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1 Executive Summary

1.1 Statistical Methods

Microarray data were processed using the RMA algorithm as implemented in the aroma.affymetrix
package of R. We use a mixed-effects model on the processed data to understand the expression
patterns of each gene. the fixed effects represent

e Batch: array data were collected (over time) in two batches from two different laboratories.
This effect is a nuisance and not one we really want to use to make inferences.
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e DetMap: This is a detailed map of the site where each (bronchial brushing) sample was
obtained. There are four levels of this variable, basically corresponding to its distance from
the site of the primary tumor. The levels are ADJ (adjacent to the tumor), NON-ADJ (same
half of the lung but not adjacent to the tumor), MC (main carina), and CONTRA (from the
contralateral lung).

e Time.point: Samples were collected at four time points (0, 12, 24, or 36 months).

e We also allow an interaction term between DetMap and Time.point.

Random effects primarily account for the fact that we have multiple samples from the same patient
(Case). We try to fit a model that includes a different starting point and slope over time for each
case. For some probes, we are unable to fit a model that includes different slopes for each patient;
in this case, we fall back to a single (base-level) random effect foe each case.

1.2 Results

e Batch is a dominant effect on gene expression (Figure [1J).

e After adjusting for batch (as part of the mixed-effects model), both site and time are significant
in some genes, with site more important than time (Figure [1)).

e There is very weak (and perhaps no real) evidence that the interaction term is ever significant
(Figure [1] Figure (3).

2 Loading the Data

2.1 R Packages

We start by loading the packages that will be needed for our analysis.

> require(nlme)
library(lattice)
library(RColorBrewer)
library(ClassComparison)
library(ClassDiscovery)

vV VvV Vv Vv

by using mclust, invoked on its own or through another package,
you accept the license agreement in the mclust LICENSE file
and at http://www.stat.washington.edu/mclust/license.txt

We modify some of the default display options for the trellis/lattice plots.

> x <- trellis.par.get("plot.symbol")
x$pch <- 16

x$col <- "#00aa60"
trellis.par.set("plot.symbol", x)

>
>
>
> rm(x)
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2.2 Affymetrix data

The processed Affymetrix data can be found in the following location:

> basedir <- ifelse(.Platform$0S == "windows", "//mdadqsfs02", "/data")
> datadir <- file.path(basedir, "bioinfo2", "Lung-HN", "Wistuba-VANGUARD",

+ "Analysis")

Here we load the data.

> load(file.path(datadir, "gExpr-RMA-Aroma.RData"))

In order to understand what is contained in the dataset, we explore the objects that we just loaded.

> 1s()

[1] "basedir" "datadir" "gExpr"
> class(gExpr)

[1] "data.frame"

> dim(gExpr)

[1] 33252 396

> class(normData)

[1] "data.frame"

> dim(normData)

[1] 33252 391

> normData <- as.matrix(normData)
> class(si)

[1] "data.frame"
> dim(si)

[1] 391 61

"normData" "si"

> all(colnames (normData) == rownames(si))

[1] TRUE
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2.3 Gene/Probe Annotations
Here we load the annotations for the probes on the ST 1.0 array.

> annot <- read.csv(file.path(datadir, "RNW",

+ "Human Gene 1.0 ST annotations for Li Shen.csv"),
+ header=TRUE, as.is=TRUE, na.strings=c("NA","Un", ""),
+ row.names=1)

> all(rownames (normData) Jinj, rownames (annot))

[1] TRUE
> annot <- annot[rownames (normData), ]
> annot$Symbol <- factor (annot$Symbol)
> annot$UGCluster <- factor (annot$UGCluster)
> annot$Chromosome <- factor (annot$Chromosome,
+ levels=c(1:22, "X", "Y"))
> annot$Cytoband <- factor(annot$Cytoband)
> summary (annot)
Name Accession UGCluster Symbol
Length:33252 Length:33252 Hs.559040: 26  L0C349196: 26
Class :character Class :character Hs.199343: 13 DUX4 : 12
Mode :character Mode :character Hs.196086: 12 FAMOOA1 12
Hs.460179: 12 MGC72080 : 12
Hs.553518: 12 SMG1 : 12
(Other) :21386 (Other) :21697
NA's 111791 NA's 111481
EntrezID Chromosome Cytoband GO

Min. : 1 1 : 2241  6p21.3 : 356 Length:33252

1st Qu.: 7166 19 1 1442 19p13.3: 210 Class :character

Median : 51585 2 : 1385 16p13.3: 203 Mode :character

Mean : 1588044 11 : 1374 19p13.2: 170

3rd Qu.: 124778 6 : 1355 Xq28 ;133

Max. 1100499221 (Other) :13971 (Other) :20629

NA's : 11481 NA's 111484  NA's 111551

2.4 Clinical Data

Now we clean up the clinical data.

si$Batch <- factor(si$Batch)

si$Gender <- factor(si$Gender)

si$Diagnosis. .Histology. <- factor(si$Diagnosis..Histology.)
colnames(si) [19] <- "Histology"

vV V. Vv Vv
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si$0ff.study_Reason <- factor (si$0ff.study_Reason)

si$Differentiation <- factor(si$Differentiation)

si$Leison.Site <- factor(si$Leison.Site)

si$Anatomical_site <- factor(si$Anatomical_site)

si$site.of.collection <- factor(si$site.of.collection)

si$Contralateral <- factor(si$Contralateral)

dmlev <- c("ADJ", "NON-ADJ", "MC", "CONTRA")

si$DetMap <- factor(si$DetMap, levels = dmlev)

mlev <- c("ADJ", "NON-ADJ", "MC")

si$Map <- factor(si$Map, levels = mlev)

si$Code.4.time.point <- factor(si$Code.4.time.point)

si$Code.4.Site.of .collection <- factor(si$Code.4.Site.of.collection)

si$pT <- factor(si$pT)

si$pN <- factor(si$pN)

si$Final.Pat.Stage <- factor(si$Final.Pat.Stage)

si$EGFR.status <- factor(si$EGFR.status)

si$KRAS.status <- factor(si$KRAS.status)

si$V_Case.ID.Inclusion_number. <- factor(paste("P", si$V_Case.ID.Inclusion_number.,
sep = ""))

colnames(si) [8] <- "Case"

simplify <- c(2, 8, 27, 31, 34, 12, 14:20, 22, 24, 43:47, 13)

rm(dmlev, mlev)

summary (si[, simplifyl])

VVVV+VVVVVVVVVVVVVVVVVYV

Batch Case DetMap Map Time.point
I:71 P1 : 25 ADJ : 62 ADJ : 62 Min. : 0.00
I1:320 P31 : 24 NON-ADJ:107  NON-ADJ:268 1st Qu.: 0.00

P40 : 24 MC : 60 MC : 60 Median :12.00

P44 : 24 CONTRA :161 NA's 01 Mean :15.87

P6 : 24 NA's 1 3rd Qu.:24.00

P18 : 23 Max. :36.00

(Other) : 247

0ff.study_Reason Gender DOB..DOBirth. DOSurgery

17 F:134 Length:391 Length:391

N :332 M:257 Class :character Class :character
Y_died : 25 Mode :character Mode :character

Y_recurrence lung: 17

DOInclusion Surgery Histology Differentiation
Length:391 Length:391 Adenocarcinoma:309  MOD :180
Class :character Class :character Squamous : 82  MOD-POOR: 24
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Mode :character Mode :character POOR : 35

W 1 42

WELL : 23

NA's . 87
Anatomical_site Contralateral pT pN Final.Pat.Stage EGFR.status
LLL: 58 01 1A :203 0:366 I : 23 MUT del E19: 18
LUL:102 CONTRA: 161 1B : 43 1: 25 IA :221 WT 71
RLL: 80 IPSI :169 20 : 98 IB : 98 NA's :302
RML: 17 MC : 60 2B : 24 ITA: 49
RUL:134 NA's: 23

KRAS.status
MUT cod 12: 24
WT : 65
NA's :302

tmp <- si[match(levels(as.factor(si$MRN)), si$MRN), c(8, 13)]
tmp2 <- read.csv(file.path(datadir, "RNW", "Copy of VANGUARD_06012011_BRONCHIAL BRUSHES.csv".
header = TRUE, as.is = TRUE, na.strings = c("NA", "Un", ""), row.names = "MDAH")
ci <- data.frame(tmp, Event = tmp2[match(tmp$MRN, rownames (tmp2)),
"Event"])
ci <- cilorder(ci$Case), ]
rownames (ci) <- ci$Case
Event.col <- rep("Suspicion", nrow(ci))
Event.col[which(ci$Event == "YES")] <- "Recurrence"
Event.col[which(ci$Event == "NO")] <- "No"
ci <- cbind(ci, Event.col)
ci <- cif[, c(1, 4)]
foo <- merge(si, ci, by = "Case")
for (i in 1:nrow(foo)) {
w <- which(si$Experiment.Names == foo[i, "Experiment.Names"])
if (length(w) != 1)
stop("no unique match")
rownames (foo) [i] <- rownames(si) [w]
}
foo <- fool[rownames(si), ]
foo <- foo[, c(colnames(si), "Event.col")]
all(sil, 1:61] == fool, 1:61])

VVYV+ + + + +VVVVVVVVV + YV + VYV

[1] NA
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> si <- foo
> rm(foo, ci, Event.col, tmp, tmp2, i, w)

These colors will be used in some of the later plots.

ev.col <- c¢(No = "white", Recurrence = "black", Suspicion = "gray")
ev.colors <- ev.col[as.character(si$Event.col)]
hist.col <- c(Adenocarcinoma = "orange", Squamous = "purple")

hist.colors <- hist.coll[as.character(si$Histology)]

batch.col <- c¢(I = "cyan", II = "magenta")

batch.colors <- batch.col[as.character(si$Batch)]

site.col <- brewer.pal(5, "Reds")[2:5]

names (site.col) <- levels(si$DetMap)

site.col <- c(ADJ = "red", “NON-ADJ" = "gold", MC = "green", CONTRA = "blue")

site.colors <- site.col[as.numeric(si$DetMap)]

time.col <- brewer.pal(5, "Blues")[2:5]

names (time.col) <- seq(0, 36, 12)

time.colors <- time.col[l + round(si$Time.point/12)]

case.col <- c(brewer.pal(3, "Reds"), brewer.pal(3, "Blues"), brewer.pal(3,
"Greens"), brewer.pal(3, "Purples"), brewer.pal(3, "Greys")[2:3],
brewer.pal(12, "Paired")[11], brewer.pal(9, "Set1")[6:7], brewer.pal(8,

"Dark2") [4], "#88elel")

names (case.col) <- levels(si$Case)

case.colors <- case.col[as.numeric(si$Case)]

colorfacs <- list(Case = list(fac = si$Case, col = case.col), Site = list(fac = si$DetMap,
col = site.col), Time = list(fac = factor(si$Time.point), col = time.col),
Batch = list(fac = si$Batch, col = batch.col), Histology = list(fac = si$Histology,

col = hist.col), Event = list(fac = si$Event.col, col = ev.col))
cr <- colorRampPalette(c("white", brewer.pal(9, "Oranges")))
tf <- function(x) x70.15

VV+ 4+ +VVYV+ ++VVVVVVVVVVVYVVYV

3 Statistical Modeling

We use a mixed-effects model to understand the expression patterns of each gene. Fixed effects
represent

e Batch: array data were collected (over time) in two batches from two different laboratories.

e DetMap: This is a detailed map of the site where each (bronchial bruishing) sample was
obtained. There are four levels of this variable, basically corresponding to its distance from
the site of the primary tumor. The levels are ADJ (adjacent to the tumor), NON-ADJ (same
half of the lung but not adjacent to the tumor), MC (main carina), and CONTRA (from the
contralateral lung).
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e Time.point: Sample were collected at four time points (0, 12, 24, or 36 months).
e We also allow an interaction term between DetMap and Time.point.

Random effects primarily account for the fact that we have multiple samples from the same patient
(Case). We try to fit a model that includes a different starting point and slope over time for each
case. For some genes, we are unable to fit a model that includes different slopes for each patient;
in this case, we fall back to a single (base-level) random effect for each case.

> gene.label <- function(gene) {

+ ifelse(is.na(annot[gene, "Symbol"]), rownames(annot)[genel], as.character (annot/[gene,
+ "Symbol"]))

+ }

> f <- "modlist.rda"

> if (file.exists(f)) {

+ load(f)

+ } else {

+ modlist <- lapply(1:nrow(normData), function(x) 1)

+ for (gene in 1:nrow(normData)) {

+ gl <- gene.label (gene)

+ cat(gl, "\n", file = stderr())

+ pinfo <- 1:nrow(si)

+ pclin <- si[pinfo, simplify]

+ x <- normDatal[gene, pinfo]

+ tempd <- data.frame(sil[, c(2, 8, 27, 34, 19)], Y = x)
+ foo <- na.omit (tempd)

+ foo$Time.point <- foo$Time.point/12

+ foo <- foolorder(foo$Time.point, foo$Case), ]

+ gd <- groupedData(Y ~ Time.point | Case, data = foo, outer = “Histology)
+ mod6 <- try(lme(Y ~ Batch + DetMap * Time.point, data = gd,

+ random = “Time.point | Case, method = "ML"))

+ if (inherits(mod6, "try-error")) {

+ mod6 <- (lme(Y ~ Batch + DetMap * Time.point, data = gd,

+ random = ~1 | Case, method = "ML"))

+ }

+ modlist[[gene]] <- mod6

+ }

+ rm(gene, gl, pinfo, pclin, x, tempd, foo, gd, mod6)

+ save(modlist, file = f)

+
>
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3.1 Relative Importance of Fixed Effects

In the next block of code, we extract the p-values from the statistical models. To illustrate what
we expect to get, we first show an example.

> x <- modlist[[1]]
> anova(x)

numDF denDF F-value p-value

(Intercept) 1 363 7571.805 <.0001
Batch 1 363 17.882 <.0001
DetMap 3 363 0.185 0.9068
Time.point 1 363 8.879 0.0031
DetMap:Time.point 3 363 2.944 0.0330

This example shows that we get separate p-values for each of the fixed effects included in the model,
stored as the fourth column of the ANOVA table. So, we extract that column for each gene and
save it.

> f <- '"pvals.rda"
> if (file.exists(f)) {

+ load(f)

+ } else {

+ lap <- lapply(modlist, function(x) {
+ a <- anova(x)

+ al, 4]

+ P

+ pvals <- matrix(unlist(lap), ncol = 5, byrow = TRUE)
+ a <- anova(modlist[[1]])

+ colnames(pvals) <- rownames(a)

+ rownames (pvals) <- rownames (normData)
+ pvals <- as.data.frame(pvals)

+ rm(lap, a, x)

+ save(pvals, file = f)

+ }

> rm(f)

We fit beta-uniform-mixture (BUM) models to the p-values for each of the four fundamental
terms in the statistical model. We also plot histograms for the distributions of these p-values
(Figure . It is clear that batch is an extremely large effect, being present in almost every gene.
However, after adjusting for batch, both the site and the time produce clear signs of changing (for
some genes) across the samples in a consistent manner, with site being slightly more important
than time.

> bsite <- Bum(pvals$DetMap)
> countSignificant (bsite, alpha = 0.01)
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[1] 1165

> btime <- Bum(pvals$Time.point)

> countSignificant (btime, alpha = 0.01)
[1] 348

> bbat <- Bum(pvals$Batch)

> countSignificant (bbat, alpha = 0.01)

[1] 25064

> binter <- Bum(pvals$"DetMap:Time.point")

> countSignificant (binter, alpha = 0.01)

(11 o

3.2 Interaction Between Time and Site

10

Next, we would like to better understand the interaction term in the model. The histogram for the
p-values associated with the interaction is a slightly odd shape, in that the standard BUM model

clearly does not fit the distribution (Figure [1]).

We start by asking whether the significance of site and time is correlated (tends to happen for
the same genes) or independent. A smooth scatter plot of the logistically transsformed p-values
strongly suggests that they are independent (Figure . Directly counting the overlap at a 5%

significance level agrees with this assessment.

> ss <- countSignificant(bsite, alpha
> ss

[1] 4686

> tt <- countSignificant(btime, alpha
> tt

[1] 1395

> observed <- sum(selectSignificant(bsite, alpha
+ alpha = 0.05))

> expected <- ss * tt/nrow(normData)

> round(c(0BS = observed, EXP = expected))

0BS EXP

203 197

0.05)

0.05)

0.05) & selectSignificant(btime,
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Figure 1: Histograms of p-values for the fixed effects.
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Now we restrict to the set of genes where there is some very weak evidence that both time
and site have significant effects. There are about 3000 probes for which both time and site have
p < 0.20.

> cutter <- 0.2

> onesig <- selectSignificant(bsite, alpha = cutter) & selectSignificant (btime,
+ alpha = cutter)

> sum(onesig)

[1] 3062

We can fit a BUM model to the interaction p-values associated with this subset of probes. We still
get a fairly small number of genes, even with a 30% FDR.

> bp <- Bum(pvals$"DetMap:Time.point" [onesig])
> countSignificant (bp, alpha = 0.3)

[1] 25
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Figure 3: Histogram of p-values for the interaction between time and site, restricted to genes where
both main effects show a trend toward significance.
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3.3 Random Effects

In our model, we tried to fit a random intercept and a random slope (for trends over time) for each
case. For some genes, we were unable to estimate all of these coefficients, and were forced to drop
the slope terms for individual cases. The next block of code collects the indicators that separate
genes into two categories deopending on whether or not we could add the random-effects slopes
into the model.

> ref <- unlist(lapply(modlist, function(x) {
+ dim(ranef (x)) [2]

+ }))

> table(ref)

ref
1 2
7046 26206

We were able to include random-effects slopes for 26206 genes and were unable to do so for the
remaining 7046 genes. A slightly larger percentage of fixed-effects time parameters are significant
when we cannot fit a random slope model (Figure {4J).
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4 Batch Correction

In order to generate additional plots, we need to adjust for the batch effects that are imposed on
almost all genes. The information that we need to make this adjustment is already contained in the
(fixed-effects) coefficients in the statistical models that we computed for each gene. For example,

> x <- modlist[[1]]

> fixef(x)
(Intercept) BatchII DetMapNON-ADJ
6.115740148 0.291131961 0.079230372
DetMapMC DetMapCONTRA Time.point
0.117021531 0.430656803 0.287538998
DetMapNON-ADJ:Time.point DetMapMC:Time.point DetMapCONTRA:Time.point
0.003167197 -0.071842053 -0.250375185

The next block of code extracts all of the fixed-effects coefficients from the statistical models.

> f <- "fixcoef.rda"
> if (file.exists(f)) {

+ load(f)

+ } else {

+ fip <- lapply(modlist, fixef)

+ fixcoef <- matrix(unlist(fip), ncol = 9, byrow = TRUE)
+ colnames (fixcoef) <- names(fixef(x))

+ rownames (fixcoef) <- rownames (normData)
+ fixcoef <- as.data.frame (fixcoef)

+ rm(fip, x)

+ save(fixcoef, file = f)

+ }

> rm(f)

Now we use the batch coefficients to adjust the data.

> adjData <- normData
> temp <- sweep(adjDatal, si$Batch == "I"], 1, fixcoef$BatchII, "+")
> adjDatal[, si$Batch == "I"] <- temp

4.1 Genes That Are Different By Site

We start by selecting the genes that are signifcantly different between sites, based on a 1% false
discovery rate (FDR).

> ssel <- selectSignificant(bsite, alpha = 0.01)
> site.specific <- adjDatal[ssel, ]
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Now we cluster the samples using these genes (Figure |5)).
> ssc <- hclust(distanceMatrix(site.specific, "pearson"), "ward")

There are more “adjacent” samples in the left branch and more “main carina” and “contralateral”
samples in the right branch of the dendorgram; this difference is statistically significant.

> table(cutree(ssc, k = 2))

1 2
148 243

> tab.site <- table(cutree(ssc, k = 2), si$DetMap)
> tab.site

ADJ NON-ADJ MC CONTRA
1 35 44 19 49
2 27 63 41 112

> round(tab.site[1, ]/apply(tab.site, 2, sum) * 100, 1)

ADJ NON-ADJ MC CONTRA
56.5 41.1 31.7 30.4

> fisher.test(tab.site)

Fisher's Exact Test for Count Data

data: tab.site
p-value = 0.002749
alternative hypothesis: two.sided

We also want to cluster the genes that differ between sites. With both genes and samples
clustered, we can construct a heatmap (Figure @ The patterns in the heatmap suggest that
there are at least eight different gene expression patterns, which are indicated by the colorbar along
the left side.

> ggc <- hclust(distanceMatrix(t(site.specific), "pearson"), "ward")
> scut <- cutree(ggc, k = 8)

> scut.colors <- brewer.pal(8, "Dark2")[scut]

> sclass <- as.numeric(ssel)

> sclass[ssel] <- scut

> table(sclass)

sclass

0 1 2 3 4 5 6 7 8
32087 263 38 130 348 96 115 133 42
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Figure 5: Hierarchical clustering of samples (using Pearson correlation and Ward’s linkage) based
on genes that are significantly different between sites.
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> ssite <- t(scale(t(site.specific)))
> ssitel[ssite > 5] <- 5
> ssitel[ssite < -5] <- -5

20
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Figure 6: Two-dimensional clustering heatmap image of the genes selected because they differ by
site. Top colorbar indicates site as in the previous plot. Left colorbar uses this clustering to define
8 types of gene expression patterns.
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4.2 Genes That Change Over Time

In this section, we study genes that change (linearly) over time, regardless of the site. We start by
selecting such genes with FDR equal to 5%.

> tsel <- selectSignificant(btime, alpha = 0.05)
> time.lapse <- adjDatal[tsel, ]

Next, we cluster the samples using these genes (Figure . The main branches are clearly unbal-
anced with respect to time; the starting time is much more likely to occur in the right-hand branch
and the final time point is much more likely to appear in the left hand branch. In fact, over time,
the samples seem to be moving from the right to the left branch.

> sc <- hclust(distanceMatrix(time.lapse, "pearson"), "ward")
> table(cutree(sc, k = 2))

1 2
222 169

> tab.time <- table(cutree(sc, k = 2), si$Time.point)
> tab.time

0 12 24 36
1 45 56 70 51
2 64 52 43 10

> round(tab.time[1, ]/apply(tab.time, 2, sum) * 100, 1)

0 12 24 36
41.3 51.9 61.9 83.6

> fisher.test(tab.time)
Fisher's Exact Test for Count Data

data: tab.time
p-value = 4.146e-07
alternative hypothesis: two.sided

This effect becomes even more pronounced if we cut the tree slightly lower.

> table(cutree(sc, k = 3))

1 2 3
222 124 45
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> tab.time2 <- table(cutree(sc, k = 3), si$Time.point)
> tab.time2

0 12 24 36
1 45 56 70 51
2 38 39 37 10
32613 6 O

> chisq.test(tab.time2)
Pearson's Chi-squared test

data: tab.time2
X-squared = 44.1381, df = 6, p-value = 6.94e-08

We also want to cluster the genes that differ between time. With both genes and samples
clustered, we can construct a heatmap (Figure . The patterns in the heatmap suggest that
there are at least eight different gene expression patterns, which are indicated by the colorbar along
the left side.

> gc <- hclust(distanceMatrix(t(time.lapse), "pearson"), "ward")
> tcut <- cutree(gc, k = 8)

> tcut.colors <- brewer.pal(8, "Dark2") [tcut]

> tclass <- as.numeric(tsel)

> tclass[tsel] <- tcut

> table(tclass)

tclass

0 1 2 3 4 5 6 7 8
31857 53 159 183 268 259 94 219 170

> stime <- t(scale(t(time.lapse)))
> stime[stime > 5] <- 5
> stime[stime < -5] <- -5

Actually, we only find two reasl classes: the ones that show an increase (top branch in Figure
and the ones that show a decrease (bottom branch in Figure [8) over time.
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Figure 7: Hierarchical clustering of samples (using Pearson correlation and Ward’s linkage) based
on genes that are significantly different between time points.
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Figure 8: Two-dimensional clustering heatmap image of the genes selected because they differ by
time point. Top colorbar indicates time, as in the previous plot. Left colorbar uses this clustering
to define 8 types of gene expression patterns.
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Appendix
This analysis was run in the following directory:

> getwd()
[1] "o:/Lung-HN/KRC-Analyses"

Note that ’//mdadqsfs02/bioinfo2 is the standard insititutional location for storing data and anal-
yses; ’O: is the name given to that location on this machine.
This analysis was run in the following software environment:

> sessionInfo()

R version 2.12.0 (2010-10-15)
Platform: x86_64-pc-mingw32/x64 (64-bit)

locale:

[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C

[6] LC_TIME=English_United States.1252

attached base packages:
[1] splines  stats graphics grDevices utils datasets methods Dbase

other attached packages:

[1] ClassDiscovery_2.10.2 mclust_3.4.8 cluster_1.13.1
[4] ClassComparison_2.12.0 PreProcess_2.10.1 oompaBase_2.12.0
[7] Biobase_2.10.0 RColorBrewer_1.0-2 lattice_0.19-13

[10] nlme_3.1-97

loaded via a namespace (and not attached):
[1] grid_2.12.0 KernSmooth_2.23-4
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