΑΤΤΑΤΑΑ
BB_K50	-46	~	-31	2	2	ТGATAAAATATTCTAA
BB_L35	-130	~	-116	1	2	TTATGATTTTTATAA
	-53	~	-39	1	2	TTAAAATAATTATGA
BB_M35	-244	~	-230	1	2	ΤΤΤΤΑΤΤΤΑΤΤΑΤΑΑ
BB_N19	-57	~	-44	0	2	TTATGATATTAACA
BB_N35	-244	~	-230	1	2	ΤΤΤΤΑΤΤΤΑΤΤΑΤΑΑ
BB_P30	-36	~	-21	2	2	ΤΑΑΤΑΑΤΤΑΑΤΤΑΤΤΑ

BB_P35	-244	~	-230	1	2	ΤΤΤΤΑΤΤΤΑΤΤΑΑ
BB_Q05	-213	~	-200	0	2	ΤΤΑΤΑΤΤΑΤΤΑΤΤΑ
	-149	~	-136	0	1	ΤΤΑΑΑΑΤΑΤΤΑΤΑΑ
BB_Q42	-130	~	-116	1	2	TTATGATTTTTATAA
BB_Q85	-222	~	-207	2	2	ΑΤΑΤGATTTATTATAA
BB_Q89	-50	~	-37	0	1	СТАТААТАТТАТАА
BB_R36	-244	~	-230	1	2	ΤΤΤΤΑΤΤΤΑΤΤΑΤΑΑ
BB_R41	-94	~	-79	2	2	TGATAATTTCTTGTAA
BB_S41	-180	~	-165	2	2	ТТАТААТСТТТТБТАА
BB_T02	-104	~	-89	2	2	TGTAAATACATTATAA
BB_U02	-126	~	-111	2	2	TGTAAATACATTATAA

^a Location of each site is shown as relative to the start of each gene. Only sites within 250 bps upstream of a gene are shown.

^b Indicates the length of the spacer in base pairs.

^c Indicates the number of mismatches from the consensus sequence T(T/G)ATAAT-N{0,2}-

ATTAT(A/C)A.

References

- Burtnick, M.N., J.S. Downey, P.J. Brett, J.A. Boylan, J.G. Frye, T.R. Hoover & F.C. Gherardini,
 (2007) Insights into the complex regulation of *rpoS* in *Borrelia burgdorferi*. *Mol Microbiol*65: 277-293.
- Jonsson, M., L. Noppa, A.G. Barbour & S. Bergstrom, (1992) Heterogeneity of outer membrane proteins in *Borrelia burgdorferi*: comparison of osp operons of three isolates of different geographic origins. *Infect Immun* **60**: 1845-1853.
- Margolis, N., D. Hogan, K. Tilly & P.A. Rosa, (1994) Plasmid location of *Borrelia* purine biosynthesis gene homologs. *J Bacteriol* **176**: 6427-6432.
- Norris, S.J., C.J. Carter, J.K. Howell & A.G. Barbour, (1992) Low-passage-associated proteins of *Borrelia burgdorferi* B31: characterization and molecular cloning of OspD, a surfaceexposed, plasmid-encoded lipoprotein. *Infect Immun* **60**: 4662-4672.

PospAB, -330 ~ +20, 20% G+C

AGTTATATTAATATAAAAAGGAGAATATATTATTATGGG

PospD, -231 ~ +68, 19% G+C

AGCATCATTAAACATCCTTTCAATACTCACTATTGTTTTCTTAGCCTTAAGCTAGCCAAGCTAAATAGAAATTAGTAGGCAATTGATATTAAAAATA TAATTGATATTAAAATATAATTGATATTAAAATATAATTGATATTGATATTAAAATATAATTGATATTGATATTGATATTGATATTGATATTGATATTGATATTGATATTAAAA

TATAAT TTAAGACATTATATTTAAGGAG TATAAATATGAAAAAATTATAAAAATACTACTGTTAAGTTTATTTTATTGCTCTCAATATCTTGTGTTCAT -10 GAT

Prpos, -277 ~ +60, 28% G+C

TGCTAAACGGAGGCCAAGTAGAAGAAATTTTTTGAAGATATGCTTTGCGAACAAAGAGCAAAACAAATGGCACAAGCTCAAAGCTTTGGCCTTGCCGATT TAATTTACAATGAATTACAAAAAAGTAAATAATTCAAAAAATACTCCCCCTAAACTCAAAATTATATCCTATTTAGTTTAAAACCATTTTTAAAATAAAA <u>TGGCACAGTTTTTGCA</u>TGGAAATTAAGTAGTAGAAAAACTTAATCACAATATTCAAGAA<u>AGGGGAGAA</u>AATATAATAACT<u>ATG</u>AACATATTTAGTAATGAGG -24/-12

ATTTAAACATATATTTAAAATCAGTAAGAGAACACAAG

PbicA, -170 ~ +159, 21% G+C

GATGATTTAGACGCAATACAATTAAAATTACAAGAATTGTTAGCAAGTTTGCATATTTTTATTCTAATTTAAGAGGTATTCATTGGAATATAAAAGATA CCAATTTCTTGTTATTCACAAAAAAAACT

PbosR, -183 ~ +10, 15% G+C

PospC, -330 ~ +23, 22% G+C

-35

AATAATTCATAAATAAAAAGGAGGCACAAATTAATGAAAAAGAATACATTAAGTGC

Pech193, -246 ~ +3, 23% G+C

Pech818, -542 ~ +3, 25% G+C

53% G+C

CTATTCTGGACTACCTGCTGCACGCTGCACCCGGTTCGTAAAGTGGACAACAAAATTATGGACGCAATGCTGGGCCCGGCGATTGAACGTGCCGAAGAACT GGGCCCGGATCTGGACAAACTGACCTTTATCGATGAAGACCTGACGAAACATGGCAAAAAGATTTCGGTGCGCCGGCCAGCAATCCGGATATCCAGACC CTGGTGGGCGCCCCGCTGCGCGGCAATGTTGCACTGGCTAAATCTATCGAACAACTGATCCCGGAAGCGAAACGCAAAGACATTG

Fig S1. Sequences of EMSA probes. Whenever applicable, the position of a probe is indicated as relative to the start of a gene, and the ATG start codon and the Shine-Dalgarno sequence of each gene are indicated with double underlines. The transcription start sites for *ospAB*, *ospD*, *rpoS*, and *ospC* had been previously determined (Jonsson *et al.*, 1992; Norris et al., 1992; Burtnick et al., 2007; Margolis et al., 1994) and are indicated with asterisks. Putative -35, -24/-12, and -10 promoter regions that precede these experimentally determined transcription start sites are indicated with brackets.

Fig. S2. Up-regulation of BBK32 in an *ospC* mutant. The *ospC* mutant was constructed from an infectious clone of *B. burgdorferi* strain 297. Up-regulation of BBK32 in the *ospC* mutant was evident in an immunoblot analysis using α -BBK32 antibodies. The identity of another protein that was also significantly up-regulated in the *ospC* mutant, indicated by a question mark, remains unknown. However, given that this protein was significantly up-regulated at 37°C and also reacted strongly with sera from mice infected with *B. burg-dorferi* through tick inoculation (data not shown), this protein could be a lipoprotein belonging to the RpoS regulon.

Fig. S3. BosR-dependent activation and repression of BicA. (A) When cultured *in vitro*, BicA expression in the wild type (WT) was significantly elevated at 37°C as compared to 25°C. This activation was clearly dependent on BosR based on analyses of the *bosR* mutant (mut.) and the complemented *bosR* mutant (comp.). (B) In host-adapted spirochetes harvested from DMCs, the presence of BosR (comparing the complemented strain with the *bosR* mutant) appeared to be associated with a modest reduction in the BicA protein level (left) as well as in the *bicA* mRNA level (right).

Α

350 (bp)

Fig. S4. Footprint analysis of BosR binding to PospAB. (A) A 350-bp DNA fragment containing the *ospAB* promoter was PCR amplified using a pair of primers, one labeled at the 5' end with FAM and the other labeled at the 5' end with VIC. (B) Electropherograms of DNase I-digested probe following incubation with 640-fold molar excess of BSA or 80- or 640-fold molar excess of BosR. The y-axis scale is the same for all electropherograms, ranging from 0 to 3,000 artibrary units (AU). The direction of the promoter (P) is indicated with an arrow. Three regions of the probe that were protected from DNase I digestion by BosR are designated I, II, and III. The nucleotide sequence of the opposite strand of footprint III is shown. The -35 and -10 promoter regions are indicated with brackets, and the Shine-Dalgarno sequence and the ATG start codon are indicated with double underlines. The transcription start site, as previously determined (Jonsson et al., 1992), is indicated with an asterisk.