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1 Executive Summary

The original analysis of this report was done by Dr. Coombes. The report is sorted under:
//Mdadqsfs02 /bioinfo2 /Lung-HN/KRC-Analyses

(01-vanguard-kre.pdf)

In this report, we rerun the code to find genes differentially expressed in a site and time-dependent
manner after removing the main carinas.

1.1 Introduction

This dataset was acquired using Affymetrix Human Gene ST 1.0 Exon Arrays. The samples came
from 19 non-small-cell lung cancer (NSCLC) patients and were collected via bronchial brushings at
different sites and different times.

1.1.1 Aims/Objectives

The primary goal is to discover genes and pathways that change over time or that have differential
expression based on the proximty of the collection site and the primary tumor.

1.2 Methods
1.2.1 Description of the Data

The processed microarray data consists of measurements of the expression of 32,252 probes in
391 samples from 19 patients. The data were colected in two large batches, which in this case
represents different laboratories. The first batch of 70 samples were run in Li Mao’s laboratory,
while the second batch of 321 samples was run in Ignacio Wistuba’s laboratory. Fortunately, the
batches are not completely confounded with contrasts of interest, but the first batch is “enriched”
for samples collected at the baseline time point and for samples from the main carina.

1.2.2 Statistical Methods

Microarray data were processed using the RMA algorithm as implemented in the aroma.affymetrix
package of R. We use a mixed-effects model on the processed data to understand the expression
patterns of each gene. the fixed effects represent

e Batch: array data were collected (over time) in two batches from two different laboratories.
This effect is a nuisance and not one we really want to use to make inferences.

e DetMap: This is a detailed map of the site where each (bronchial brushing) sample was
obtained. There are four levels of this variable, basically corresponding to its distance from
the site of the primary tumor. In order, the levels are ADJ (adjacent to the tumor), NON-
ADJ (same half of the lung but not adjacent to the tumor), MC (main carina), and CONTRA
(from the contralateral lung).

e Time.point: Samples were collected at four time points (0, 12, 24, or 36 months).
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e We also allow an interaction term between DetMap and Time.point.

Random effects primarily account for the fact that we have multiple samples from the same patient
(Case). We try to fit a model that includes a different starting point and slope over time for each
case. For some probes, we are unable to fit a model that includes different slopes for each patient;
in this case, we fall back to a single (base-level) random effect foe each case.

1.3 Results

e Batch is a dominant effect on gene expression (Figure [1J).

e After adjusting for batch (as part of the mixed-effects model), both site and time are significant
in some genes, with site more important than time (Figure [1)).

e There is very weak (and perhaps no real) evidence that the interaction term is ever significant
(Figure [1] Figure (3).

1.4 Conclusions

2 Loading the Data

2.1 R Packages

We start by loading the packages that will be needed for our analysis.

> require(nlme)

> library(lattice)

> library(RColorBrewer)

> library(ClassComparison)
> library(ClassDiscovery)

We modify some of the default display options for the trellis/lattice plots.

x <- trellis.par.get("plot.symbol")
x$pch <- 16

x$col <- "#00aa60"
trellis.par.set("plot.symbol", x)
rm(x)

vV V. Vv Vv Vv

2.2 Affymetrix data

The processed Affymetrix data can be found in the following location:

> basedir <- ifelse(.Platform$0S == "windows", "//mdadqsfs02", "/data")
> datadir <- file.path(basedir, "bioinfo2",
+ "Lung-HN", "Wistuba-VANGUARD", "Analysis")
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Here we load the data.

> load(file.path(datadir, "gExpr-RMA-Aroma.RData"))

In order to understand what is contained in the dataset, we explore the objects that we just loaded.

> 1s()

[1] "adjData" "annot" "basedir" "batch.col" "batch.colors"

[6] "bbat" "binter" "bp" "bsite" "btime"

[11] "case.col" "case.colors" "colInd" "colorfacs" "colorfacs.sp"
[16] "colorfacs.sp2" "colt" "cr" "cutter" "datadir"

[21] "ddc" "ddr" "ev.col" "ev.colors" "expected"
[26] "fixcoef" "gc" "gene.label" "gExpr" "ggc"

[31] "group" "hist.col" "hist.colors" "keysize" "labR"

[36] "1abs" "lhei" "Tmat" " 1p n "wid"

[41] "m" "margins" "mc" "modlist" "my.col"

[46] llmy.figll llmy.ill "my.pCC" IInll I|n1"

[51] "n2" "normData" "observed" "onesig" "opar"

[56] "pvals" "results" "rmMC.sclass" "rowInd" "sc"

[61] "sclass" "scut" "scut.colors" "select.p" "si"

[66] "simplify" "si.sp" "site.col" "site.colors" "site.specific"
[71] "sp.case.col" ‘"sp.site.col"  "ss" "ssc" "ssel"

p p

[76] "ssite" "stime" "tab" "tab.site" "tab.time"
[81] "tab.time2" "tclass" "tcut" "tcut.colors"  "temp"

[86] "temp.s" "Lt "time.col" "time.colors" "time.lapse"
[91] lltselll llttll ||ulim||

> class(gExpr)
[1] "data.frame"
> dim(gExpr)
[1] 33252 396
> class(normData)
[1] "data.frame"
> dim(normData)
[1] 33252 391

> normData <- as.matrix(normData)
> class(si)
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[1] "data.frame"

> dim(si)

[1] 391 61

> all(colnames (normData)==rownames (si))
[1] TRUE

> table(si$DetMap)

ADJ CONTRA MC NON-ADJ
1 62 161 60 107

Here we remove the main carinas.

> mc <- which(si$DetMap /}inj, "MC")
> si <- si[-mc,]

> normData <- normDatal,-mc]

> dim(si)

[1] 331 61

> dim(normData)

[1] 33252 331

> all(colnames (normData)==rownames (si))
[1] TRUE

> table(si$DetMap)

ADJ CONTRA NON-ADJ
1 62 161 107

2.3 Gene/Probe Annotations
Here we load the annotations for the probes on the ST 1.0 array.

> annot <- read.csv(file.path(datadir, "RNW",

+ "Human Gene 1.0 ST annotations for Li Shen.csv"),
+ header=TRUE, as.is=TRUE, na.strings=c("NA","Un", ""),
+ row.names=1)

> all(rownames (normData) J/,inj, rownames (annot))
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[1] TRUE
> annot <- annot[rownames (normData), ]
> annot$Symbol <- factor (annot$Symbol)
> annot$UGCluster <- factor (annot$UGCluster)
> annot$Chromosome <- factor (annot$Chromosome,
+ levels=c(1:22, "X", "Y"))
> annot$Cytoband <- factor (annot$Cytoband)
> summary (annot)
Name Accession UGCluster Symbol
Length:33252 Length:33252 Hs.559040: 26  L0C349196: 26
Class :character Class :character Hs.199343: 13 DUX4 : 12
Mode :character Mode :character Hs.196086: 12 FAMOOA1 12
Hs.460179: 12 MGC72080 : 12
Hs.553518: 12 SMG1 : 12
(Other) :21386 (Other) :21697
NA's 111791 NA's 111481
EntrezID Chromosome Cytoband GO

Min. : 1 1 : 2241  6p21.3 : 356 Length:33252

1st Qu.: 7166 19 : 1442 19p13.3: 210 Class :character

Median : 51585 2 : 1385 16p13.3: 203 Mode :character

Mean : 1588044 11 : 1374 19p13.2: 170

3rd Qu.: 124778 6 : 1355 Xq28 ;133

Max. 1100499221 (Other) :13971 (Other) :20629

NA's : 11481 NA's 111484  NA's 111551

2.4 Clinical Data

Now we clean up the clinical data.

si$Batch <- factor(si$Batch)

si$Gender <- factor(si$Gender)
si$Diagnosis..Histology. <- factor(si$Diagnosis..Histology.)
colnames(si) [19] <- "Histology"

si$0ff.study_Reason <- factor (si$0ff.study_Reason)
si$Differentiation <- factor(si$Differentiation)
si$lLeison.Site <- factor(si$Leison.Site)
si$Anatomical_site <- factor(si$Anatomical_site)
si$site.of.collection <- factor(si$site.of.collection)
si$Contralateral <- factor(si$Contralateral)

dmlev <- c("ADJ", "NON-ADJ", "CONTRA")

si$DetMap <- factor(si$DetMap, levels=dmlev)

mlev <- c("ADJ", "NON-ADJ")

VVVVVVVVVVVVYV
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VVVVV + +VVVVVVVVVYV

si$Map <- factor(si$Map, levels=mlev)
#si$Time.point <- as.numeric(si$Time.point)
si$Code.4.time.point <- factor(si$Code.4.time.point)
si$Code.4.Site.of.collection <- factor(si$Code.4.Site.of.collection)
si$pT <- factor(si$pT)
si$pN <- factor (si$pN)
si$Final.Pat.Stage <- factor(si$Final.Pat.Stage)
si$EGFR.status <- factor (si$EGFR.status)
si$KRAS.status <- factor(si$KRAS.status)
s81$V_Case.ID.Inclusion_number. <- factor(paste("P",
si$V_Case.ID.Inclusion_number.,
sep=""))
colnames(si) [8] <- "Case"
colnames(si) [13] <- "MRN"
simplify <- c(2, 8, 27, 31, 34, 12, 14:20, 22, 24, 43:47, 13)
rm(dmlev, mlev)
summary (si[, simplify])
Batch Case DetMap Map Time.point
I:37 P1 : 20 ADJ : 62 ADJ : 62 Min. : 0.00
I1:294 P20 : 20 NON-ADJ:107  NON-ADJ:268 1st Qu.: 0.00
P3 : 20 CONTRA :161 NA's : 1 Median :12.00
P30 : 20 NA's 1 Mean :15.73
P31 : 20 3rd Qu.:24.00
P40 : 20 Max. :36.00
(Other) : 211
0ff.study_Reason Gender DOB..DOBirth. DOSurgery
14 F:113 Length:331 Length:331
N 1282 M:218 Class :character Class :character
Y_died : 20 Mode :character Mode :character
Y_recurrence lung: 15
DOInclusion Surgery Histology Differentiation
Length:331 Length:331 Adenocarcinoma:261  MOD :151
Class :character Class :character  Squamous : 70  MOD-POOR: 20
Mode :character Mode :character POOR : 31
W : 35
WELL : 20
NA's 1 74

Anatomical_site Contralateral P

T pN

Final.Pat.Stage

EGFR.status
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LLL: 48 01 1A :170 0:311 I : 20 MUT del E19: 15
LUL: 86 CONTRA:161 1B : 35 1: 20 TA :185 WT : B9
RLL: 68 IPSI :169 20 : 86 IB : 86 NA's 1257
RML: 15 2B : 20 ITA: 40

RUL:114 NA's: 20

KRAS.status
MUT cod 12: 20
WT : b4
NA's : 257

tmp <- si[match(levels(as.factor(si$MRN)), si$MRN), c(8,13)]
tmp2 <- read.csv(file.path(datadir, "RNW",

"Copy of VANGUARD_06012011_BRONCHIAL BRUSHES.csv"),
header=TRUE, as.is=TRUE, na.strings=c("NA","Un", ""),
row.names="MDAH")

ci <- data.frame(tmp, Event=tmp2[match(tmp$MRN, rownames (tmp2)),"Event"])
ci <- cilorder(ci$Case),]
rownames (ci) <- ci$Case
Event.col <- rep("RecurrenceII", nrow(ci))
Event.col[which(ci$Event=="YES")] <- "RecurrenceI"
Event.col[which(ci$Event=="N0")] <- "No"
ci <- cbind(ci, Event.col)
ci <- cil[, c(1,4)]
foo <- merge(si, ci, by="Case")
for (i in 1:nrow(foo)) {
w <- which(si$Experiment.Names == foo[i, 'Experiment.Names'])
if (length(w) != 1)
stop("no unique match")
rownames (foo) [i] <- rownames (si) [w]
}
foo <- fool[rownames(si),]
foo <- foo[,c(colnames(si), "Event.col")]
all(si[, 1:61]==foo[,1:61])

VVYV + + + + +VVVVVVVVVV + + + VYV

[1] NA
> g8i <- foo
> rm(foo, ci, Event.col, tmp, tmp2, i, w)

> write.table(si, file="SampleInfo.csv", sep=",")

These colors will be used in some of the later plots.
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ev.col <- c(No="white", Recurrencel="black", Recurrencell="gray")
ev.colors <- ev.col[as.character(si$Event.col)]
hist.col <- c(Adenocarcinoma='orange',
Squamous='purple')
hist.colors <- hist.col[as.character(si$Histology)]
batch.col <- c(I='cyan',
IT='magenta')
batch.colors <- batch.col[as.character(si$Batch)]
site.col <- brewer.pal(5, "Reds")[2:5]
names (site.col) <- levels(si$DetMap)
site.col <- c(ADJ="red", "NON-ADJ"="gold", CONTRA="blue")
site.colors <- site.col[as.numeric(si$DetMap)]
time.col <- brewer.pal(5, "Blues")[2:5]
names (time.col) <- seq(0, 36, 12)
time.colors <- time.col[l+round(si$Time.point/12)]
case.col <- c(brewer.pal(3, "Reds"),
brewer.pal(3, "Blues"),
brewer.pal(3, "Greens"),
brewer.pal(3, "Purples"),
brewer.pal(3, "Greys")[2:3],
brewer.pal (12, "Paired")[11],
brewer.pal(9, "Set1")[6:7],
brewer.pal(8, "Dark2")[4],
"#88elel")
names (case.col) <- levels(si$Case)
case.colors <- case.col[as.numeric(si$Case)]
#barplot (rep(1, 19), col=case.col)
colorfacs <- list(

Case=1ist(
fac=si$Case,
col=case.col),

Site=list(
fac=si$DetMap,
col=site.col),

Time=1list(
fac=factor(si$Time.point),
col=time.col),

Batch=list(
fac=si$Batch,
col=batch.col),

Histology=list(
fac=si$Histology,

+ + + + 4+ ++++++++F+FVVVVIEEHF+HE+EFFHFVVVVYVVVVVYVY+VYV +YVYVY
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col=hist.col),
Event=list(
fac=si$Event.col,
col=ev.col)
)
> cr <- colorRampPalette(c("white", brewer.pal(9, "Oranges")))
> tf <- function(x) x70.15

+ + + + +
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3 Statistical Modeling

We use a mixed-effects model to understand the expression patterns of each gene. Fixed effects
represent

e Batch: array data were collected (over time) in two batches from two different laboratories.
This effect is a nuisance and not one we really want to use to make inferences.

e DetMap: This is a detailed map of the site where each (bronchial bruishing) sample was
obtained. There are four levels of this variable, basically corresponding to its distance from
the site of the primary tumor. In order, the levels are ADJ (adjacent to the tumor), NON-
ADJ (same half of the lung but not adjacent to the tumor), MC (main carina), and CONTRA
(from the contralateral lung).

e Time.point: Sample were collected at four time points (0, 12, 24, or 36 months).
e We also allow an interaction term between DetMap and Time.point.

Random effects primarily account for the fact that we have multiple samples from the same patient
(Case). We try to fit a model that includes a different starting point and slope over time for each
case. For some genes, we are unable to fit a model that includes different slopes for each patient;
in this case, we fall back to a single (base-level) random effect for each case.

gene.label <- function(gene) {
ifelse(is.na(annot[gene, "Symbol"]),
rownames (annot) [gene],
as.character (annot [gene, "Symbol"]))
}
f <- "modlist.rda"
if (file.exists(f)) {
load(f)
} else {
modlist <- lapply(1:nrow(normData), function(x) 1)
for (gene in 1:nrow(normData)) {
gl <- gene.label(gene)
cat(gl, "\n", file=stderr())
pinfo <- 1:nrow(si)
pclin <- si[pinfo, simplify]
x <- normData[gene, pinfo]
tempd <- data.frame(sil, c(2,8, 27, 34, 19)], Y=x)
foo <- na.omit(tempd)
foo$Time.point <- foo$Time.point/12
foo <- fool[order(foo$Time.point, foo$Case),]
gd <- groupedData(Y “Time.point/Case,data=foo, outer="Histology)
mod6 <- try(lme(Y ~ Batch + DetMap*Time.point, data=gd,

+ + + + 4+ + ++ 4+ +F++++F+VV+E+++V
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+ random = ~ Time.point|Case,

+ method="ML") )

+ if (inherits(mod6, "try-error")) {

+ mod6 <- (lme(Y ~ Batch + DetMap*Time.point, data=gd,
+ random = ~ 1/Case,

+ method="ML"))

+ }

+ modlist[[gene]] <- mod6

+ F

+ rm(gene, gl, pinfo, pclin, x, tempd, foo, gd, mod6)
+ save(modlist, file=f)

+ }

> rm(f)

3.1 Relative Importance of Fixed Effects

In the next block of code, we extract the p-values from the statistical models. To illustrate what
we expect to get, we first show an example.

> x <- modlist[[1]]
> anova (x)

This example shows that we get separate p-values for each of the fixed effects included in the model,
stored as the fourth column of the ANOVA table. So, we extract that column for each gene and
save it.

> f <- '"pvals.rda"
> if (file.exists(f)) {

+  load(f)

+ } else {

+ lap <- lapply(modlist, function(x) {
+ a <- anova(x)

+ al,4]

+ P

+ pvals <- matrix(unlist(lap), ncol=5, byrow=TRUE)
+ a <- anova(modlist[[1]])

+  colnames(pvals) <- rownames(a)

+  rownames(pvals) <- rownames(normData)
+ pvals <- as.data.frame(pvals)

+ rm(lap, a, x)

+ save(pvals, file=f)

+ }

> rm(f)
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We fit beta-uniform-mixture (BUM) models to the p-values for each of the four fundamental
terms in the statistical model. We also plot histograms for the distributions of these p-values
(Figure . It is clear that batch is an extremely large effect, being present in almost every gene.
However, after adjusting for batch, both the site and the time produce clear signs of changing (for
some genes) across the samples in a consistent manner, with site being slightly more important
than time.

> bsite <- Bum(pvals$DetMap)
> countSignificant (bsite, alpha=0.01)

[1] 136

> btime <- Bum(pvals$Time.point)
> countSignificant (btime, alpha=0.01)

[1] 502

> bbat <- Bum(pvals$Batch)
> countSignificant (bbat, alpha=0.01)

[1] 22308

> binter <- Bum(pvals$'"DetMap:Time.point")
> countSignificant (binter, alpha=0.01)

(11 0

3.2 Interaction Between Time and Site

Next, we would like to better understand the interaction term in the model. The histogram for the
p-values associated with the interaction is a slightly odd shape, in that the standard BUM model
clearly does not fit the distribution (Figure [1)). This observation should not be terribly surprising,
since the model with an interation term only makes sense if the main effects (site and time) are
themselves significant.

We start by asking whether the significance of site and time is correlated (tends to happen for
the same genes) or independent. A smooth scatter plot of the logistically transsformed p-values
strongly suggests that they are independent (Figure [2]). Directly counting the overlap at a 5%
significance level agrees with this assessment.

> ss <- countSignificant (bsite, alpha=0.05)
> ss

[1] 701
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Figure 1: Histograms of p-values for the fixed effects.
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> tt <- countSignificant(btime, alpha=0.05)
> tt

[1] 2381

> observed <- sum(selectSignificant(bsite, alpha=0.05) &
+ selectSignificant (btime, alpha=0.05))
> expected <- ss*tt/nrow(normData)

> round (c(0BS=observed, EXP=expected))

0BS EXP
40 50

Now we restrict to the set of genes where there is some very weak evidence that both time
and site have significant effects. There are about 3000 probes for which both time and site have
p < 0.20.

> cutter <- 0.20

> onesig <- selectSignificant(bsite, alpha=cutter) &
+ selectSignificant (btime, alpha=cutter)

> sum(onesig)

[1] 1685

We can fit a BUM model to the interaction p-values associated with this subset of probes. We still
get a fairly small number of genes, even with a 30% FDR.

> bp <- Bum(pvals$"DetMap:Time.point" [onesig])
> countSignificant (bp, alpha=0.30)

[1] 150
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Figure 2: Smoothed scatter plot logistically transformed p-values from site and time.
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Interaction, Restricted
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Figure 3: Histogram of p-values for the interaction between time and site, restricted to genes where
both main effects show a trend toward significance.
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4 Batch Correction

In order to generate additional plots, we need to adjust for the batch effects that are imposed on
almost all genes. The information that we need to make this adjustment is already contained in the
(fixed-effects) coefficients in the statistical models that we computed for each gene. For example,

> x <- modlist[[1]]
> fixef (x)

The next block of code extracts all of the fixed-effects coefficients from the statistical models.

> f <- "fixcoef.rda"

> if (file.exists(f)) {

+ load(f)

+ } else {

+ fip <- lapply(modlist, fixef)

+ fixcoef <- matrix(unlist(fip), ncol=7, byrow=TRUE)
+  colnames(fixcoef) <- names(fixef(x))

+  rownames (fixcoef) <- rownames(normData)
+ fixcoef <- as.data.frame(fixcoef)

+ rm(fip, x)

+ save(fixcoef, file=f)

+ }

> rm(f)

Now we use the batch coefficients to adjust the data.

> adjData <- normData
> temp <- sweep(adjDatal, si$Batch=="I"], 1, fixcoef$BatchII, "+")
> adjDatal[, si$Batch=="I"] <- temp

4.1 Genes That Are Different By Site

We start by selecting the genes that are signifcantly different between sites, based on a 1% false
discovery rate (FDR).

ssel <- selectSignificant(bsite, alpha=0.01)

site.specific <- adjDatalssel,]

ggc <- hclust(distanceMatrix(t(site.specific), "pearson"), "ward")
scut <- cutree(ggc, k=2)

scut.colors <- brewer.pal(8, "Dark2")[scut]

sclass <- as.numeric(ssel)

sclass[ssel] <- scut

table(sclass)

V V.V V V.V V.YV



VANGUARD-Report_V 19

sclass
0 1 2
33116 23 113

> results <- data.frame(site.specific,

+ DetMap=pvals[ssel, "DetMap"l],

+ SiteClass=sclass[ssel],

+ annot [ssel,])

> results <- results[order (results$DetMap, decreasing=F),]

> write.csv(results, file=file.path(datadir, "site.specific.csv"))
> rmMC.sclass <- sclass
> save(rmMC.sclass, file="01-1-rmMCsclass-Site.R")
>

Now we cluster the samples using these genes (Figure [4)).
> ssc <- hclust(distanceMatrix(site.specific, "pearson"), "ward")

There are more “adjacent” samples in the left branch and more “main carina” and “contralateral”
samples in the right branch of the dendorgram; this difference is statistically significant.

> table(cutree(ssc, k=2))

1 2
103 228

> tab.site <- table(cutree(ssc, k=2), si$DetMap)
> tab.site

ADJ NON-ADJ CONTRA
1 32 33 37
2 30 74 124

> round(tab.site[1,]/apply(tab.site, 2, sum)*100, 1)

ADJ NON-ADJ CONTRA
51.6 30.8 23.0

> fisher.test(tab.site)

Fisher's Exact Test for Count Data

data: tab.site
p-value = 0.0002656
alternative hypothesis: two.sided
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Figure 4: Hierarchical clustering of samples (using Pearson correlation and Ward’s linkage) based
on genes that are significantly different between sites.
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We also want to cluster the genes that differ between sites. With both genes and samples
clustered, we can construct a heatmap (Figure . The patterns in the heatmap suggest that
there are at least two different gene expression patterns, which are indicated by the colorbar along
the left side.

ggc <- hclust(distanceMatrix(t(site.specific), "pearson"), "ward")
scut <- cutree(ggc, k=2)

scut.colors <- brewer.pal(3, "Dark2")[scut]

sclass <- as.numeric(ssel)

sclass[ssel] <- scut

table(sclass)

vV V.V Vv VvV

sclass
0 1 2
33116 23 113

> ssite <- t(scale(t(site.specific)))
> ssite[ssite > 5] <- 5
> ssite[ssite < -5] <- -5
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Figure 5: Two-dimensional clustering heatmap image of the genes selected because they differ by
site. Top colorbar indicates site as in the previous plot. Left colorbar uses this clustering to define
2 types of gene expression patterns.
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4.2 Genes That Change Over Time

In this section, we study genes that change (linearly) over time, regardless of the site. We start by
selecting such genes with FDR equal to 5%.

tsel <- selectSignificant(btime, alpha=0.05)

time.lapse <- adjDataltsel,]

gc <- hclust(distanceMatrix(t(time.lapse), "pearson"), "ward")
tcut <- cutree(gc, k=8)

tcut.colors <- brewer.pal(8, "Dark2") [tcut]

tclass <- as.numeric(tsel)

tclass[tsel] <- tcut

table(tclass)

V V.V V V.V V.YV

tclass
0 1 2 3 4 5 6 7 8
30871 306 268 323 239 519 274 137 315

> results <- data.frame(time.lapse,

+ Time.point=pvals[tsel, "Time.point"],
+ TimeClass=tclass[tsel],
+ annot [tsel,])

> results <- results[order (results$Time.point, decreasing=F),]
> write.csv(results, file=file.path(datadir, "time.lapse.csv"))
>

Next, we cluster the samples using these genes (Figure @ The main branches are clearly unbal-
anced with respect to time; the starting time is much more likely to occur in the right-hand branch
and the final time point is much more likely to appear in the left hand branch. In fact, over time,
the samples seem to be moving from the right to the left branch.

> sc <- hclust(distanceMatrix(time.lapse, "pearson'"), "ward")
> table(cutree(sc, k=2))

1 2
240 91

> tab.time <- table(cutree(sc, k=2), si$Time.point)
> tab.time

0 12 24 36
1 44 69 78 49
249 23 18 1
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> round(tab.time[1,]/apply(tab.time, 2, sum)*100, 1)

0 12 24 36
47.3 75.0 81.2 98.0

> fisher.test(tab.time)

Fisher's Exact Test for Count Data

data: tab.time
p-value = 1.67e-11
alternative hypothesis: two.sided

This effect becomes even more pronounced if we cut the tree slightly lower.

> table(cutree(sc, k=3))

1 2 3
240 85 6

> tab.time2 <- table(cutree(sc, k=3), si$Time.point)
> tab.time2

0 12 24 36
1 44 69 78 49
247 2117 O
3 2 2 1 1

> chisq.test (tab.time2)

Pearson's Chi-squared test

data: tab.time2
X-squared = 52.0489, df = 6, p-value = 1.823e-09

We also want to cluster the genes that differ between time. With both genes and samples
clustered, we can construct a heatmap (Figure . The patterns in the heatmap suggest that
there are at least eight different gene expression patterns, which are indicated by the colorbar along
the left side.

gc <- hclust(distanceMatrix(t(time.lapse), "pearson"), "ward")
tcut <- cutree(gc, k=8)

tcut.colors <- brewer.pal(8, "Dark2") [tcut]

tclass <- as.numeric(tsel)

tclass([tsel] <- tcut

table (tclass)

vV V.V Vv VvV
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Figure 6: Hierarchical clustering of samples (using Pearson correlation and Ward’s linkage) based
on genes that are significantly different between time points.
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tclass
0 1 2 3 4 5 6 7
30871 306 268 323 239 519 274 137

> stime <- t(scale(t(time.lapse)))
> stime[stime > 5] <- 5
> stime[stime < -5] <- -5

315

26
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Figure 7: Two-dimensional clustering heatmap image of the genes selected because they differ by
time point. Top colorbar indicates time, as in the previous plot. Left colorbar uses this clustering

to define 8 types of gene expression patterns.



VANGUARD-Report_V 28

5 Overlapping Probabilities of Top Ranking Gene Lists using Hy-
pergeometric tests

When the same set of genes appear in two top ranking gene lists in two different studies, it is often
of interest to estimate the probability for this being a chance event. This overlapping probability
is well known to follow the hypergeometric distribution.

Here we want to investigate whether the overlapping genes of genes selected from
site and time is a chance event.

> load("0Olrev-krc.R")

> n <- nrow(adjData)

> nl1 <- nrow(site.specific) # FDR 0.01

> n2 <- nrow(time.lapse) # FDR 0.05

> m <- length(intersect (rownames(site.specific), rownames(time.lapse)))
> c¢(n, n1, n2 ,m)

[1] 33252 1165 1395 42

> tab <- matrix(c(m, n2-m, nl-m, n-nl-n2+m), nrow = 2, byrow = FALSE)
> colnames (tab) <- c("InList1", "Not-InList1")
> rownames (tab) <- c("InList2", "Not-InList2")

> tab

InListl Not-InListl
InList2 42 1123
Not-InList2 1353 30734

> ### Hypergeometric Tests ###
> phyper (m-1,n1,n-n1,n2, lower.tail = FALSE)

[1] 0.864865

> phyper (min(n1,n2),n1,n-nl1,n2, lower.tail = T) - phyper(m-1,nl,n-n1,n2, lower.tail = T)
[1] 0.864865

> (fisher.test(tab, alternative='greater'))$p.value

[1] 0.864865

>

Another set: overlapping genes between 238 most differentially expressed features
selected at FDR 0.05 in difference of ADJ and CONTRA and 263 selected in cluster
1 of the site effect.
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n <- nrow(adjData)
nl <- length(rownames (adjData) [which(sclass==1)])
n2 <- length(rownames (read.csv(file="PairedTT-ADJvsCONTRA-BatchCorrect.csv",row.names=1) [1:2:
m <- length(intersect (rownames (adjData) [which(sclass==1)],
rownames (read.csv(file="PairedTT-ADJvsCONTRA-BatchCorrect.csv",row.nar

vV + VvV Vv Vv VvV

c(n, nl1, n2 ,m)
[1] 33252 263 238 66

> tab <- matrix(c(m, n2-m, nl-m, n-nl-n2+m), nrow = 2, byrow = FALSE)
> colnames (tab) <- c("InList1", "Not-InList1")
> rownames (tab) <- c("InList2", "Not-InList2")

> tab

InListl Not-InListl
InList2 66 197
Not-InList?2 172 32817

> ### Hypergeometric Tests ###
> phyper (m-1,n1,n-n1,n2, lower.tail = FALSE)

[1] 5.919104e-84

> phyper (min(n1,n2),n1,n-n1,n2, lower.tail = T) - phyper(m-1,nl,n-n1,n2, lower.tail = T)
(1] O

> (fisher.test(tab, alternative='greater'))$p.value

[1] 5.919104e-84

>

Another set: overlapping genes between 113 selected in cluster 2 of the site effect
after removing main carinas and 263 selected in cluster 1 of the site effect.

> n <- nrow(adjData)

> n1 <- length(rownames (adjData) [which(sclass==1)])

> n2 <- length(rownames (adjData) [which(rmMC.sclass==2)])
>

+

>

m <- length(intersect (rownames (adjData) [which(sclass==1)],
rownames (adjData) [which (rmMC.sclass==2)]))
c(n, n1, n2 ,m)

[1] 33252 263 113 96
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> tab <- matrix(c(m, n2-m, nl-m, n-ni1-n2+m), nrow = 2, byrow = FALSE)
> colnames (tab) <- c("InList1", "Not-InList1")
> rownames (tab) <- c("InList2", "Not-InList2")

> tab

InListl Not-InListl
InList2 96 167
Not-InList2 17 32972

> ### Hypergeometric Tests ###
> phyper(m-1,n1,n-n1,n2, lower.tail = FALSE)

[1] 2.45631e-191

> phyper (min(n1,n2),n1,n-n1,n2, lower.tail = T) - phyper(m-1,n1,n-nl,n2, lower.tail = T)
[1] O

> (fisher.test(tab, alternative='greater'))$p.value

[1] 2.45631e-191

>

6 Appendix

We save the critical results.

> results <- data.frame(pvals,

+ SiteClass=sclass,

+ TimeClass=tclass,

+ InteractionClass=iclass,

+ annot)

> if (!file.exists("Output")) dir.create("Output")
> write.csv(results, file="results.csv")

This analysis was run in the following directory:

> getwd()
[1] "/data/bioinfo2/Lung-HN/Wistuba-VANGUARD/Analysis"

Note that ’//mdadqsfs02/bioinfo2 is the standard insititutional location for storing data and anal-
yses; ’O: is the name given to that location on this machine.
This analysis was run in the following software environment:
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> sessionInfo()

R version 2.14.0 (2011-10-31)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] splines  stats graphics grDevices utils datasets methods Dbase

other attached packages:

[1] ClassDiscovery_2.10.2 mclust_3.4.11 cluster_1.14.2
[4] ClassComparison_2.10.1 PreProcess_2.10.1 oompaBase_2.12.0
[7] Biobase_2.14.0 RColorBrewer_1.0-5 lattice_0.20-6

[10] nlme_3.1-103

loaded via a namespace (and not attached):
[1] grid_2.14.0 KernSmooth_2.23-7 tools_2.14.0
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