Supporting Information for:

Ring-Opening of the γ-OH-PdG Adduct Promotes Error-Free Bypass by the *Sulfolobus solfataricus* DNA polymerase Dpo4

Ganesh Shanmugam,^{1¶} Irina G. Minko,^{3¶} Surajit Banerjee,¹ Plamen P. Christov,¹ Ivan D. Kozekov,¹ Carmelo J. Rizzo,^{1,2} R. Stephen Lloyd,^{3,4} Martin Egli,² and Michael P. Stone^{1,2,*}

From the Departments of ¹Chemistry and ²Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, and ³Center for Research on Occupational and Environmental Toxicology and ⁴Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239

Table of Contents

Figure S1. TIC mass spectrum from the extension of the 5'-GXC-3' template (X= γ -OH-Pc	G) S3
Figure S2-S4. Reconstructed LC-ESI/MS ion chromatograms from the extension of the	
5'-GXC-3' template ($X = \gamma$ -OH-PdG)	S3-S4
Figure S5. TIC mass spectrum from the extension of the 5'-GXC-3' template	
$(X = \gamma - OH - PdG_{red})$	S5
Figure S6-S8. Reconstructed LC-ESI/MS ion chromatograms from the extension of the	
5'-GXC-3' template ($X = \gamma$ -OH-PdG _{red}).	S5-S6
Figure S9. CID mass spectrum of the m/z 1086.5 [M-2H] ⁻² product (5'-pTCCGTGA-3')	S7
Figure S10. CID mass spectrum of the m/z 828.8 [M-3H] ⁻³ product (5'-pTC <u>C</u> GTGAA-3')	S7
Figure S11. CID mass spectrum of the m/z 820.6 [M-3H] ⁻³ product (5'-pTC <u>C</u> GTGAC-3')	S8
Figure S12. CID mass spectrum of the <i>m/z</i> 834.2 [M-3H] ⁻³ product (5'-pTC <u>C</u> GTGAG-3')	S8
Figure S13. CID mass spectrum of the m/z 1098.7 [M-2H] ⁻² product (5'-pTCAGTGA-3')	S9
Figure S14. CID mass spectrum of the m/z 836.9 [M-3H] ⁻³ product (5'-pTCAGTGAA-3')	S9
Figure S15. CID mass spectrum of the m/z 1106.5 [M-2H] ⁻² product (5'-pTC <u>G</u> GTGA-3')	S10
Figure S16. CID mass spectrum of the m/z 842.2 [M-3H] ⁻³ product (5'-pTC <u>G</u> GTGAA-3')	S10
Figure S17. CID mass spectrum of the m/z 1094.2 [M-2H] ⁻² product (5'-pTC <u>T</u> GTGA-3')	S11
Figure S18. CID mass spectrum of the m/z 942.2 [M-3H] ⁻⁵ product (5'-pTC-GTGA-3')	S11
Figure S19. CID mass spectrum of the m/z 922.2 [M-2H] ⁻² product (5'-pTCC-TGA-3')	S12
Figure S20. TIC mass spectrum from the extension of the 5'-GXT-3' template	
$(X = \gamma - OH - PdG)$	S12
Figure S21-22. Reconstructed LC-ESI/MS ion chromatograms from the extension of the	
5'-GXT-3' template (X= γ -OH-PdG).	S13
Figure S23. TIC mass spectrum from the extension of the 5'-GXT-3' template	
$(X = \gamma - OH - PdG_{red})$	S14
Figure S24-25. Reconstructed LC-ESI/MS ion chromatograms from the extension of the	
5'-GXT-3' template ($X = \gamma$ -OH-PdG _{red}) (con't)	S14-S15
Figure S26. CID mass spectrum of the m/z 1078.7 [M-2H] ⁻² product (5'-pTC <u>C</u> ATGA-3')	S15

Figure S27.	CID mass	spectrum	of the m/z	823.5 [M-3H] ⁻³	product (5'-	pTC <u>C</u> ATGAA-3	') S16
Figure S28.	CID mass	spectrum	of the m/z	1223.8 [M-2H]	⁻² product (5'	-pTCCATGAC-	3') S16
Figure S29.	CID mass	spectrum	of the m/z	828.6 [M-2H] ⁻²	product (5'-	pTC <u>C</u> ATGAG-3	') S17
Figure S30.	CID mass	spectrum	of the m/z	922.2 [M-2H] ⁻²	product (5'-	pTC <u>C</u> ATG-3')	S17
Figure S31.	CID mass	spectrum	of the m/z	1090.7 [M-2H]	$^{-2}$ product (5'	-pTC <u>A</u> ATGA-3') S18
Figure S32.	CID mass	spectrum	of the m/z	1098.7 [M-2H]	⁻² product (5'	-pTC <u>G</u> ATGA-3	') S18
Figure S33.	CID mass	spectrum	of the m/z	836.8 [M-3H] ⁻³	product (5'-	pTC <u>G</u> ATGAA-3	') S19
Figure S34.	CID mass	spectrum	of the m/z	1086.2 [M-2H]	⁻² product (5'	-pTC <u>T</u> ATGA-3') S19

observed

pT (a₂-b)

481.1

theoretical

481.04

