PROXYANC: Fsr-optimal Quadratic Cone Programming

To limit the effect of background linkage disequilibrium, we assume adjacent SNPs in each population that
are spaced 10 Kb from each other. Let Z denote a set of pools of distinct reference ancestral populations.
Suppose we have SNP j, let N; and p; be the total variant allele count and observed population allele-
frequency in the admixed population (A4), and N;j, and pj, be the total variant allele count and the
population observed allele-frequency in reference population £ = 1,2,..., K of unrelated individuals.
Given different combinations C of L = |Z| reference populations of unrelated individuals from each pool
S; € Z=N~Y (i =1,...,L), each combination C of L reference populations can be obtained from the
Cartesian product T' = HiL:I S;,C € Z. Thus, from each C € Z we construct synthetic populations
consisting of L populations as the following linear combination,
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where g is the ancestral proportion. A particular combination of L populations (synthetic admixed
population) consists of the best proxy ancestries of A if their linear combination (in equation 1) minimizes
the constructed objective (in equation 2) function Fj ~ Fsr(A,pja). F‘j is approximated from a classical
Fgr function in order to render the optimization problem convex. This problem is related to optimal
quadratic cone programming, where the objective function Fj is given at each SNP j by,
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subject to Elel a; =1 and
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Equation 2 is a generalization of the objective function described in [1], and is a quadratic convex

function with respect to a; (ancestry proportion), therefore a global minimum can be found. To obtain
a matrix representation of the optimal cone programming, equation 2 can be expanded. Let us denote

Gy = pji(l_lpj)Ky Cy =p;(1 —pj), and C5 = pj(lj_vi];j). Thus, equation 2 becomes,
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It follows that,
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Substituting equation 1 into equation 4, we obtain,
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Now expanding equation 5, using a squared finite sum,
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such that x is a variable, it follows that
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Knowing that the ancestral proportion must sum to 1, Zle a; = 1 then
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and equation 6 becomes,
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Therefore, the matrice representation of the optimal Cone Programming can be obtained as follows,

1
Ming = (2aTPa + qTa> subject to —aG < 0and ad =1, (8)

where « is a vector of L-dimensions of unknown ancestry proportions, GG is an identity vector of L-
dimensions, A is a vector of allele frequencies of L-dimensions, P is a positive semi definite matrice, and
its diagonal elements are all coefficients of o?:
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and the mixture coefficients o;«, consist of its symmetric elements, and are given by:
PjiPjn
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and the linear coefficients «; are the elements of vector ¢ in equation 8, and are represented by:
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For the optimization of equations (3) or (2) with respect to «; (ancestry proportions, I = 1,..., L),

the matrix form in equation (3) is constructed by summing equations (2), (4), (5) and (6) independently
across all SNPs.
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