
		CACAAATAATCTGCAAAACCACTT-TAGAGTC1 - <mark>A</mark> AAG <mark>AGAA</mark> AGCCA <u>AAAA</u> ATC <mark>CTT</mark> GTAAAAAAC	
B Original locus	ctcc <u>TCACAGAAC</u>	gagggatcat(<i>Hi</i>)acgattattc	<u>TCACAGAAC</u> cgag
	taga <u>CTTTTGGAG</u>	GAGGGATCAT(Hi)ACGATTATTC	<u>CTTTTGGAG</u> gttt
	tttt <u>GTTTTCTTT</u>	GAGGGATCAT(<i>Hi</i>)ACGATTATTC	<u>GTTTTCTTT</u> cgat
	tgga <u>CTCGGAAGG</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>CTCGGAAGG</u> agaa
	atgc <u>AATCGATCT</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>AATCGATCT</u> ttcc
	gata <u>ATTCCAATT</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>ATTCCAATT</u> ccag
	gtca <u>CCTTTAGTC</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>CCTTTAGTC</u> ggac
_	acgc <u>TTTTTCCTCA</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>TTTTCCTCA</u> aggg
De novo insertions	cagc <u>AAGTCAGTG</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>AAGTCAGTG</u> taag
in <i>ddm1</i>	ggcg <u>GTTTGAAGG</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>GTTTGAAGG</u> ccta
	tata <u>CATACGATT</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>CATACGATT</u> aaag
	aagc <u>ACTTCAGTC</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>ACTTCAGTC</u> acac
	agag <u>AGTGGAAAC</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>AGTGGAAAC</u> gcta
	ctga <u>AATAAAAAG</u>	GAGGGATCAT (<i>Hi</i>)ACGATTATTC	<u>AATAAAAAG</u> agta
	cata <u>GTTTACAACC</u>	GAGGGATCAT(<i>Hi</i>)ACGATTATTC	<u>GTTTACAACC</u> atta (10 bp TSD)
	ttggttttttag <u>G</u>	GAGGGATCAT(<i>Hi</i>)ACG	<u>G</u> tcactgctccga (1 bp TDS)

Figure S1. Terminal sequences and integration products of *Hi.* (A) Terminal inverted repeats of *Hi* are much degenerated. Remaining complementary regions are shaded blue after alignment. (B) Integration of *Hi* occurs precisely at the terminal regions shown in (A). In both original locus and *de novo* insertions, terminal regions of *Hi* are flanked by target site duplications (TSDs; underlined), most of which are 9-bp. Two exceptional insertions, with TSDs of 10-bp and 1-bp (or 2-bp) are shown in the bottom. The latter may reflect deletion of the 3' terminal region of integrated *Hi*.

Figure S2

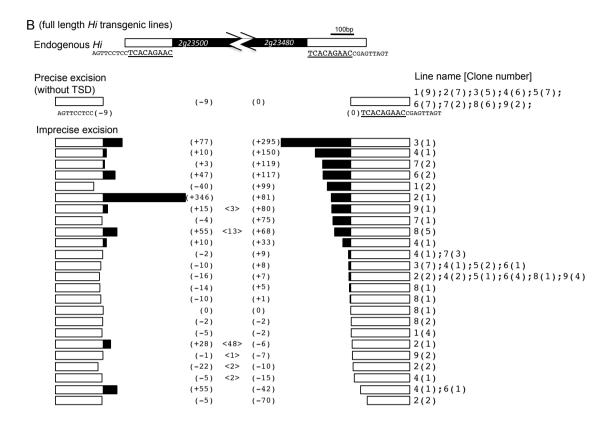


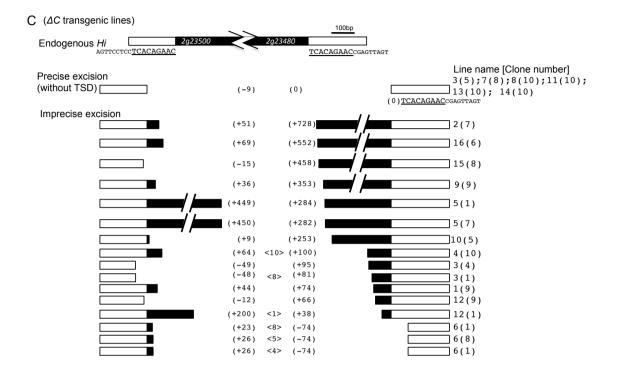
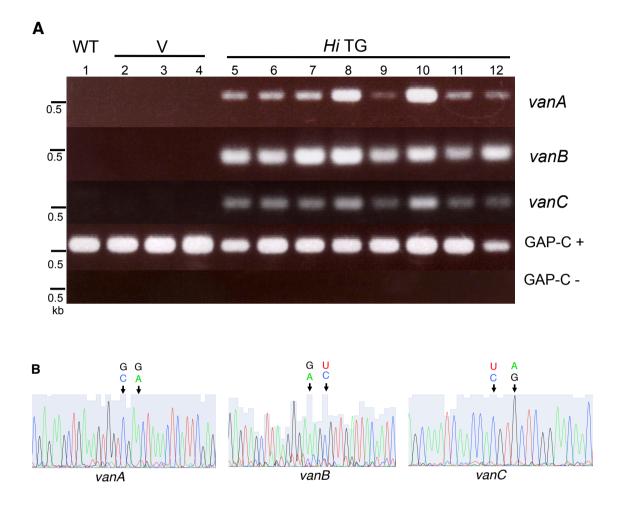
Figure S2. *De novo* integration sites of *Hi* within the Arabidopsis genome. Centromere is shown by circle for each of the five chromosomes. Arrowhead written at right side of chromosome 2 represents the original *Hi* locus. Loci for *de novo* integrations are shown in the left side of chromosomes. The first number (from 1 to 8) reflects different *ddm1* lines examined.

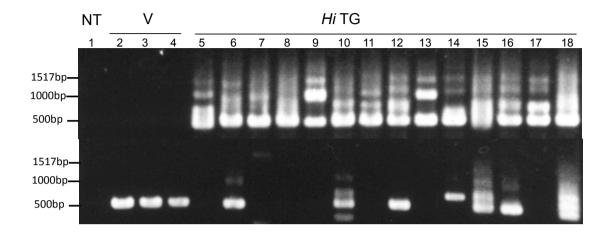
(continued on the following page)

Figure S3 (continued)

(continued on the following page)

Figure S3 (continued)


Figure S3. Excision products of endogenous *Hi* at *ddm1* lines (A), full length Hi transgenic lines (B), and ΔC transgenic lines (C). Excision patterns were categorized into two groups, "Precise excision" and "Imprecise excision". The former represents excision to recover sequence before integration, which does not have the target site duplication (TSD). Flanking sequences of Hi are shown below the diagrams for the original Hi locus and "Precise excision", with the TSDs emphasized by underlines. For the "Imprecise excisions", length of remaining Hi sequence is shown by black bar, and deletion of flanking sequence is shown by shorter white bar. Number with plus sign within () indicates length of remaining terminal sequences of endogenous Hi. Number with minus sign in () indicates length of deletion in the flanking sequence. Number within < > indicates length of sequence of unknown origin found in the excision product. We sequenced 120 clones of excision products from six independently self-pollinated ddm1 plants (A), 116 clones from 9 independent full length transgenic lines (B), and 140 clones from 16 independent ΔC transgenic lines. The line name and number of clones read are shown in right side of each excision product.

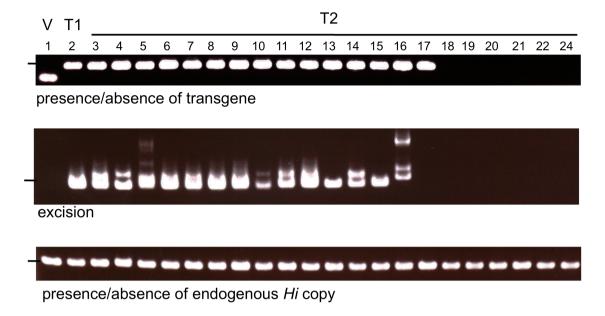
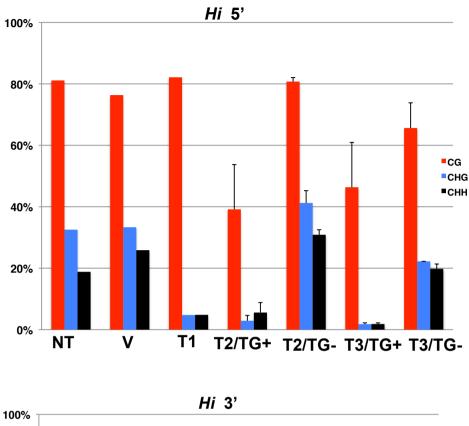


Figure S4. Expression of ORFs in *Hi.* (A) In endogenous *Hi*, three ORFs (*vanA*, *vanB* and *vanC*) are silent in wild type (lanes 1-4), but they are transcribed in *Hi* transgenic lines (lanes 5-12). WT: wild type; V: transformant lines with empty vector. For the transformants, each lane represents independent transgenic line. (B) Origins of the transcripts from the transgene and from original endogenous locus were distinguished between by direct sequencing. Sites of synonymous mutations (two for each ORF) are indicated by arrows, with the nucleotides for the original locus (top) and transgene (bottom). For all of the three ORFs, the signals indicate that most of the transcripts are from the transgene. The result for the transgenic line in lane 5 of panel A is shown. Transcripts from seven other lines showed essentially the same results.



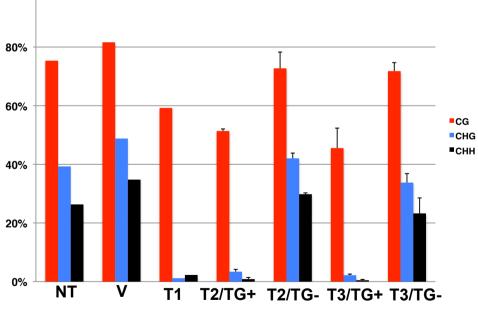
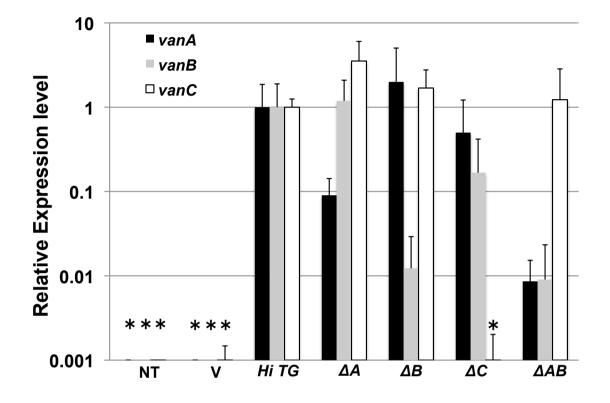
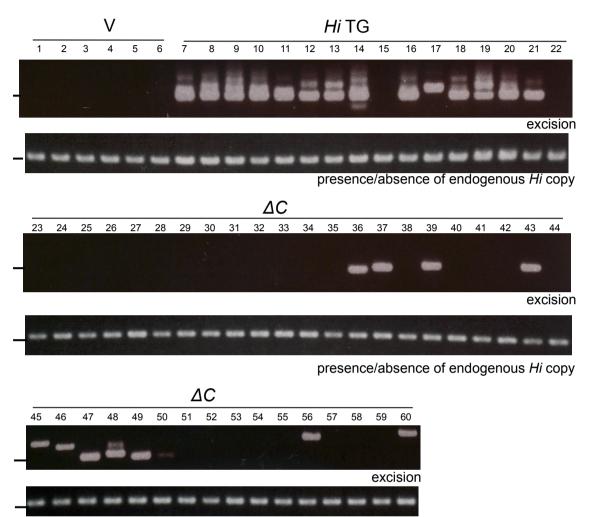
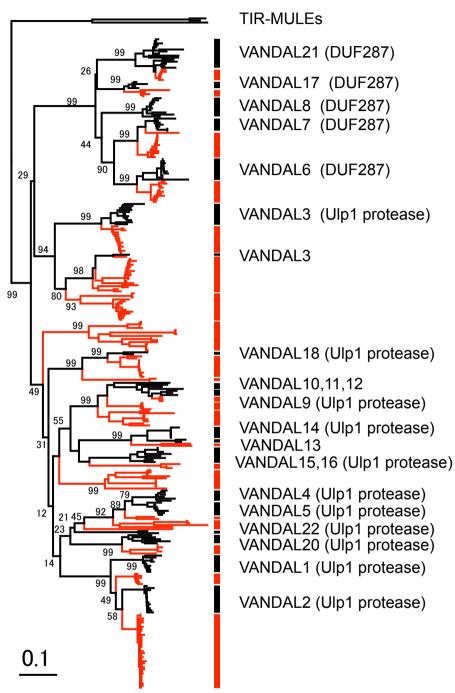

Figure S5. Excision of *Hi* **in the transgene.** Top panel is reproduction of Figure 2A. For each of the transgenic lines, we also examined excision of *Hi* in the transgene (bottom panel). Excision was detected in some, although not all, of the transgenic lines. Transgenic lines for the empty vector also showed the band, because primers for the vector sequence were used to detect excision of *Hi* in the transgene.

Figure S6. Excision of endogenous *Hi* **in T2 plants.** In a T2 family, presence/absence of the *Hi* transgene segregated (top panel). For the T2 plants with the transgene, 14 out of 15 plants showed excision, while none of the T2 plants without the transgene showed the signal (middle panel). Bottom panel shows presence of the remaining endogenous *Hi* copy. In each panel, length of molecular weight marker is 0.5kb.

Figure S7. Remethylation of endogenous *Hi* **in the T3 generation.** DNA methylation in terminal regions of *Hi* was examined in a T3 progeny segregating the transgene. Two plants were examined for both TG+ and TG- plants in T3 generation. Others are reproduction of results shown in Figure 2B.

Figure S8


Figure S8. Transcripts of three ORFs of *Hi* in transgenic plants for full length *Hi* and its deletion derivatives. The transcript levels were measured by quantitative RT-PCR. For each ORF, the value was normalized by the transcript level in the transgenic line with full length *Hi*. We examined three transgenic lines for empty vector, four lines for full length *Hi*, 12 lines for ΔA , six lines for ΔB , 12 lines for ΔC , and 18 lines for ΔAB . Each bar indicates standard deviation among the values for different transgenic lines. Asterisks indicate averages less than 0.001.

presence/absence of endogenous Hi copy

Figure S9. Excision of endogenous *Hi* **in full length and** ΔC **-TG lines.** Experiments in Figure 5A are repeated with additional ΔC transgenic lines and full length *Hi* transgenic lines. Excision was detected in 14 out of 16 independently-transformed full length transgenic lines. On the other hand, only 11 out of 38 ΔC transgenic lines showed the excision. Together with the results in Figure 5A, the results suggest that the excision efficiency is less in ΔC transgenic lines. Structures of excision products of these ΔC transgenic lines are shown in Supplementary Figure S3C. In each panel, length of molecular weight marker is 0.5kb.

Figure S10. Evolution and proliferation of VANDAL families. Phylogenetic relationship among *VANDAL* families in genomes of *A. thaliana* and *A. lyrata*. *A. lyrata*-specific lineages are shown by red lines. A NJ tree made by JC distance is shown. Scale bar is shown below the tree. Bootstrap probabilities (%) with 1000 replications for major clusters are indicated beside the branches.

VANDAL2	1 (At2g2)	3480:	hiC)						
	Query seq.	1	100	200	300	40	0 50 1 1 1 1	0 600	705
	Specific hits Superfamilies						UF1985	DUF287 DUF287 su	-
VANDAL17		3530)				DOL 130:	ō superfa n ily	001 207 Su	
	Query seq.		100	2	200	300	400	500	615
	Specific hits			DUF198		F287			
	<mark>Superfamilies</mark> Multi-domains			DUF1985 super	DUF28	i7 super		MDN1	
								MDN1 2A1904	
							V_1	ATPase_I 2A1904	
								2A1904	
VANDAL6	(At1q23	930)	100	200	3	ç o	400	500	600 6 4 9
	Query seq. Specific hits				DUF1985		DUF287		
	Superfamilies			0	WF1985 superfam	ily	DUF287 super		
VANDAL7	(At3g453	380)							
	Query seq.			200	300	400	500	600	700 722
	Specific hits <mark>Superfamilies</mark>					1985 uperfamily	DUF2 DUF287		
VANDAL8	(At4g07!	520)							
VIIIUDIILO	Query seq.		125		250	375	500	625	734
	Specific hits Superfamilies				DUF1985 DUF1985 superfamily	DUF DUF287			
1 1					DUP 1965 Superfamily	007284	Supe		
VANDAL1	(At1g45) Query seq.	190)	250		500		750	1000	1211
	Specific hits Superfamilies		DUF1985 DUF1985 superfamil						idase_C48
	Multi-domains		Doi 1900 Supertunili					Peptiaa	ULP1
VANDAL2	(At1g27	780)							
	Query seq. Specific hits		DUF1985		500	/50	1000	125 eptidase_C48	0 1446
	Superfamilies		DUF1985 superfa					ept10a8e_C40 .idase_C48 superfam	
VANDAL3	(At2g249	930)	105	25.0	375	500	625	75.0	875 906
	Query seq. Specific hits	Î	DUF1985	250				Peptida	875 926
	Superfamilies		DUF1985 superfamily					Peptidase_C48	
VANDAL4	(At1g448	880)							
	Query seq.			250	375	500	625	750 875	
	Specific hits <mark>Superfamilies</mark>		DUF1985 DUF1985 superfamily						tidase_C48 e_C48 superfamily
VANDAL5	(At1g352	110)							
	Query seq.		250	0.95	500	7	50	1000	1250 1311
	Specific hits Superfamilies		DUF1985 51					p	Peptidase_C48 eptidase_C48 super
	Multi-domains				PRK	M 08581	DN1		

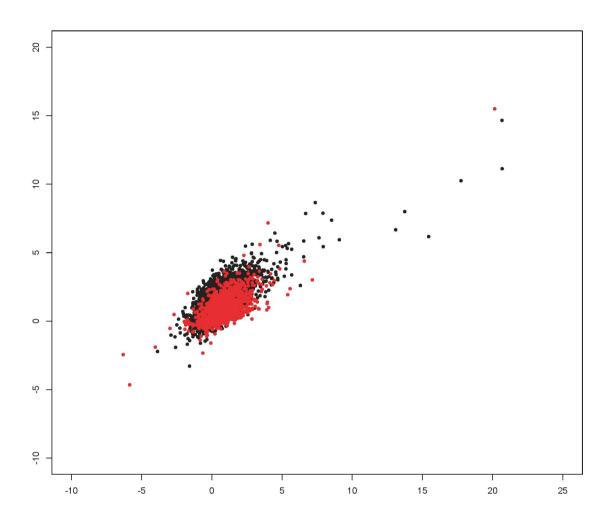

(continued on the following page)

Figure S11 (continued)

VANDAL9	(At1g357	70)	125	250	375	500	625	750	875	968
	Query seq. Specific hits		DUF1985						Peptidase_C	248
	Superfamilies		DUF1985 superfamily						Peptidase_C48 superf	amily
VANDAL11	(At4g08	340)	. 125	250	375	500	625	75.0	875	988
	Query seq. Specific hits		JF1985					. T	Pantidopa C4	•
	Superfamilies		0F1985 35 superfamil						P <mark>eptidase_C4</mark> idase_C48 superfa	
VANDAL12	(At3g42	820)								
	Query seq.	1	125	250	375	500	625		750	875 906
	Specific hits Non-specific		DUF1985						Peptidase_C48	4
	hits Superfamilies		DUF1985 superf						Peptidase_C48 :	su
VANDAL13	(At2g14	010)								
	Query seq.	1	125	250	375	5		625	750	833
	Specific hits Non-specific		DUF1985						Peptidase_C48	
	hits <mark>Superfamilies</mark>		DUF1985 superfamily						Peptidase_C48 supe	srf
VANDAL14	(At1g08	740)								
	Query seq.	1	125	250	375	500	625	750	875	1014
	Specific hits Non-specific		DUF1985						Peptidase_C4	8
	hits Superfamilies		DUF1985 superfamily						ptidase_C48 superfam	
VANDAL16	(At1g34	610)								
	Query seq.	1	125	250	375	500	625	750	875	997
	Specific hits Non-specific		DUF1985					Pe	eptidase_C48 🔇	
	hits Superfamilies		DUF1985 superfamily						tidase_C48 superfam	
VANDAL18	(At4g04	530)								
	Query seq.	1	125	250	375	500	625	75	0 87	5 917
	Specific hits <mark>Superfamilies</mark>		DUF1985 super						Peptidase_C4 aptidase_C48 superfam	
VANDAL20	(At4g04	130)								
VIIIVDIIILLO	Query seq.		125 250	375	500	625	750 8	875 	1000 1125	1200
	Specific hits Superfamilies		DUF1985 superf					tidase_C4 se_C48 superfam		
		4.6.0.)	DOI 1900 SUPERT				Pep viuu	se_oto supertum	113	
VANDAL22	(At3g43	460)	100	200	300	400	500		600	702
	Query seq. Specific hits		D	UF1985						
	Non-specific hits Superfamilies		DUE400	5 ouronfouilu					eptidase_C48	
ARNOLD3	(At5g349	2002	DOL 198:	5 superfamily				Lehri	laase_oro superitai	
AUNOTD2	(ALJY34)	1	250 50	0 750	10,00	1250	15,00	1750	2000	22502304
	RF +1 Specific hits		DUF198	35 _					tidase_C48	
	Superfamilies		DUF1985 super			DUF60)1	-	e_C48 superfam	ily

Figure S11. Conserved domain structure of products of *vanC* **and related genes.** Conserved domain was searched by NCBI conserved domain search site (Marchler-Bauer et al. 2011; http:// ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). One gene was examined for each cluster. CDS sequences were obtained from TAIR. *VANDAL10* and *VANDAL15* families were not analyzed, because no gene with complete structure was found.

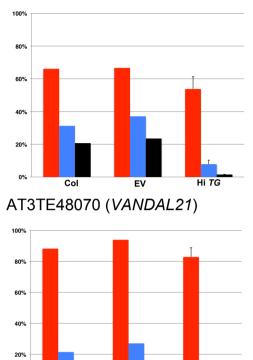
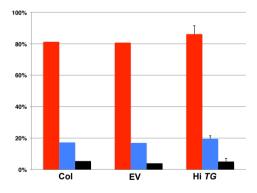


Figure S12. *Hi* transgene affects DNA methylation in transposons rather than genes. Changes of methylation at CpHpG sites and CpHpH sites are plotted for genes (red dot) and transposon genes (black dot). The conditions are as described in Figure 9. A red dot in top right is AT3G14670. This does not seem to be a real normal gene, because it is included in a *VANDAL21* transposon, AT3E20780 (shown in Figure 9B).

Figure S13


AT2TE06955 (VANDAL21)

AT1ETE42210 (CACTA2)

0%

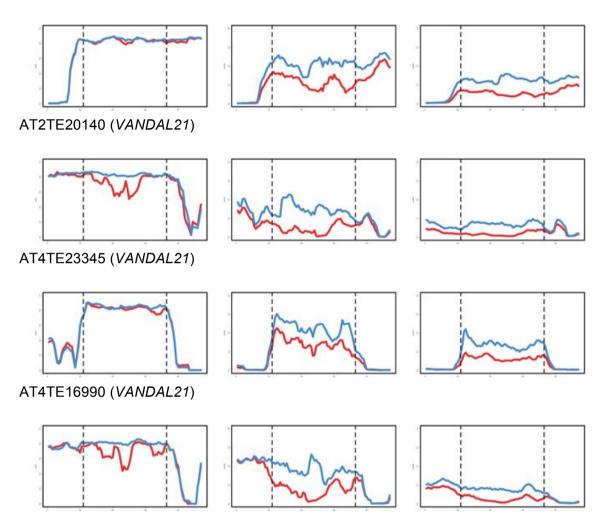
Col

E٧

Hi TG

Figure S13. Reduced DNA methylation in terminal regions of VANDAL21 members. The methylation status was examined for two VANDAL21 members by conventional bisulfite sequencing using primers internal and flanking the TE. Results for three independent *Hi* transgenic lines are shown with control non-transgenic plant and transgenic plant with empty vector. *CACTA2* was also examined as a negative control.

Figure S14


AT2TE42810 (Hi)

(continued on the following page)

Figure S14 (continued)

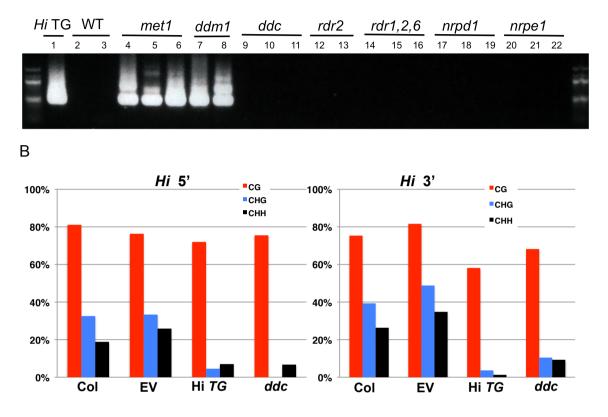

AT2TE47555 (VANDAL21)

Figure S14. Demethlylation of VANDAL21 members induced by Hi transgene. *Hi* transgene affects not only terminal regions but also internal regions of VANDAL21 members. *VANDAL21* members shown in Figure 9 are shown with additional six members. For each TE, three panels are CpG, CpHpG, and CpHpH contexts of methylation, from left to right. Conditions are the same as those of Figure 9B.

Figure S15

А

Figure S15. Effects of mutations in DNA methylation machinery on *Hi* **mobility.** (A) Mutation in the maintenance DNA methyltransferase gene *MET1* induced mobilization of *Hi*, indicating that DNA methylation at CpG sites is necessary for the silencing. On the other hand, triple mutation in non-CpG methyltransferases *drm1-drm2-cmt3* (*ddc*) did not induce the mobilization. Mutations in components of RdDM (RNA-directed DNA methylation) machinery did not induce the mobilization either. Therefore, loss of non-CpG methylation in terminal regions does not seem to be sufficient for mobilizing *Hi*. Still, the possibility remains that non-CpG methylation in internal region plays a role, because, according to a recent report (Zemack et al Cell 153, 193-), another DNA methyltransferase CMT2 plays the major role in methylation at CpHpH sites of internal regions but also internal regions of related TEs (Figure 9; Supplementary Figure S14). (B) The *ddc* mutation induced reduction of DNA methylation at non-CpG sittes in terminal regions of *Hi*.

Supplementary Table S1

Flanking sequences for *de novo* insertions of *VANDAL21* copies

ID ^a	Flanking sequence	Read ^b	Side ^c	TSD ^d
1-1	TTTGGACAGAGCCAAGGTCA	2	5'	
10	CACTGACTTGCTGATCGTAT 24 5'			
1-2	AAGTCAGTGTAAGATTGATT	38	3'	AAGTCAGTG
1-3	TGAGGAAAAGCGTGGGAAGATTAAAATGACGGATATGTCCTTATCATGGT	-	5'	ттттсстса
1-5	TTTTCCTCAAGGGCTTATTC	7	3'	TITICOTOA
1-4	CTCCTTTCACCACCAATCTCTCGTTTCATTTACTACAACTACAACACTCT	-	5'	
1-5	AGTTTCAGATGAGAGAATAT	1	5'	
1-6	TACTTAAAGTGCTACGAAGA	1	5'	
2-1	TTTGCAAGATCTACTAAATT	2	3'	
2-2	ATTTAGATGCTAGGTGATTT	2	3'	
2-3	TATTTAAAGCTTGTGAATTC	1	3'	
2-4	TGTGAGAATAATCGTCTGGC	2	5'	
2-5	TGTGAGGAGGAACTAAGAGT	1	5'	
2-6	CAAAATATTAGGGTTTAATT	2	5'	
2-7	GTCAAGTACGCGGTCGAGTGAAACGGTCGAGTATA	7	5'	
2.0	CCTTCAAACCGCCTAGGATCAGAGATCCGGGACG		5'	077704400
2-8	GTTTGAAGGCCTAGGTCACT	13	3'	GTTTGAAGG
2-9	ТААТАТАGAACGCTTAATAT	1	5'	
2-10	CTACGTCGACCCGTGAATCTGTTGGCCGAAC	12	5'	
2-11	CTCAAAATACTCTTCTGCAGTGACAAATCCATAAACTCTACCAATAAGAT	-	5'	
	AAAGAAAACAAAAGTTAAAA	12	5'	
3-1	AAAGAAAACAAAAGTTAAAACGGAATATAAATATACTGTATCGAAACTAA	-	5'	GTTTTCTTT
	GTTTTCTTTCGATAAAGATC	10	3'	
3-2	TTCGGATGGTTTGGTTCGGA	2	3'	
3-3	TGTGAGAATAATCGTCTGGC	5	5'	
3-4	GATGAGGGAGAAGAGAGATG	1	3'	
	CCTTCCGAGTCCACTAAGTA	44	5'	
3-5	CTCGGAAGGAGAAGGGAAAT	24	3'	CTCGGAAGG
	CCTTCCGAGTCCACTAAGTAGCTTCTCG - 5'			
3-6	ACTTCAGTCACACGTTTTTC	2	3'	

		15	3'	
3-7		15	3 5'	CATACGATT
3-8	AATTAAAAGAATCCCTGGAC	4	3'	
3-9	AGATCGATTGCATAAGAAATGGAAGAAGAAGACTGCGAAGGTTTCGAAGA	-	5'	AATCGATCT
3-10	CGAATCATTCTTGAGGAGAT	3	5'	
3-11	AATTGGAATTATCTATCAGTCGCGTCAATTTCTGAGTGTAATAGATAG	-	5'	ATTCCAATT
3-12	ACCGCCTAGGATCAGAGATCCGGGACGAGCGCTGATGTAGTACGTCCCCT	-	5'	
3-13	GTGTGCGACTGTTACAGTAACACTGAAG	-	5'	
3-14	GTTTTCGAGTCGAATATGACTTGTTGTCA	1	5'	
4-1	AAACATAACATGAGTGTACG	2	3'	
4-2	GAGATTGGAAGAACTTGACA	1	5'	
4-3	CTCAAATACTCATCTGTAAG	1	5'	
4-4	CGGGATCCACTTTGTTATAAACCTAAGTATCTGCAATTAGGGTTGTTGCTACTT			
	CAC	1	3'	
4-5	TTCATTCCGTTAGAAAAGTG	2	3'	
4-6	ATAATCAAGTGTTTGTGTTG	1	5'	
4-7	CCTAAAAAACCAAAAAGTGGTTACAGTGAGAAATTACACTCACCGTTTGT	-	5'	G
4-8	GGCCAGACGATTATTCTCAC	1	5'	
4-9	TCTGGCCAGTCCCTTTTTGTAAA	1	5'	
4-10	TGTGAGAATAATCGTCTGGC	4	5'	
4-11	GAACCGAGTTAGTAGTTACA	1	3'	
4-12	TGTGAGGAGGAACTAAGAGT	2	5'	
4-13	TAAATAACATCAACATGCAT	3	3'	
4-14	TTCAAAATCAGATGTTCTTG	1	5'	
4-15	ATTTCTCAATCGAAACAGAATGTACA	2	5'	
4-16	GACTAAAGGTGACTATGAAAAGTTGACGAATGGGAAACAGATACGGGTTG	-	5'	CCTTTAGTC
4-17	САААТАТАСТСТСТТТТСТА	1	5'	
4-18	GAGACACACGCTCTGCCATT	1	5'	
4-19	GTTCCTTTCCCTCTGAAA	1	3'	
4-20	GTGTGCGACTGTTACAGTAA	2	5'	
4-21	GTGAAGGAGGGGAAGGCAGG	2	5'	
	СТССААААGTCTATTCAAAT	21	5'	
4-22	CTTTTGGAGGTTTGTGGAGA	5	3'	CTTTTGGAG

4-23	TTCAAAAAACCCACACACAC	1	3'	
4-24	стттстсадтстстстдт		5'	
5-1	GTTTTCGTAGCCATGGCTTC	1	3'	
5-2	GCCTTAGCAAGTGCATCGGC	2	3'	
5-3	GTTCTGTGAGAATAATCGTC	1	5'	
5-4	TGTGAGAATAATCGTCTGGC	2	5'	
5-5	TGTGAGGAGGAACTAAGAGT	1	5'	
5-6	GACTGAAGTGCTTTTTGAT	33	5'	ACTTCAGTC
0-C	ACTTCAGTCACACGTTTTTC	22	3'	ACTICAGIC
5-7	GACTAAAGGTGACTATGAAA	58	5'	CCTTTAGTC
5-7	CCTTTAGTCGGACCGAACAC		3'	CONTRACTO
5-8	GTCGGTCGACACTGTCGCGTTCTGTAGTGTCTACCGTGGCTGG	2	3'	
5-9	GTTTCCACTCTCAAGGTG		5'	AGTGGAAAC
0-0	AGTGGAAACGCTACAGAGTT	1	3'	A0100AA0
5-10	CTTATGCGACCTGTTGTTAC	2	5'	
5-11	CTTTTTATTTCAGAGCAAAA	16	5'	AATAAAAAG
0-11	AATAAAAAGAGTAAGAGAAG	10	3'	
6-1	GGTTGTAAACTATGGTTAGCTTGGATTGGTTAGGTTGGGTTAGGTTGGGT	-	5'	GTTTACAACC
7-1	CTCCAAAAGTCTATTCAAAT	-	5'	CTTTTGGAG
8-1	CATTCATCTCCCTAACTTTGTTAACTTTGC	-	5'	
1-B1 ^e	TATAGCTCAAATCGCCTTAA	1	5'	
2-B1 ^e	TGATCTTTCCCCTTCTCTGACAAGGATCA	1	5'	
4-B1 ^e	GATATGAAGACTACAAAAGGATTTTACA	1	5'	

^a Names of insertions shown in Supplementary Figure S2. Number before "-" indicates specific *ddm1* line self-pollinated independently. ^b Number of reads found in the genome re-sequencing. Number is not shown for insertions identified by suppression PCR. ^c This indicates which side of the TE the flanking sequence was found in. ^d TSD (target site duplication) could be defined for insertions in which flanking sequences of both sides were identified (Supplementary Figure S1B). For some of the insertions identified by suppression PCR, flanking sequences of the other side was identified by direct PCR amplification and sequencing. ^e Insertions for AT4TE15615 (a *VANDAL21* copy different form *Hi*). All other insertions are those of *Hi*. Read numbers for the original locus in the five self-pollinated *ddm1* (plant #1-5) were 50, 50, 41, 28, and 41 for the 5' regions and 0, 41, 30, 33, and 27 for the 3' regions, suggesting that the empty locus was not fixed in most of these lines, even after repeated self-pollinations. The plant#1 seems to have fixed rearrangement around 3' region of the original *Hi* locus

Supplementary Table S2 List of primers used in this study

Purpose of the PCR	Target sequence	Primer pairs
Cloning Hi for transformation	Endogenous Hi	TACGGGCCCGAATAATCGTCTGGCCAGTCCCTT +
		ATCGTCGACGAGGGATCATCTCTTGTGTCCCT
Introducing a silent mutation into	At2g23500(vanA)	AGTGGTCGAACTAAACTCATTCGAGCGTGA +
Hi transgene		TTTAGTTCGACCACTTTCAGCTTCTCGGCA
	At2g23490(vanB)	AAGGGAAAGCGTTGATTACAATCGGAAGA +
		TCAACGCTTTCCCTTAAGCTACTCACCTCT
	At2g23480(vanC)	CAACCACGTGCTCGGAACAACTGAGGTTAG +
		TCCGAGCACGTGGTTGATTTGCTCAAGGGT
Constructing <i>∆A</i> transgene	Cloned Hi	GCAGATTACAGTTTTTAACTTTGTTTCTGC +
		AGTTAAAAACTGTAATCTGCCAAAACAATA
Constructing <i>ΔB</i> transgene	Cloned Hi	TCTCTCACATTGTGTTATCCTATTGTTCCT +
		GGATAACACAATGTGAGAGAATTCGAGTCG
Constructing ΔC transgene	Cloned Hi	ATATTACCAAGACTGATTTCGAATCGGAAA +
		GAAATCAGTCTTGGTAATATCGCGTAATAC
Constructing <i>ΔAB</i> transgene	Cloned Hi	TCTCTCACATTGTGTTATCCTATTGTTCCT +
		GGATAACACAATGTGAGAGAATTCGAGTCG
Suppression PCR (first PCR)	Flanking sequence of Hi	GGATCCTAATACGACTCACTATAGGGC +
		CAAAGCTTTTGAAGCTCTCTCCATACC
Suppression PCR (second PCR)	Flanking sequence of Hi	AATAGGGCTCGAGCGGC +
		GCTTGCAGGAGGAGAAAAACGACAATG
	At2g13290	GATTAAGAAATGAGAACACACG +
Sequencing the other side of		CTGGAAAACATCATGACCTTA
flanking sequences for	At2g23450	TGCGAAATAACAATCAGAGTA +
identifying target site duplication		GATATCCCAATTGCTCGTTGA
	At2g23830	GTTCCATGTTGAATAATCAGC +
		GACGCTTATCCGCATAGTTCT
	At3g30851	GTTTTGAAATCGAAGAGAGC +
		GGACATTTTAGCGACTAAACT
	At3g32111	AGAAAGCTGGAGAGGCTAATG +
		TCCATCAACCACCGTTCTGGT
	At5g33405	TCAATTAGGCAATTGAGCACT +
		AAGTGAAGAGATAGATCGATT
	At4g04720	GTAAAGGAGGAGACTTTCGTT +

		TCAGCAAATTGACAAAGACA
PCR to detect excision of Hi	Flanking sequences of Hi	ACGAGCAGAAAACATGCCACCA +
(original locus, first PCR)		TGCTCTAAACATTGCCTGAAGC
PCR to detect excision of Hi	Flanking sequences of Hi	CGACGAGCTACGTTACTGGG +
(original locus, second PCR)		AGTCTATTCACCATCGCCTAGTT
PCR to detect excision of Hi	Vector sequence	TCCCACTATCCTTCGCAAGA +
(transgene, first PCR)		GACCGAGCGCAGCGAGTCAG
PCR to detect excision of Hi	Vector sequence	TCGCCATTCAGGCTGCGCAA +
(transgen, second PCR)		AGGCACCCCAGGCTTTACACT
RT-PCR	At2g23500(vanA)	CAGGAGTTAAGTCGGGTCTAC +
		TGCGACCTATCCGGAACAAGA
RT-PCR	At2g23490(vanB)	GACCCCTACTACGATGATATG +
		CCATAGGATTACGGAATACCA
RT-PCR	At2g23480(vanC)	ACAGCTGTGGGAACTTCCTCT +
		AACACTCAGTCACCATGGCCT
RT-PCR	At3G04120(GAPC)	CACTTGAAGGGTGGTGCCAAG +
		CCTGTTGTCGCCAACGAAGTC
qRT-PCR	At2g23500(vanA)	GATGGTGCCTTTGGTCGAGA +
		TTTCAAAAGCAAGCTCACCGT
qRT-PCR	At2g23490(vanB)	TAGCATTGTCGAGACGCGAA +
		ATCCCAAAGTTTACGGATGTGC
qRT-PCR	At2g23480(vanC)	AGGATGTGCAAGGTGAGTTTCA +
		ACTCCCGTGATTTCAGCCAA
qRT-PCR	At5g25760(UBC)	CTGCGACTCAGGGAATCTTCTAA +
		TTGTGCCATTGAATTGAACCC
Bisulfite-sequencing	3' terminal sequence of Hi	CTTTCTTCRCCRRCACCTTCTCCTTCACTTTCTCA +
	(At2g23480 side)	ATGGGTATTGAAAAAGTYGAGAGYTTTGATTYGTTG
Bisulfite-sequencing	5' terminal sequence of Hi	AATCTCAACATCCTCAAAATATRTAATTCAAARCT +
	(At2g23500 side)	GTTAGAAGAAAAAAAAAYTAAATGGGYYAAGTGTGT
Bisulfite-sequencing	3' terminal sequence of	GAGGGGAYTGAGTAGAYAAAAGAGAYTGTTTTGAT+
	AT2TE06955 (VANDAL21)	CTTCTATCTCCTTTCTTTTCCCTTRACCTCCTCCAC
Bisulfite-sequencing	3' terminal sequence of	GAGTTGAGTGAAGYGAAYATYAAGAAAYTTAAAGAA+
	AT3TE48070 (VANDAL21)	CTTCTATCTCATTTCTTTTCCCTTRACCTCCTCCAC
Bisulfite-sequencing	AT1TE42210 (CACTA2)	CATATAAACCCCAAAATCAAATC +
		ATGGAAAAGGAGAAGGAGGTAT
qPCR after McrBC digestion	5' of <i>Hi</i>	TTTTTGGTTTCAAAATGTTTTCTACA +
		TCTTAGTTCCTCCTCACAGAACG

	Internal region of Hi	CGAGTGACCCGTTCAACC +
Quantification of copy number of		TCCCTATGCTTTGTAAGACTTCTC
Hi	AT5G13440 (internal control)	ACAAGCCAATTTTTGCTGAGC +
		ACAACAGTCCGAGTGTCATGGT
	AT5G36220 (internal control)	CCGAACACTTCACCAGATCA +
		CAGACCCGGGTAACTTTTGA
Presence of <i>Hi</i> in the original	5' of <i>Hi</i>	CTTGCAGGAGGAGAAAAACG +
locus		TCTTAGTTCCTCCTCACAGAACG