Web Material

Evidence on Vulnerability and Susceptibility to Health Risks Associated with Short-Term Exposure to Particulate Matter: Systematic Review and Meta-Analysis

Web Table 1. Studies of effect modification for associations between particulate matter and mortality

Note: The results presented show (+) when a higher level of the effect modifier is associated with a higher health risk estimate and a (-) when a higher level of the effect modifier is associated with a lower health risk estimate. Only statistically significant associations are reported in the table. Reference numbers refer to the reference list for the Web Material, which differs from the reference list for the main text.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Aga et al. (2003) ¹	28 European cities (~5yrs within 1990s for most cities)	PM ₁₀ . Lag 01	Mortality for persons ≥65yrs	Community level: NO ₂ , temperature, humidity, age (% elderly, ≥65yrs vs. all ages), region	Poisson regression. Two-stage hierarchical model for effect modification.	Long-term NO ₂ levels (+) Long-term temperatures (+) Long-term relative humidity (-)
Analitis et al. (2006) ²	29 European cities	PM ₁₀ . Lag 01	Mortality: CVD, respiratory	Community level: temperature, humidity, NO ₂ , age (% elderly), age-standardized mortality rate, region	City-specific time series. Second stage hierarchical model for effect modification.	Factors explaining >10% of heterogeneity for CVD: Temperature (+) Precipitation (-) NO ₂ (+) Proportion elderly (+) Age-standardized mortality rate (-) region (higher in South)
Balakrishnan et al. (2011) ³	Chennai, India (formerly Madras) and Delhi, India (2002-2004)	PM ₁₀ . Lag 0, 1	Mortality	Individual or daily level: sex, age (0-4, 5-44, 45-64, ≥65yrs), season (MarAug., SepFeb.)	Generalized additive models. Stratification for effect modification.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Bateson and Schwartz (2004) ⁴	Cook County, IL (1988-1991)	PM _{10.} Lag 01	Mortality: persons with history of hospitalization for heart or lung disease, for persons ≥35yrs	Individual or daily level: prior hospital admissions (myocardial infarction (MI), diabetes, congestive heart failure (CHF), COPD, conduction disorders), age, sex Community level: income, education (% adults with bachelor's degree), % adults with non-English language	Case-crossover. Interaction terms for effect modification.	Co-morbidities: MI, diabetes, CHF (+)
Bell, et al. (2009) ⁵	100 US cities (1987-2000)	PM ₁₀ . Lag 0	Mortality	Community level: long- term levels of $PM_{2.5}$ chemical components (Al, As, Ca, Cl, Cu, EC, Fe, K, Mg, Na ⁺ , NH ₄ ⁺ , Ni, Nitrate, OCM, Pb, Si, Sulfate, Ti, V, Zn), education (% of those ≥ 25 yrs with high school degree), median household income, race (% of self-identifying as Black/African- American), urbanicity (% of living in urban setting), population	City-specific times series. Bayesian hierarchical modeling to generate overall estimates and for effect modification.	Ni (+): PM ₁₀ associations with mortality
Bell et al. (2009) ⁶	184 US cities (1987-2000)	PM ₁₀ . Lag 1	Mortality	Community level: Central AC, any AC including window units.	City-specific time series. Bayesian hierarchical analysis to estimate overall associations and investigate effect modification.	Central AC (-)

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Biggeri et al. (2005)	6 Italian cities for mortality (1990- 1999). Not all cities had data for all years.	PM ₁₀ , based on TSP for 2 cities. Lag 0, 1, 2, 3, 01, 12, 03	Mortality: total	Individual or daily level: age (0-64, 65-74, \geq 75yrs), age (<64, \geq 65yrs), season (warm: May-Sep., cool: Oct Apr.) Community level: time (1990-1994 vs. 1995- 1999)), SMR, age (% elderly), SES (deprivation index), mean temperature, long-term NO ₂ , PM ₁₀ /NO ₂ ratio, log long-term PM ₁₀	City-specific time series. Fixed effects, random effects, and Bayesian models to generate overall estimates. Interaction terms in city-specific model to investigate effect modification by season or age. Bayesian random effects model to investigate effect modification by community-level	SMR (+) Season: higher in warm season
Cakmak et al (2011) ⁸	7 cities in Chile (1997-2007)	PM ₁₀ , PM _{2.5} . Lag 06	Mortality	Individual or daily level: Sex, age (<64, 65- 74, 75-84, ≥85yrs), employment (unemployed, blue-collar, white-collar), education (<primary high<br="" primary="" school,="">school, some college, university). Community level: income (quartiles)</primary>	City-specific time series. Random effects model to estimate overall associations. Stratification for effect modification.	Sex (higher in women): $PM_{2.5}$, PM_{10} Age (+): $PM_{2.5}$, PM_{10} Education (-) Age (+): $PM_{2.5}$, PM_{10} Income (-): $PM_{2.5}$ Employment status (-) (higher risk estimates for unemployed than white-collar employment): PM_{10}
Chen et al. (2010) ⁹	Anshan, China (2004-2006)	PM ₁₀ . Lag 01	Mortality: total, cardio-pulmonary	Individual or daily level: age (5-64, 65-74, 75+yrs), sex	Case-crossover. Stratification for effect modification.	Age (+)

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
De Leon et al. (2003) ¹⁰	New York, NY, US (1985-1994)	PM ₁₀ . Lag 01	Mortality: circulatory, cancer	Individual or daily level: age (<75 , ≥ 75 yrs); contributing cause of death as respiratory, pneumonia (≥ 75 yrs), COPD (≥ 75 yrs)	Poisson regression. Stratification for effect modification.	No statistically significant evidence of effect modification.
Diaz et al. (2012) ¹¹	Madrid, Spain (2003-2005)	PM ₁₀ . Lag 1	Mortality: total, respiratory, circulatory, cerebro- vascular	Individual or daily level: Saharan dust days (binary variable based backwards trajectory models, dust maps, and satellite imagery), season (warm: May-Sep., cool: OctApr.)	Case-crossover. Interaction terms for effect modification. Stratification for effect modification by season.	No statistically significant evidence of effect modification.
Dominici, et al. (2007) ¹²	69 US urban cities (1987-2000)	PM ₁₀ .Lag 1	Mortality.	Community level: Long- term PM _{2.5} Ni, PM _{2.5} V (average levels for 2000- 2005)	City-specific time series. Bayesian hierarchical model incorporating community-level modifiers for effect modification.	PM _{2.5} Ni, V (+). Associations lose statistical significance when New York, NY is removed.
Faustini et al. (2011) ¹³	10 Italian cities (2001-2005)	PM ₁₀ . Lag 02 (total), lag 03 (respiratory)	Mortality: total, respiratory, for persons ≥35yrs	Individual or daily level: age, sex, acute conditions based on previous 28 days hospitalizations, chronic conditions based on previous 2yrs hospitalizations, death site, (warm: AprSep., cool: Oct -Mar.)	City-specific case- crossover. Random effects meta- analysis for overall associations. Stratification for effect modification.	Warm season (+): respiratory

Study	Location and timeframe	Exposure and lag	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
		structure		.		
Forastiere et al. (2000) ¹⁴	9 Italian cities	PM_{10} . Lag 01	Mortality, for persons	Individual or daily	City-specific case-	Age (+)
(2008)	(1997-2004)		<u>></u> 55yrs	level: age $(53-64, 63-74, 75, 84)$	crossover. Kandoni-	Previous chronic
				$73-64, \geq 03918$, sex,	enects meta-	other isohomia heart
				hospital discharged 2.28	analysis for overall	disease (1)
				days before death in	associations.	Dravious acuto
				hospital pursing home)		hospitalization for
				hospitalizations in 2		
				provious years excluding		circulation (1)
				28 days before death for		
				primary or secondary		
				diagnosis (malignant		
				neonlasms: disorders or		
				thyroid gland: diabetes		
				mellitus: anemias:		
				coagulation defects:		
				diseases of valves.		
				hypertensive disease:		
				previous acute MI		
				(AMI): other ischemic		
				heart diseases: pulmonary		
				circulation: conduction		
				disorders: heart failure:		
				chronic pulmonary		
				disease: diseases of		
				arteries, arterioles, and		
				capillaries).		
				hospitalization within 28		
				days before death with		
				primary diagnosis		
				(malignant neoplasms;		
				diabetes mellitus;		
				anemias; hypertensive		
				disease; AMI; other acute		
				ischemic heart disease;		
				pulmonary circulation;		
				cardiac dyshythmias;		
				heart failure;		
				cerebrovascular diseases;		
				diseases of arteries,		
				arterioles, capillaries;	5	
				pneumonia; chronic		
				pulmonary disease; renal		
				failure)		

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Forastiere et al. (2005) ¹⁵	Rome, Italy (1998-2000)	PM ₁₀ . Lag 0, 1, 2, 3, 01	Mortality: out of hospital coronary	Individual or daily level: sex, age (<65, 65- 74, >74yrs), hospitalizations during preceding 3yrs with primary or secondary diagnosis (diabetes, hypertension, COPD, angina, other ischemic heart disease, conduction disorders, dysrhythmias, or heart failure)	Case-crossover. Interaction terms for effect modification.	No statistically significant evidence of effect modification.
Forastiere et al. (2007) ¹⁶	Rome, Italy (1998-2001)	PM ₁₀ . Lag 01	Mortality, for persons ≥35yrs	Community level: income, SES index (based on education, occupation, unemployment, family size, crowding, and proportion of dwellings rented/owned) (4 strata by 20 th , 50 th , and 80 th percentiles), population- weighted traffic emissions (4 strata by 20 th , 50 th , and 80 th percentiles)	Case-crossover. Interaction terms for effect modification.	Income (-) SES (-)
Franklin, et al (2007) ¹⁷	27 US cities (1997- 2002)	PM _{2.5} . Lag 1	Mortality: all-cause, respiratory, CVD, stroke	Individual or daily level: age (\geq 75 vs. <75) and sex Community level: region (east vs. west), PM _{2.5} levels (annual PM _{2.5} concentrations > or \leq 15 µg/m ³), prevalence of central AC	City-specific case- crossover. Interaction terms in a case-crossover for individual or daily level modifiers and random effects meta-regression for community-level level modifiers.	Age (+): all-cause, stroke

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Franklin, et al. (2008) ¹⁸	25 US cities (2000-2005). Not all cities had data for all years.	PM _{2.5} . Lag 01	Mortality	Individual or daily level: season Community level: region (west vs. east), fraction of PM _{2.5} for components (Al, As, Br, Cr, EC, Fe, K, Mn, Sodium ion, Ni, Nitrate, Ammonium ion, Organic carbon, Pb, Si, Sulfate, V, Zn)	City-speicifc time- series. Random effects meta- regression to generate overall estimate and investigate effect modification. Stratification for effect modification by season.	Season (higher in Spring): total Fraction PM _{2.5} for Al, As, sulfate, Si, Ni (+)
Garrett and Casimiro (2011) ¹⁹	Lisbon, Portugal (2004-2006)	PM _{2.5} . Lag 02	Mortality: total, CVD	Individual or daily level: age (all ages vs. ≥65yrs)	Generalized additive modeling. Stratification for effect modification.	No statistically significant evidence of effect modification.
Goldberg et al. (2000) ²⁰	Montreal, Canada (1984-1993)	Predicted PM _{2.5} based on COH, sulfate, and visibility data. Lag 0, 1, 02	Mortality: total, neoplasms, lung cancer, CVD, coronary artery disease, other	Individual or daily level: age (<65, ≥65yrs), pre-existing conditions (cancer, acute upper respiratory disease, chronic upper respiratory disease, acute lower respiratory disease, airways disease, acute coronary artery disease, chronic coronary artery disease, CHF, hypertension, cerebrovascular disease, any coronary artery disease, any CVD disease, none)	Time series. Stratification for effect modification.	Age (+): total mortality for persons with pre- existing chronic coronary artery disease

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Goldberg et al. (2006) ²¹	Montreal, Canada	PM ₁₀ , PM _{2.5} . Lag 0, 1, 02	Mortality with underlying cause as diabetes, for persons ≥65yrs	Individual or daily level: sex, season (warm: AprSep., cool: Oct Mar.), underlying cause of death of diabetes mellitus vs. classified as diabetes 1 yr before death (for death that may or may not have been attributed to diabetes), co-morbidities (chronic coronary artery disease, atherosclerosis, CHF, CVD, airways disease, cancer	Time series. Stratification for effect modification.	No statistically significant evidence of effect modification.
Gouveia and Fletcher (2000) ²²	Sao Paulo, Brazil (1991-1993)	PM ₁₀ . Lag 0, 1	Mortality	Individual or daily level: age (1 month-5yrs, 5-12, 12-40, 40-50, 50- 60, 60-65, 65-70, 70-75, 75-80, 80-85, ≥85yrs) Community level: SES based on residence (4 groups) for >65yrs	Time series. Interaction term for effect modification.	Age (+)
Huang et al. (2012)	Xi'an, China (2004- 2008)	PM _{2.5} . Lag 0, 1, 2, 3, 4, 5, 6, 06	Mortality: total, CVD, coronary, respiratory	Individual or daily level: season (warm: Nov. 15-Mar. 15, cool: Mar. 16-Nov. 14), age (0- 44, 45-64, ≥65yrs, total mortality), sex (total mortality)	Time series. Stratification for effect modification.	Season (higher for cool period): ≥65yrs
Ito and Thurston (1996) ²⁴	Cook County, IL, US (1985-1990)	PM ₁₀ . Lag 01	Mortality: total, circulatory, respiratory cancer, for persons ≥15yrs	Individual or daily level: race (black, white), sex, age (15-60, ≥60yrs, all ages)	Poisson regression. Stratification for effect modification.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Kan et al. (2008) ²⁵	Shangai, China (2001-2004)	PM ₁₀ . Lag 01	Mortality: total, CVD respiratory	Individual or daily level: age (5-44, 45-64, ≥65yrs, total mortality only), sex (total mortality only), education attainment (illiterate or primary school, middle school or above), season (warm: AprSep., cool: OctMar.)	Time series. Stratification for effect modification.	No statistically significant evidence of effect modification.
Katsouyanni et al. (1997) ²⁶	5 European cities (1975-1992). Not all cities had data for all years.	PM_{10} based on TSP for 3 cities, PM_{13} for 2 cities, PM_7 for 1 city. Lag 0, 1, 2, 3, 01, 02, 03	Mortality	Individual or daily level: Region (eastern vs. western), season	City-specific times series.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Katsouyanni et al. (2009) ²⁷	32 European cities (1990-1997), 95 US cities (1987-1996), 12 Canadian cities (1981-1999). For community level modifiers, 21 European cities, 15 US cities. Not all cities had data for all years or pollutants.	PM ₁₀ . Lag 1, 01 (age), Lag 01 (community level modifiers)	Mortality: total, CVD, respiratory	Individual or daily level: age (<74 , ≥75 yrs) Community level: NO ₂ , SO ₂ , NO ₂ /PM ₁₀ , exposure, population, population density, temperature, humidity, crude mortality rate, age- standardized mortality rate, % cardiorespiratory deaths, age (% ≥75 yrs), region, unemployment (21 European cities, 15 US cities), number of monitors, monitor density, education (% with >12yrs), and others. Not all cities had data on all effect modifiers	City-specific time series. Stratification for effect modification by age. Meta-regression models for effect modification by community level variables.	NO ₂ (+): Europe Temperature (+) Humidity (-): Europe Humidity (+): US % of cardiorespiratory deaths (+): US Crude mortality rate (+): US Unemployment (+) Age (+)
Katsouyanni, et al. (2001) ²⁸	29 European cities (1990-1997). Not all cities had data for all years.	PM ₁₀ . Lag 01	Mortality	Community level: long- term average of other pollutants (e.g., NO ₂), temperature, and humidity, age adjusted mortality rate, age adjusted lung cancer mortality rate, region (Central-Eastern, Southern, North Western), location (latitude and longitude), age (% >65yrs)	City-specific time series. Fixed-effects or random effects meta-regression to estimate overall associations and investigate effect modification.	NO ₂ (+) PM ₁₀ /NO ₂ (-) Humidity (-) Temperature (+) Age-standardized annual mortality rate (-) Age (-)

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Levy et al. (2000) ²⁹	29 estimates from 21 time series studies (19/29 estimates from US). Time frame varies by original study.	PM_{10} , some estimated from TSP as PM_{10} /TSP = 0.55 (lag varies by original study)	Mortality	Community level: baseline mortality rate, age (% ≥65yrs), poverty, prevalence of gas stoves, prevalence of central AC. Most analyses for 19 US risk estimates	Meta-regression random effects model to combine risk estimates from 29 previously conducted time series studies and estimate effect modification. Stratification for effect modification.	No statistically significant evidence of effect modification.
Li et al. (2011) ³⁰	Tianjin, China (2077-2009)	PM ₁₀ . Lag 01	Mortality: total, CVD, respiratory, cardio-pulmonary, stroke, ischemic heart disease	Individual or daily level: temperature, age (<65, ≥65yrs)	Poisson regression. Interaction spline models, interaction terms, and stratification for effect modification.	Warm (+): CVD, cardiopulmonary, ischemic heart disease. Stroke for \geq 65 yr). Age (+): total mortality on high temperature days
Ma et al. (2011) ³¹	Shenyang, China (8/06-12/08)	PM _{2.5} . Lag 01	Mortality: total, respiratory, CVD	Individual or daily level: season (warm: May-Oct., cool: Nov Apr.), age (5-64, 65-74, ≥75yrs), sex	Case-crossover. Stratification for effect modification.	Warm (+): total mortality.
Martins et al. (2004) 32	6 regions in Sao Paulo, Brazil (1997- 1999)	PM ₁₀ . Lag 0, moving averages of lag 2 to lag 7	Mortality: respiratory, for persons ≥60yrs	Community level: college education, age, % of people living in slums, income	Time series. Correlation of SES indicators and PM ₁₀ risk estimates.	Education (-): respiratory Income (-): respiratory
Nawrot et al. (2007) $_{33}^{33}$	Flanders, Belgium (1997-2003)	PM ₁₀ . Lag 0, 1, 2, 3, 4, 5	Mortality: total, CVD, respiratory	Individual or daily level: season (warm: AprSep., cool: Oct Mar.)	Time series. Interaction terms and stratification for effect modification.	Warm(+): total, CVD
Oliveira et al. (2011) ³⁴	Rio de Janeiro State, Brazil (1/02- 12/06)	PM ₁₀ . Lag 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.	Mortality: respiratory	Individual or daily level: age (all, ≥65years), sex	Poisson regression.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
O'Neill et al. (2004)	Mexico City (1994- 1998)	PM ₁₀ . Lag 0, 1, 2, 3, 4, 5, 05	Mortality	Community level: region (5 regions), particle measurement method	Region-specific Poisson regression. Random effects model to estimate overall associations. Stratification for effect modification.	No statistically significant evidence of effect modification.
O'Neill, et al. (2008) ³⁶	Mexico City, Mexico; Santiago, Chile; Sao Paulo, Brazil (1998-2002)	PM ₁₀ Lag 0, 1, distributed lag 0-5	Mortality, for persons ≥21yrs	Individual or daily level: Education (none, some primary, some secondary, secondary or more), age (>65yrs vs. all adults), sex	City-specific time series. Stratification for effect modification.	No statistically significant evidence of effect modification.
Ostro et al. (2008) ³⁷	6 California counties, US (2000- 2003)	PM _{2.5} . Lag 0, 1, 2, 3	Mortality: CVD	Individual or daily level: sex, race/ethnicity (white, Hispanic, black), education (<high school,<br="">≥high school)</high>	City-specific time- series. Random effects meta- analysis to estimate overall associations. Stratification for effect modification.	No statistically significant evidence of effect modification.
Ou et al. (2008) ³⁸	Hong Kong (1998)	PM _{10.} Lag 0, 1, 2, 3	Mortality, for persons ≥30yrs	Individual or daily level: housing type (private, public government housing for low income), employment (never employed, white collar, blue collar), education (none, primary, secondary)	Time series. Interaction terms and stratification for effect modification.	Employment (-): lower associations for white-collar group than blue-collar or never employed groups Housing (-): lower associations for private housing Education: lower associations for primary education than those with no education

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Ou et al. (2012) ³⁹	Hong Kong (mid- Dec. 1997 – mid- Jan.1999)	PM ₁₀ . Lag 02.	Mortality, for persons ≥30yrs	Individual or daily level: dietary intake 10yrs before death (≥1/week, seldom/never) for fish, meat, vegetables, fruits, soy, dairy.	Case-crossover. Linear odds ratio model for effect modification on additive scale.	Fruit consumption (-) Soy consumption (-) Dairy consumption (+)
Peng et al. (2005) ⁴⁰	100 US cities (2000-2005)	PM ₁₀	Mortality	Individual or daily level: season (summer: June-Aug., etc. or as non- linear function) Community level: region (7 regions)	Time series. Stratification and non-linear models for effect modification by season. Bayesian hierarchical modeling to estimate overall associations and investigate effect modification by region.	Season (higher in summer) Geographical region (higher in California), but not tested for statistically significance
Qian et al. (2010) ⁴¹	Wuhan, China (7/00-6/04)	PM ₁₀ . Lag 0, 1, 01, 02, 04	Mortality: total, CVD, stroke, cardiac, respiratory, cardio- pulmonary, non- cardio-pulmonary	Individual or daily level: temperature ($<5^{th}$, 5-95 th , >95 th percentile), temperature (normal, extremely cold, extremely hot), sex, age (<65 , ≥ 65 yrs)	Time series. Stratification for effect modification by sex and age. Interaction terms for effect modification by lag 01 temperature.	Temperature (+): higher risk estimates at extremely hot days than normal days, total, CVD, cardiopulmonary
Rainham et al. (2005) ⁴²	Toronto, Canada (1981-1999)	PM _{2.5} . Lag 0, 1, 2	Mortality: total, cardio-respiratory, non-cardio- respiratory	Individual or daily level: weather (spatial synoptic classification system with 7 levels: one of 6 categories or a transition between categories), season (winter: DecFeb., summer: June-Aug.)	Time-series. Stratification for effect modification.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Revich and Shaposhnikov (2010) ⁴³	Moscow, Russia (2003-2005)	PM ₁₀ . Lag 0, 1, 01	Mortality: total, ischemic heart disease and angina pectoris, cerebro- vascular	Individual or daily level: age (all ages vs. ≥75yrs), O ₃ levels	Time-series. Stratification for effect modification by age. Analysis of PM_{10} and mortality without O ₃ adjustment in subset of data with >90 th percentile O ₃ for in effect modification of PM_{10} by O ₃ .	No statistically significant evidence of effect modification.
Samoli et al. (2005) 44	22 European cities (1990-1997). Not all cities had data for all years.	PM ₁₀ . Lag 01	Mortality: total, respiratory	Community level: air pollution levels (e.g., NO ₂), geographic region (Southern, Western, Eastern), climate, age- standardized annual mortality rate	City-specific time series. Second stage regression to estimate overall associationsand investigate effect modification.	Different exposure- response curve by region (<i>in general</i> , higher in Southern region): total, respiratory Temperature (+): total Standardized mortality rate (-): total NO ₂ (+): total

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Samoli et al. (2008) ⁴⁵	90 US cities (1987-1996), 32 European cities (1990-1997), 12 Canadian cities (1987-1996). Not all cities had data for all years.	PM_{10} on days with <150µg/m ³ . PM_{10} estimated from TSP for 10 European cities. Lag 0, 1, 01, 02	Mortality	Individual or daily level: age (<75, ≥75yrs) Community specific: unemployment, temperature, humidity, monitor density in relation to population size, health status of population (% of cardiorespiratory deaths, mortality rate, standardized mortality rate), region (Canada, Europe, US) Not all cities had data for all effect modifiers.	City-specific time series. Meta- regression to combine risk estimates across cities and investigate effect modification. Stratification for effect modification by age. Not all cities included in all analyses.	Age (+) Unemployment (+) Temperature (+): Europe only Humidity (-): Europe Crude mortality rate (+): US % of cardiorespiratory deaths among ≥75 people (+) (US only)
Samoli et al. (2011) 46	Athens, Greece (2001-2006)	PM ₁₀ . Lag 1	Mortality: total, CVD, respiratory	Individual or daily level: windblown desert dust (yes, no), sex, age (<75, ≥75yrs)	Time-series. Stratification for effect modification by sex and age. Interaction terms for effect modification by desert dust.	Desert dust (-): total, CVD, respiratory mortality for ≥75yrs; total mortality for <75yrs
Schwartz et al. (2000) ⁴⁷	10 US cities (1986- 1993)	PM ₁₀ . Lag 01	Mortality.	Community level: unemployment, % in poverty, education (% with college degree), race (% non-white), location of death (in or out of hospital)	City-specific time series. Second stage meta-regression to estimate overall associations and investigate effect modification.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Serinelli et al. (2010) ⁴⁸	8 Italian cities (1997–2004)	PM ₁₀ . Lag 01	Mortality: out-of- hospital for ischaemic heart disease, for persons >35yrs	Individual or daily level: age (35-64, 65-74, 75-84, ≥85yrs), sex, season (cool: OctMar., warm: AprSep.), comorbidities: (hospitalization 29 days to 2yrs earlier for malignant neoplasm, diabetes mellitus; anaemias; hypertensive diseases; previous AMI; other ischaemic heart diseases; cardiac dysrhythmias; heart failure; cerebrovascular diseases; pneumonia; chronic pulmonary diseases of arteries, arterioles, and capillaries)	City specific case- crossover. Meta- regression random effects model to estimate overall associations. Stratification for effect modification by age. Analysis for effect modification other than age for persons >65yrs.	Income (-) Previous hospitalization for cardiac dysrhythmias (-)
				Community level: income ($<20^{th}$, 20^{th} -540 th , 51-80 th , >80 th percentile), region (community)		
Siemiatycki et al. (2003) ⁴⁹	US cities from the ACS and Harvard 6 Cities Study	PM _{2.5}	Mortality: total, cardio-pulmonary, lung cancer	Individual or daily level: sex, occupational "dirtiness score" (7 point scale), smoking status (ever, never), prevalence of exposure to known lung carcinogens (yes, no), education (<high school, high school, >high school, for ACS only)</high 	Cox proportional hazards model. Stratification for effect modification.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Son et al. (2012) ⁵⁰	Seoul, Korea (2000- 2007)	PM ₁₀ . Lag 0, 1, 2, 01, 02	Mortality: total, CVD, respiratory, for persons ≥35yrs	Individual or daily level: sex, age (35-64, $65-74$, ≥ 75 yrs), education (≤ 12 , >12 yrs, unknown), marital status (never married, married, divorced, widowed, unknown), employment (professional, manual, housewife/unemployed, unknown).	Case-crossover. Interaction terms for effect modification.	No statistically significant evidence of effect modification.
Stafoggia, et al. (2008) ⁵¹	9 Italian cities (1997-2004)	PM ₁₀ . Lag 01	Mortality: total, CVD, respiratory, non-cardio- respiratory, for persons \geq 35yrs	Individual or daily level: season, apparent temperature (<50 th , 50- 75 th , >75 th percentile)	City-specific case- crossover. Random effects meta- analysis to estimate overall associations. Interaction terms within each temperature stratum for effect modification.	Apparent temperature (+) Season (higher in summer): CVD, non- cardiorespiratory, total
Tobias et al. (2011) ⁵²	Madrid, Spain (2003-2005)	PM _{2.5} . Lag 0, 1, 2, 3, 4	Mortality	Individual or daily level: Saharan dust days (binary variable based backwards trajectory models, dust maps, and satellite imagery)	Case-crossover. Interaction terms for effect modification.	No statistically significant evidence of effect modification.
Villeneuve et al. (2003) ⁵³	Vancouver, Canada (1986-1999)	PM ₁₀ , PM _{2.5} . Lag 02	Mortality: total, respiratory, CVD for persons ≥65yrs.	Community level: income (3 categories)	Time series. Stratification for effect modification.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Wichmann et al. (2000) ⁵⁴	Erfurt, Germany (9/95-12/98)	PM ₁₀ . Lag 0, 1, 2, 3, 4, 5, 05	Mortality	Individual or daily level: age (<70, 70-79, ≥80yrs), season (4 seasons), prevalent diseases (CVD or respiratory, CVD but not respiratory, respiratory, other)	Poisson regression.	Season: higher in winter than summer, lag 0
Wilson et al. (2007) 55	Phoenix, AZ, US (1995-1997)	PM _{2.5} , PM _{10-2.5} . Lag 05	Mortality: CVD	Community level: % in poverty, % with high school education, for 3 zip codes.	Times series. Comparison of risks across 3 SES zones for effect modification.	No statistically significant evidence of effect modification.
Wong et al. (2008) 56	Hong Kong, China (1996-2002)	PM ₁₀ . Lag 0, 1, 2, 3, 4	Mortality: total, CVD, respiratory	Community level: social deprivation index for 209 town planning units based on unemployment, income, education, one- person household, marital status, subtenancy	Time series. Case only and stratification for effect modification.	No statistically significant evidence of effect modification.
Wong et al. (2010) 57	Hong Kong (1996- 2002)	PM ₁₀ . Lag 0, 1, 2, 3, 4, 01, 04	Mortality: total, CVD, respiratory. Hospital admissions: CVD, respiratory, ARD, ALRI, COPD, asthma	Individual or daily level: age (all ages vs. ≥65yrs, mortality, hospital admissions for CVD, respiratory, COPD), age (all ages vs. 0-14yrs, hospital admissions for ARD, ALRI, asthma), influenza based on virologic data Community level: social deprivation index (SDI) (3 groups) (mortality only)	Poisson regression. Interaction terms for effect modification by influenza. Stratification and case-only model for effect modification by SDI. Stratification for other effect modifiers.	No statistically significant evidence of effect modification.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Yang et al. (2012) 58	Guangzhou, China (2007-2008)	PM _{2.5} . Lag 01	Mortality	Individual or daily level: age (5-64, ≥65yrs), sex, education (illiterate or primary school, middle school or above)	Case-crossover. Stratification for effect modification.	No statistically significant evidence of effect modification.
Zauli et al. (2011) ⁵⁹	6 Italian cities (8/02-12/06)	PM ₁₀ . Lag 1	Mortality: total, CVD, respiratory, persons ≥75yrs	Individual or daily level: Saharan dust days (binary variable based on coarse particle count), season (warm: May-Sep., cool: OctApril)	Case-crossover. Interaction terms for effect modification. Stratification for effect modification by season.	No statistically significant evidence of effect modification.
Zanobetti, et al. (2000) ⁶⁰	4 US cities (Chicago, Detroit, Minneapolis-St. Paul, Pittsburgh) (1986-1993)	PM ₁₀ . Lag 01	Mortality	Individual or daily level: race (white, black), sex, education (<12, \geq 12yrs)	City-specific time series. Inverse variance weighting to estimate overall associations. Stratification for effect modification.	Sex (higher in women)
Zanobetti et al. (2009) ⁶¹	112 US cities (1999-2005)	PM _{2.5} . Lag 01	Mortality: total, CVD, MI, stroke, respiratory	Individual or daily level specific: season (4 seasons) Community level: region (6 groups)	City-specific time series. Random effects meta analysis to generate overall estimates. Stratification for effect modification.	Season (higher in spring)

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Zeka, et al. (2005) ⁶²	20 US cities (1989-2000)	PM ₁₀ Lag 0, 1, 2	Mortality: total, heart disease, ischaemic heart disease, MI, dysrhythmias, heart failure, stroke, respiratory disease, pneumonia, COPD	Community level: prevalence of central AC, population density, standardized mortality rates, proportion of elderly (>65, >75, or >85yrs), daily minimum apparent temperature (mean and variance) in summer (June-Aug.), daily maximum apparent temperature (mean and variance) in winter (Dec Feb.),% PM ₁₀ from traffic	City-specific Case- crossover. Maximum likelihood meta- regression to estimate overall risk and investigate effect modification.	Population density (+) % PM ₁₀ from traffic (+) Variance of summer apparent temperature (+)
Zeka, et al. (2006) ⁶³	20 US cities (1989-2000)	PM ₁₀ . Lag 0, 01, 02, 03. Different lags by cause of mortality	Mortality: all-cause, heart disease, AMI, respiratory, stroke	Individual or daily level: in- vs. out-of- hospital death, sex, diabetes, pneumonia, season (Spring/Fall vs. Winter/Summer), race (white, black), age (<65, 65-75, >75yrs), education (<8, 8-12yrs, >13yrs), contributing cause of death (pneumonia, heart failure, stroke, diabetes), menopause (post menopause, pre- menopause)	Case-crossover for first stage. Second stage of random effects meta analysis. Stratification for effect modification.	Age (+): total, heart disease, stroke Location of death (out-of-hospital higher than in hospital): all- cause, heart disease, stroke Season (higher in Spring/Autumn): respiratory

Web Table 2. Studies of effect modification for associations between particulate matter and hospital admissions or emergency from visits

Note: The results presented show (+) when a higher level of the effect modifier is associated with a higher health risk estimate and a (-) when a higher level of the effect modifier is associated with a lower health risk estimate. Only statistically significant associations are reported in the table. Reference numbers refer to the reference list for the Web Material, which differs from the reference list for the main text.

Study	Location and timeframe	Exposure and lag structure	Health outcome	Potential effect modifiers	Statistical models	Statistically significant results
Bell et al. (2008) ⁶⁴	202 US cities (1999-2005)	PM _{2.5} . Lag 0, 1, 2	Hospital admissions: CVD, respiratory, for persons >64yrs	Individual or daily level: season (summer: June- Aug., etc. or as non- linear function) Community level: region (4 groups)	Time series. Stratification and non-linear models for effect modification by season. Bayesian hierarchical modeling to estimate overall associations and investigate effect modification by region.	Season (higher in winter) Region (higher in northeast than southeast): CVD
Bell et al. (2009) ⁶	168 US cities (1999-2005)	PM _{2.5} . Lag 0 (CVD), lag 2 (respiratory)	Hospital admissions: CVD, respiratory, for persons >65yrs (PM _{2.5}).	Community level: Central AC, any AC including window units.	City-specific time series. Bayesian hierarchical analysis to estimate overall associations and investigate effect modification.	Central AC (-): PM _{2.5} and CVD hospital admissions

Bell, et al. (2009) ⁵	106 US counties (1999-2005)	PM _{2.5} . Lag 0	Hospital admissions: CVD, respiratory	Community level: long-term levels of $PM_{2.5}$ chemical components (Al, As, Ca, Cl, Cu, EC, Fe, K, Mg, Na+, NH4+, Ni, Nitrate, OCM, Pb, Si, Sulfate, Ti, V, Zn), education (% of those ≥ 25 yrs with high school degree), median household income, race (% of self- identifying as Black/African- American), urbanicity (% of living in urban setting) population	City-specific times series. Bayesian hierarchical modeling to generate overall estimates and for effect modification.	Ni,V, EC (+): PM _{2.5} risk estimates for CVD and respiratory admission
Belleudi et al. (2010) ⁶⁵	Rome, Italy (2001-2005)	PM ₁₀ , PM _{2.5} . Lag 0, 1, 2, 3, 4, 5, 6, 01, 02, 05, 06	Emergency hospital admissions: acute coronary syndrome, heart failure, lower respiratory tract infection, COPD, for persons >35yrs	Individual or daily level: age (35-64, 65-74, >75yrs), previous COPD admissions, season (Winter as Dec March, summer as June-Sep., Spring/Fall as April, May, Oct., and Nov.)	Case-crossover. Stratification for effect modification.	General trends: Age (+) Season: winter (+)
Bhaskaran et al. (2011) ⁶⁶	15 conurbations in England and Wales (2003-2006)	PM ₁₀ . Lag 1- 6, 7-12, 13- 18, 19-24, 25-72, 1-71 hrs	Hospital admissions: MI	Individual or daily level: age (<60, 60- 69, 70-79, >80yrs), prior coronary heart disease, smoking status, season (Summer as June- Aug. vs. non- summer)	Case-crossover. Interaction terms for effect modification.	No statistically significant evidence of effect modification.

Biggeri et al. (2005)	8 Italian cities (1990-1999). Not all cities had data for all years.	PM ₁₀ , based on TSP for 2 cities. Lag 0, 1, 2, 3, 01, 12, 03	Hospital admissions: cardiac, respiratory	Individual or daily level: age (0-64, 65- 74, >75yrs) Community level: age (% elderly), PM ₁₀ /NO ₂ ratio, log long-term PM ₁₀	City-specific time series. Fixed effects, random effects, and Bayesian models to generate overall estimates. Interaction terms in city-specific model to investigate effect modification by age. Bayesian random effects model to investigate effect modification by community-level modifiers.	No statistically significant evidence of effect modification.
Buadong et al. (2009) ⁶⁷	Bangkok, Thailand (4/02-12/06)	PM ₁₀ . Lag 0, 1, 02, 03	Hospital admissions: CVD	Individual or daily level: age (<15, 15- 64, >65yrs)	Time series. Stratification for effect modification.	No statistically significant evidence of effect modification.
Bunch et al. (2011) 68	Wasatch Front, Utah (1993-2008)	PM _{2.5} . Lag 0, cumulative lags up to 21 days	Hospital admissions: atrial fibrillation	Individual or daily level: sex, age (<55, 55-64, 65-74, >75yrs), previous or subsequent admissions (MI, asthma, COPD, sleep apnea)	Case-crossover.	No statistically significant evidence of effect modification.
Burra et al. (2009) ⁶⁹	Toronto, Canada (1996-2001)	PM _{2.5} . Lag 0, 02, 03, 04, 05	Ambulatory physician consultations: asthma, for children (1-17yrs) and adults (18-64yrs)	Individual or daily level: age, sex Community level: income (quintiles)	Time series. Stratification for effect modification.	Income (-).

Canova et al. (2012) 70	London (5/08-7/10)	PM ₁₀ . Lag 03	Hospital admissions: COPD, asthma, for persons >18yrs	Individual or daily level: Serum vitamin C, uric acid, vitamin E, or vitamin A (> or < median); 10	Case-crossover. Stratification for effect modification.	Vitamin C (-) Smoking (+)
				antioxidant genes; age (18-34, 35-54, >55yrs); previous diagnosis of asthma, COPD, or both; smoking (current, former/never)		
Cao et al. (2009) '1	Shanghai, China (2005-2007)	PM ₁₀ . Lag 3 for outpatient visits, L0 for emergency room visits	Hospital outpatient and emergency room visits	Individual or daily level: season (warm: AprSep., cool: OctMar.)	Poisson regression. Stratification for effect modification.	No statistically significant evidence of effect modification.
Cheng et al. (2009) 72	Kaohsiung, Taiwan (1996-2006)	PM ₁₀ . Lag 01	Hospital admissions: pneumonia	Individual or daily level: secondary diagnosis (hypertension, diabetes, dysrhythmia, COPD, upper respiratory infection, asthma, cerebrovascular disease, CHF, ischemic heart disease), temperature (> or < 25°C)	Case-crossover. Stratification for effect modification.	Co-morbidities: higher with upper respiratory infection. Temperature (-)

Chiu and Yang (2009) ⁷³	Taipei, Taiwain (2000-2006)	PM ₁₀ . L0	Emergency room visits: arrhythmias	Individual or daily level: secondary diagnosis (hypertension, diabetes, CHF, COPD, pneumonia, upper respiratory infection, asthma), temperature (> or < 23°C)	Case-crossover. Stratification for effect modification.	No statistically significant evidence of effect modification.
Colais et al. (2012) ⁷⁴	9 Italian cities (2000-2005	PM ₁₀ . Lag 0, 01	Hospital admissions: all cardiac, acute coronary syndrome, arrhythmias and conduction disorders, heart failure	Individual or daily level: age, sex, hospital diagnosis in previous 2yrs (CVD, respiratory)	City-specific case- crossover. Interaction terms for effect modification in city-specific models. Random effects meta- regression to combine risk estimates across cities.	Sex (higher in men): arrhythmias Sex (higher in women): heart failure Age (+): coronary events
Dales et al. (2009) ⁷⁵	7 Chilean urban centers in Santiago Province (2001- 2005)	PM _{2.5} , PM ₁₀ . Lag 0	Hospital admissions: headache (migraine; other specified cause, cause not specified)	Individual or daily level: age (<64, >64yrs), sex, season (AprSep., Oct Mar.)	City-specific time- series. Random- effects model to estimate overall associations. Stratification for effect modification.	No statistically significant evidence of effect modification.
Dominici et al. (2006) ⁷⁶	204 US cities (1999-2002)	PM _{2.5} . Lag 0, 1, 2	Hospital admissions: respiratory, CVD, cerebro- vascular disease, peripheral vascular disease, ischemic heart disease, heart rhythm disturbances, heart failure, COPD, respiratory tract infection, for persons >65yrs	Community level: region (East vs. West, 7 regions)	City-specific time series. Bayesian hierarchical modeling to estimate overall associations. Stratification for effect modification.	Region: higher in east than west for heart rhythm disturbances

Fung et al. (2005) 77	Windsor, Ontario,	PM ₁₀ . Lag 0,	Hospital admissions:	Individual or daily	Time series.	No statistically
	Canada (4//95-	01, 02	cardiac	level: age (<65,	Stratification for	significant evidence
	12/00)			>65yrs)	effect modification.	of effect
	,					modification.
Haley et al. (2009)	New York, NY, US	PM _{2.5} . Lag 0-	Hospital admissions: heart	Individual or daily	Area-specific case-	Age (+)
78	(2001-2005)	2	failure, for persons >35yrs	level: age (35-64,	crossover. Inverse	
	````			65-74, 65-84,	variance weighting	
				>85yrs), co-	to generate overall	
				morbidities	estimates.	
				(atherosclerosis,		
				previous heart		
				failure admissions.		
				ischemic heart		
				disease, conduction		
				disorder, diabetes,		
				COPD), season		
				(warm, cool), year		
				(,, ,, ,		
				Community level:		
				SES (% in poverty		
				as 0-7, 7-20, 20-		
				100%)		
Janssen, et al	14 US counties	PM ₁₀ . Lag 01	Hospital admissions:	Community level:	City-specific time	AC (-): for CVD,
(2002) ⁷⁹	(1985-1994)	(CVD), lag	COPD, CVD, pneumonia,	central AC	series.	for COPD for cities
		12 (COPD	for persons >65yrs	prevalence, long-	Meta-regression to	with non-winter
		and		term temperature,	combine risk	PM10 peaks
		pneumonia)		PM10 source	estimates.	PM10 from
		1 ,		(highway vehicles,		highway vehicles,
				highway diesels,		highway diesels, oil
				coal combustion, oil		combustion, metal
				combustion, wood		processing (+): for
				burning, metal		CVD
				processing, fugitive		PM10 from fugitive
				dust), population		dust (+): for CVD
				density, vehicle		Population
				miles		density(+): for CVD
				travelled/mile ²		VMT/mile2 (+): for
						CVD

Kim et al. (2007) ⁸⁰	Seoul, Korea (2002)	PM ₁₀ . Lag 02	Emergency out-patient hospital visits: asthma	Individual or daily level: Korean National Health Insurance premium as SES indicator (quintiles). Community level: Korean National Health Insurance premium for 5 regions	Case-crossover. Interaction terms and stratification for effect modification.	No statistically significant evidence of effect modification.
Lanki et al (2006) ⁸¹	3 European cities: Helsinki (1993- 1999), Rome (1998- 2000), Stockholm (1994-1999)	PM ₁₀ . Lag 0, 1, 2, 3	AMI hospital discharge for persons >35yrs	Individual or daily level: age (<75, >75), season (Apr Sep., OctMar.), death within 28 days after hospitalization (yes, no)	City-specific general additive model. Pooled overall risk weighted by inverse of squared standard errors of risk estimates. Stratification for effect modification.	No statistically significant evidence of effect modification.
Lee et al. (2008) ⁸²	Taipei ,Taiwan (warm days in 1996-2005)	PM ₁₀ . L02	Hospital admissions: CHF	Individual or daily level: secondary diagnosis (hypertension, diabetes, dysrhythmia, COPD)	Case-crossover. Stratification for effect modification.	No statistically significant evidence of effect modification.
Mann et al. (2002) ⁸³	South Coast Air Basin of California, US (AprOct. for 1988-1995)	PM ₁₀ . Lag 0, 1, 2	Hospital admissions: ischemic heart disease	Individual or daily level: secondary diagnosis (arrhythmia, CHF)	Poisson regression. Stratification for effect modification.	No statistically significant evidence of effect modification.

Medina-Ramon et al. (2006) ⁸⁴	36 US cities (1986-1999)	PM ₁₀ . Lag 0, 1	Hospital admissions: COPD, pneumonia, for persons >65yrs	Community level: season (warm, cool), mean temperature, variance of temperature, % >65yrs in poverty, prevalence of central AC, annual	City-specific case- crossover. Meta- regression using restricted maximum likelihood random effects models to estimate overall associations and investigate effect	Warm (+): COPD % persons >65 in poverty (-): pneumonia Emphysema mortality rate for persons >65 (-): COPD Mean temperature (-
				emphysema for persons >65yrs (as indication of smoking), % PM10 from traffic.	Modifiers other than season examined for warm season only.	Central AC (-): pneumonia
Middleton et al. (2008) ⁸⁵	Nicosia, Cyprus (1995-2004)	PM ₁₀ . Lag 0, 02	Hospital admissions: total, CVD, respiratory, cardio- respiratory	Individual or daily level: sex, age (<15, $\geq$ 15yrs, total, respiratory), dust storm days (binary indicator based on PM ₁₀ levels and trends, meteorological data, backwards trajectory models), season (warm vs. cold months, total, CVD, respiratory)	Poisson regression. Stratification for effect modification by sex and age. Interaction terms for effect modification by season and temperature.	No statistically significant evidence of effect modification.
Namdeo et al (2011) 86	Leeds metropolitan area, UK (4/02- 12/05)	PM ₁₀ . Lag 0, 1, 2	Hospital admissions: respiratory	<b>Individual or daily</b> <b>level:</b> age (<60, 60- 69, 70-74, 75-79, >80yrs)	Time series. Stratification for effect modification.	No statistically significant evidence of effect modification.

Nuvolone et al. (2011) ⁸⁷	Tuscany, Italy (2000-2005)	PM ₁₀ . Lag 0, 1, 2, 3, 4, 5, 02, 05, 35	Hospital admissions: AMI	Individual or daily level: sex, age (<75, >75yrs), season (warm: AprSep., cool: OctMar.), secondary diagnosis or hospitalization within previous 3yrs (hypertension, COPD, diabetes, cardiac arrhythmia, heart failure,	Region-specific case-crossover (5 regions). Interaction terms for effect modification by co- morbidities. Stratification for effect modification by age, sex, season. Random effects meta-analysis to estimate overall	No statistically significant evidence of effect modification.
				cardiac disease)	associations.	
Oftedal et al. (2003) 88	Drammen, Norway (1994-2000)	PM ₁₀	Hospital admission: respiratory	Individual or daily level: time (1994- 1997, 1998-2000)	Time series. Stratification for effect modification.	No statistically significant evidence of effect modification.
Oudin et al. (2010) 89	Scania, Sweden (2001-2005)	PM ₁₀ . Lag 0, 1, 2	Hospital admissions: ischemic stroke, hemorrhagic stroke	Individual or daily level: sex, age (< or > 78yrs), season (warm: May-Sep., cold: OctApr), smoking status (yes, no, unknown), city resident (yes, no)	Time series and case-crossover. Stratification for effect modification.	No statistically significant evidence of effect modification.
Peel et al. (2007) ⁹⁰	Atlanta, GA, US (1993-2000)	PM ₁₀ . Lag 02	Emergency department visits: ischemic heart disease, dysrhythmia, peripheral and cerebro- vascular disease, CHF	Individual or daily level: secondary diagnosis (hypertension, diabetes, COPD, dysrhythmia)	Case-crossover. Stratification for effect modification.	Hypertension (+): CHF CHF (-): ischemic heart disease
Qorbani et al. (2012) ⁹¹	Tehran, Iran (Apr. 4-Sep. 10, 2007)	$PM_{10}$ . Lag 0 (24hrs before onset)	Emergency hospital admissions: first episode of acute coronary syndrome (n=250)	Individual or daily level: age (<60, >60), sex, diabetes, hypertension, smoking (never, current, former)	Case crossover. Stratification for effect modification.	No statistically significant evidence of effect modification.

Ren et al. (2006) ⁹²	Brisbane, Australia (1996-2001)	PM ₁₀ . Lag 0, 1, 2	Hospital admissions: CVD, respiratory. Emergency hospital visits: CVD, respiratory. Mortality: total, CVD	Individual or daily level: maximum temperature.	Time-series. Bivariate response surface model, nonstratifica- tion parametric model, and stratification parametric model for effect modification.	Temperature (+): respiratory hospital admissions, CVD emergency hospital visits, respiratory emergency, total mortality, CVD mortality
Silverman and Ito (2010) ⁹³	New York, NY, US (AprAug. for 1999-2006)	PM _{2.5} . Lag 01	Urgent or emergency asthma hospital admissions: ICU, non-ICU	<b>Individual or daily</b> <b>level</b> : age (<6, 6-18, 19-49, >50yrs)	Time series. □2 test of heterogeneity on pollution risks across age groups.	Age with highest risk estimate in school-age children (6-18yrs), then generally decreasing with age.
Sousa et al. (2012) 94	Rio de Janeiro, Brazil (9/00-12/05)	PM ₁₀ . Lag 0, 1, 2, 3, 4, 5, 6, 7	Emergency hospital admissions: respiratory	Individual or daily level: age (<1, 1-5, >65yrs)	Time series. Stratification for effect modification.	No statistically significant evidence of effect modification.
Stieb et al (2000) ⁹⁵	Saint John, Canada (1992-1996)	PM ₁₀ , PM _{2.5} . Single day and multiple- day lags up to 10 days previous	Emergency department visits: cardiac (MI/angina, CHF, dysrhythmia/conduction disturbance, total cardiac), respiratory (asthma, COPD, respiratory infection, total respiratory)	Individual or daily level: season (all year vs. May-Sep.), presentation of complaint for asthma (yes, no), visit resulted in hospital admission (yes, no), smoking status (yes, no), smoker in household (yes, no), time outdoors in previous week (<2, 2-4, >4 hrs), asthma status (mild, moderate, severe), asthma medication use for asthmatics (yes, no)	Time series. Stratification for effect modification.	Presented complaint of asthma (+)

Tramuto et al. (2011) ⁹⁶	Palermo, Italy (2004-2007)	PM ₁₀ . Lag 0, 1, 2, 3, 4, 5	Emergency room admissions: respiratory, for persons >16yrs	Individual or daily level: season (warm: AprSep., cool: OctMar.), sex, age (16-44, 45- 54, 55-64, 65-74, 75-84, >85yrs)	Case-crossover. Stratification for effect modification.	No statistically significant evidence of effect modification.
Tsai et al. (2012) ⁹⁷	Taipei, Taiwan (1999-2009)	PM ₁₀ . Lag 02	Hospital admissions: MI	Individual or daily level: secondary CVD diagnosis (hypertension, diabetes, CHF, arrhythmias), weather (warm vs. cool days)	Case-crossover. Stratification for effect modification.	No statistically significant evidence of effect modification.
Villeneuve et al. (2012) ⁹⁸	Edmonton, Canada (2003-2009)	PM _{2.5} . Lag 0, 1, 02	Hospital visits: stroke, ischemic stroke, hemorrhagic stroke, transient ischemic attack	Individual or daily level: season (warm: AprSep., cool: OctMar.)	Case-crossover. Stratification for effect modification.	No statistically significant evidence of effect modification.
Wellenius et al. (2005) ⁹⁹	Allegheny County, PA, US (1987–1999)	PM ₁₀ . Lag 0	Hospital admission: CHF, for persons >65yrs	Individual or daily level: age (65-79, >80yrs), sex, secondary diagnoses of atrial fibrillation other cardiac arrhythmias, COPD, essential hypertension, type 2 diabetes, AMI within the past 30 days, old MI, angina pectoris, other ischemic heart disease, and acute respiratory infections	Case-crossover. Interaction terms for effect modification.	Recent MI (+)

Wellenius et al (2006) ¹⁰⁰	7 US cities (1986– 1999)	PM ₁₀ . Lag 0	Hospital admission: CHF, for persons >65yrs	Individual or daily level: age (65-79, >80yrs), sex, race (white, other), secondary diagnoses (type 2 diabetes mellitus, AMI	City-specific case- crossover. Random effects to generate overall estimates.	Hypertension (-)
				within the past 30 days, acute respiratory infection, COPD, cardiac arrhythmias, essential hypertension)		
Wong et al. (2002)	London (1992- 1994), Hong Kong (1995-1997)	PM ₁₀ . Lag 01	Emergency hospital admissions: asthma (15- 64yrs), respiratory (>65yrs), cardiac (all ages), ischemic heart disease (all ages)	Individual or daily level: season (warm: AprSep., cool: OctMar.)	City-specific time series. Interaction terms for effect modification.	Season: Higher in cool period: cardiac Higher in warm period: respiratory for London
Wong et al. (2009)	Hong Kong, (1996– 2002)	PM ₁₀ . Lag 01	Hospital admissions: CVD, respiratory, acute respiratory disease, COPD. Mortality: COPD, CVD, respiratory	Individual or daily level: sex Community level: influenza intensity based on proportions of specimens positive for influenza	Time series. Interaction terms for effect modification for influenza intensity. Stratification for effect modification by sex.	No statistically significant evidence of effect modification.

Zanobetti, et al. (2000) ¹⁰³	Chicago, IL, US (1985-1994)	PM ₁₀ . Lag 01	Hospital admissions: CVD, COPD, pneumonia	Individual or daily level: age (≤75 vs. >75), sex, race (white, other), previous admission or secondary diagnosis (COPD, asthma, acute bronchitis, acute respiratory illness, pneumonia, MI, CHF, conduction disorders, dyshrethmias)	Time series. Stratification for effect modification.	Acute respiratory illness (+): CVD Conduction disorders (+): CVD, pneumonia Dyshrethmias (+): pneumonia Previous CVD admissions (+): COPD Heart failure (+): COPD
Zanobetti et al. (2000) ¹⁰⁴	10 US cities (1986- 1994)	PM ₁₀	Hospital admissions: pneumonia, COPD for persons >65yrs	<b>Community level:</b> race (white, other), % in poverty, temperature, humidity	City-specific time- series. Inverse- variance weighted meta-regression to estimate overall associations and investigate effect modification.	Humidity (+): COPD
Zanobetti et al. (2001) ¹⁰⁵	Cook County, IL, US (1988-1994)	PM ₁₀ . Lag 01	Hospital admissions: CVD, pneumonia, COPD	<b>Individual or daily</b> <b>level:</b> diabetes, age (<75, >75yrs)	Time series. Stratification for effect modification	Diabetes (+): CVD
Zanobetti et al. (2002) ¹⁰⁶	3 US cities (Chicago, Detroit, Pittsburgh) (1988- 1994)	PM ₁₀ . Lag 01	Hospital admissions: CVD, for persons >65yrs	Individual or daily level: age (75-74, >75yrs), secondary diagnosis of diabetes	City-specific time series. Stratification by age and diabetes status for effect modification in city- specific models. Second stage meta- regression with interaction terms for effect modification.	Diabetes (+): Chicago or overall risk across 4 cities Age (+): overall risk for persons without diabetes.

Zanobetti et al. (2005) ¹⁰⁷	21 US cities (1985– 1999)	PM ₁₀ . Lag 0	Hospital admissions: MI, for persons >65yrs	Individual or daily level: sex, age (< 75, >75yrs), previous admission (atrial fibrillation, COPD, diabetes, CHF), secondary diagnosis of pneumonia	City-specific case- crossover. Stratification for effect modification. Meta-regression to estimate overall sasociations.	No statistically significant evidence of effect modification.
Zanobetti et al. (2009) ¹⁰⁸	26 US cities (2000-2003)	PM _{2.5} . Lag 01	Emergency hospital admissions: CVD, MI, CHF, respiratory disease, diabetes	Individual or daily level: season Community level: income, poverty, education ( <high school, &gt;high school), poverty (% &gt;65yrs in poverty), prevalence of central AC, fraction of PM2.5 that is: As, Al, Br, Cr, Fe, Pb, Mn, Ni, K, Si, V, Zn, nitrate, sulfate, ammonium, sodium ion, EC, organic carbon</high 	City-specific time- series. Random effects meta- analysis to estimate overall associations.	Season: higher in spring than summer for CVD, higher in spring than summer or autumn for CHF. Br (+): CVD V (+): CVD Al (+): CVD, CHF Ni (+): CVD, CHF Ni (+): CVD, MI, CHF, respiratory Organic carbon (+): MI, diabetes As (+): MI Cr (+): MI Na+ (+): CVD, MI, respiratory Mn (+): MI K(+): MI EC (+): diabetes As (+): diabetes sulfate (+): diabetes

## Web Figure 1. Funnel plot of effect modification by sex

Note: Blue lines and points reflect results for men; pink lines and points reflect results for women. Open circles reflect observed estimates from the studies; closed circles reflect "filled" studies from the "trim and fill" method. Solid blue and pink vertical lines represent the overall risk estimates for men and women, respectively; dashed vertical lines represent the overall risk estimates adjusted for publication bias. The gray vertical line represents the null (i.e., no association).



## Web Figure 2. Funnel plot of effect modification by age

Note: Black lines and points reflect results for older populations; green lines and points reflect results for younger populations. Open circles reflect observed estimates from the studies; closed circles reflect "filled" studies from the "trim and fill" method. Solid black and green vertical lines represent the overall risk estimates for older and younger populations, respectively; dashed vertical lines represent the overall risk estimates adjusted for publication bias. The gray vertical line represents the null (i.e., no association).



### References

- 1. Aga, E., et al., Short-term effects of ambient particles on mortality in the elderly: results from 28 cities in the APHEA2 project. *Eur Respir J Suppl*, 2003. 40:28s-33s.
- 2. Analitis, A., et al., Short-term effects of ambient particles on cardiovascular and respiratory mortality. *Epidemiology*, 2006. 17(2):230-3.
- 3. Balakrishnan, K., et al., Short-term effects of air pollution on mortality: results from a time-series analysis in Chennai, India. *Res Rep Health Eff Inst*, 2011(157):7-44.
- 4. Bateson, T.F. J. Schwartz, Who is sensitive to the effects of particulate air pollution on mortality? A casecrossover analysis of effect modifiers. *Epidemiology*, 2004. 15(2):143-9.
- 5. Bell, M.L., et al., Hospital admissions and chemical composition of fine particle air pollution. *Am J Respir Crit Care Med*, 2009. 179(12):1115-20.
- 6. Bell, M.L., et al., Adverse health effects of particulate air pollution: modification by air conditioning. *Epidemiology*, 2009. 20(5):682-6.
- 7. Biggeri, A., et al., Meta-analysis of the Italian studies of short-term effects of air pollution (MISA), 1990-1999. *Int J Occup Environ Health*, 2005. 11(1):107-22.
- 8. Cakmak, S., et al., The risk of dying on days of higher air pollution among the socially disadvantaged elderly. *Environ Res*, 2011. 111(3):388-93.
- 9. Chen, R., et al., Ambient air pollution and daily mortality in Anshan, China: a time-stratified case-crossover analysis. *Sci Total Environ*, 2010. 408(24):6086-91.
- 10. De Leon, S.F., G.D. Thurston, K. Ito, Contribution of respiratory disease to nonrespiratory mortality associations with air pollution. *Am J Respir Crit Care Med*, 2003. 167(8):1117-23.
- 11. Diaz, J., A. Tobias, C. Linares, Saharan dust and association between particulate matter and case-specific mortality: a case-crossover analysis in Madrid (Spain). *Environ Health*, 2012. 11:11.
- 12. Dominici, F., et al., Does the effect of PM10 on mortality depend on PM nickel and vanadium content? A reanalysis of the NMMAPS data. *Environ Health Perspect*, 2007. 115(12):1701-3.
- 13. Faustini, A., et al., The relationship between ambient particulate matter and respiratory mortality: a multicity study in Italy. *Eur Respir J*, 2011. 38(3):538-47.
- 14. Forastiere, F., et al., Particulate matter and daily mortality: a case-crossover analysis of individual effect modifiers. *Epidemiology*, 2008. 19(4):571-80.
- 15. Forastiere, F., et al., A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. *Am J Respir Crit Care Med*, 2005. 172(12):1549-55.
- 16. Forastiere, F., et al., Socioeconomic status, particulate air pollution, and daily mortality: differential exposure or differential susceptibility. *Am J Ind Med*, 2007. 50(3):208-16.
- 17. Franklin, M., A. Zeka, J. Schwartz, Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. *J Expo Sci Environ Epidemiol*, 2007. 17(3):279-87.
- 18. Franklin, M., P. Koutrakis, P. Schwartz, The role of particle composition on the association between PM2.5 and mortality. *Epidemiology*, 2008. 19(5):680-9.
- 19. Garrett, P. E. Casimiro, Short-term effect of fine particulate matter (PM(2).(5)) and ozone on daily mortality in Lisbon, Portugal. *Environ Sci Pollut Res Int*, 2011. 18(9):1585-92.
- 20. Goldberg, M.S., et al., Identifying subgroups of the general population that may be susceptible to short-term increases in particulate air pollution: a time-series study in Montreal, Quebec. *Res Rep Health Eff Inst*, 2000(97):7-113; discussion 115-20.
- 21. Goldberg, M.S., et al., Associations between ambient air pollution and daily mortality among persons with diabetes and cardiovascular disease. *Environ Res*, 2006. 100(2):255-67.
- 22. Gouveia, N. T. Fletcher, Time series analysis of air pollution and mortality: effects by cause, age and socioeconomic status. *J Epidemiol Community Health*, 2000. 54(10):750-5.
- 23. Huang, W., et al., Seasonal variation of chemical species associated with short-term mortality effects of PM(2.5) in Xi'an, a Central City in China. *Am J Epidemiol*, 2012. 175(6):556-66.
- 24. Ito, K. G.D. Thurston, Daily PM10/mortality associations: an investigations of at-risk subpopulations. *J Expo Anal Environ Epidemiol*, 1996. 6(1):79-95.
- 25. Kan, H., et al., Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) Study. *Environ Health Perspect*, 2008. 116(9):1183-8.

- 26. Katsouyanni, K., et al., Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. Air Pollution and Health: a European Approach. *BMJ*, 1997. 314(7095):1658-63.
- 27. Katsouyanni, K., et al., Air pollution and health: a European and North American approach (APHENA). *Res Rep Health Eff Inst*, 2009(142):5-90.
- 28. Katsouyanni, K., et al., Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. *Epidemiology*, 2001. 12(5):521-31.
- 29. Levy, J.I., J.K. Hammitt, J.D. Spengler, Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? *Environ Health Perspect*, 2000. 108(2):109-17.
- 30. Li, G., et al., Does temperature enhance acute mortality effects of ambient particle pollution in Tianjin City, China. *Sci Total Environ*, 2011. 409(10):1811-7.
- 31. Ma, Y., et al., Fine particulate air pollution and daily mortality in Shenyang, China. *Sci Total Environ*, 2011. 409(13):2473-7.
- 32. Martins, M.C., et al., Influence of socioeconomic conditions on air pollution adverse health effects in elderly people: an analysis of six regions in Sao Paulo, Brazil. *J Epidemiol Community Health*, 2004. 58(1):41-6.
- 33. Nawrot, T.S., et al., Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: evidence from a heavily polluted region in western Europe. *J Epidemiol Community Health*, 2007. 61(2):146-9.
- 34. Oliveira, M.S., et al., Differential susceptibility according to gender in the association between air pollution and mortality from respiratory diseases. *Cad Saude Publica*, 2011. 27(9):1827-36.
- 35. O'Neill, M.S., et al., Do associations between airborne particles and daily mortality in Mexico City differ by measurement method, region, or modeling strategy? *J Expo Anal Environ Epidemiol*, 2004. 14(6):429-39.
- 36. O'Neill, M.S., et al., Air pollution and mortality in Latin America: the role of education. *Epidemiology*, 2008. 19(6):810-9.
- 37. Ostro, B.D., et al., The impact of components of fine particulate matter on cardiovascular mortality in susceptible subpopulations. *Occup Environ Med*, 2008. 65(11):750-6.
- 38. Ou, C.Q., et al., Socioeconomic disparities in air pollution-associated mortality. *Environ Res*, 2008. 107(2):237-44.
- 39. Ou, C.Q., et al., Dietary habits and the short-term effects of air pollution on mortality in the Chinese population in Hong Kong. *J Epidemiol Community Health*, 2012. 66(3):254-8.
- 40. Peng, R.D., et al., Seasonal analyses of air pollution and mortality in 100 US cities. *Am J Epidemiol*, 2005. 161(6):585-94.
- 41. Qian, Z., et al., Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China. *Res Rep Health Eff Inst*, 2010(154):91-217.
- 42. Rainham, D.G., et al., Synoptic weather patterns and modification of the association between air pollution and human mortality. *Int J Environ Health Res*, 2005. 15(5):347-60.
- 43. Revich, B. D. Shaposhnikov, The effects of particulate and ozone pollution on mortality in Moscow, Russia. *Air Qual Atmos Health*, 2010. 3(2):117-123.
- 44. Samoli, E., et al., Estimating the exposure-response relationships between particulate matter and mortality within the APHEA multicity project. *Environ Health Perspect*, 2005. 113(1):88-95.
- 45. Samoli, E., et al., Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA study. *Environ Health Perspect*, 2008. 116(11):1480-6.
- 46. Samoli, E., et al., Does the presence of desert dust modify the effect of PM10 on mortality in Athens, Greece? *Sci Total Environ*, 2011. 409(11):2049-54.
- 47. Schwartz, J., Harvesting and long term exposure effects in the relation between air pollution and mortality. *Am J Epidemiol*, 2000. 151(5):440-8.
- 48. Serinelli, M., et al., Particulate matter and out-of-hospital coronary deaths in eight Italian cities. *Occup Environ Med*, 2010. 67(5):301-6.
- 49. Siemiatycki, J., et al., Controlling for potential confounding by occupational exposures. *J Toxicol Environ Health A*, 2003. 66(16-19):1591-603.
- 50. Son, J.Y., et al., Susceptibility to air pollution effects on mortality in Seoul, Korea: a case-crossover analysis of individual-level effect modifiers. *J Expo Sci Environ Epidemiol*, 2012. 22(3):227-34.

- 51. Stafoggia, M., et al., Does Temperature Modify the Association between Air Pollution and Mortality? A Multicity Case-Crossover Analysis in Italy. *Am J Epidemiol*, 2008.
- 52. Tobias, A., et al., Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain). *Sci Total Environ*, 2011. 412-413:386-9.
- 53. Villeneuve, P.J., et al., A time-series study of air pollution, socioeconomic status, and mortality in Vancouver, Canada. *J Expo Anal Environ Epidemiol*, 2003. 13(6):427-35.
- 54. Wichmann, H.E., et al., Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass. *Res Rep Health Eff Inst*, 2000(98):5-86; discussion 87-94.
- 55. Wilson, W.E., T.F. Mar, J.Q. Koenig, Influence of exposure error and effect modification by socioeconomic status on the association of acute cardiovascular mortality with particulate matter in Phoenix. *J Expo Sci Environ Epidemiol*, 2007. 17 Suppl 2:S11-9.
- 56. Wong, C.M., et al., The effects of air pollution on mortality in socially deprived urban areas in Hong Kong, China. *Environ Health Perspect*, 2008. 116(9):1189-94.
- 57. Wong, C.M., et al., Part 4. Interaction between air pollution and respiratory viruses: time-series study of daily mortality and hospital admissions in Hong Kong. *Res Rep Health Eff Inst*, 2010(154):283-362.
- 58. Yang, C., et al., A time-stratified case-crossover study of fine particulate matter air pollution and mortality in Guangzhou, China. *Int Arch Occup Environ Health*, 2012. 85(5):579-85.
- 59. Zauli Sajani, S., et al., Saharan dust and daily mortality in Emilia-Romagna (Italy). *Occup Environ Med*, 2011. 68(6):446-51.
- 60. Zanobetti, A. J. Schwartz, Race, gender, and social status as modifiers of the effects of PM10 on mortality. *J Occup Environ Med*, 2000. 42(5):469-74.
- 61. Zanobetti, A. J. Schwartz, The effect of fine and coarse particulate air pollution on mortality: a national analysis. *Environ Health Perspect*, 2009. 117(6):898-903.
- 62. Zeka, A., A. Zanobetti, J. Schwartz, Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. *Occup Environ Med*, 2005. 62(10):718-25.
- 63. Zeka, A., A. Zanobetti, J. Schwartz, Individual-level modifiers of the effects of particulate matter on daily mortality. *Am J Epidemiol*, 2006. 163(9):849-59.
- 64. Bell, M.L., et al., Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999-2005. *Am J Epidemiol*, 2008. 168(11):1301-10.
- 65. Belleudi, V., et al., Impact of fine and ultrafine particles on emergency hospital admissions for cardiac and respiratory diseases. *Epidemiology*, 2010. 21(3):414-23.
- 66. Bhaskaran, K., et al., The effects of hourly differences in air pollution on the risk of myocardial infarction: case crossover analysis of the MINAP database. *BMJ*, 2011. 343:d5531.
- 67. Buadong, D., et al., Association between PM10 and O3 levels and hospital visits for cardiovascular diseases in Bangkok, Thailand. *J Epidemiol*, 2009. 19(4):182-8.
- 68. Bunch, T.J., et al., Atrial fibrillation hospitalization is not increased with short-term elevations in exposure to fine particulate air pollution. *Pacing Clin Electrophysiol*, 2011. 34(11):1475-9.
- 69. Burra, T.A., et al., Social disadvantage, air pollution, and asthma physician visits in Toronto, Canada. *Environ Res*, 2009. 109(5):567-74.
- 70. Canova, C., et al., PM10-induced Hospital Admissions for Asthma and Chronic Obstructive Pulmonary Disease: The Modifying Effect of Individual Characteristics. *Epidemiology*, 2012. 23(4):607-15.
- 71. Cao, J., et al., Association of ambient air pollution with hospital outpatient and emergency room visits in Shanghai, China. *Sci Total Environ*, 2009. 407(21):5531-6.
- 72. Cheng, M.F., et al., Air pollution and hospital admissions for pneumonia: are there potentially sensitive groups? *Inhal Toxicol*, 2009. 21(13):1092-8.
- 73. Chiu, H.F. C.Y. Yang, Air pollution and emergency room visits for arrhythmias: are there potentially sensitive groups? *J Toxicol Environ Health A*, 2009. 72(13):817-23.
- 74. Colais, P., et al., Particulate air pollution and hospital admissions for cardiac diseases in potentially sensitive subgroups. *Epidemiology*, 2012. 23(3):473-81.
- 75. Dales, R.E., S. Cakmak, C.B. Vidal, Air pollution and hospitalization for headache in Chile. *Am J Epidemiol*, 2009. 170(8):1057-66.
- 76. Dominici, F., et al., Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. *Jama*, 2006. 295(10):1127-34.
- 77. Fung, K.Y., et al., Air pollution and daily hospital admissions for cardiovascular diseases in Windsor, Ontario. *Can J Public Health*, 2005. 96(1):29-33.

- 78. Haley, V.B., T.O. Talbot, H.D. Felton, Surveillance of the short-term impact of fine particle air pollution on cardiovascular disease hospitalizations in New York State. *Environ Health*, 2009. 8:42.
- 79. Janssen, N.A., et al., Air conditioning and source-specific particles as modifiers of the effect of PM(10) on hospital admissions for heart and lung disease. *Environ Health Perspect*, 2002. 110(1):43-9.
- 80. Kim, S.Y., et al., Air pollution, socioeconomic position, and emergency hospital visits for asthma in Seoul, Korea. *Int Arch Occup Environ Health*, 2007. 80(8):701-10.
- 81. Lanki, T., et al., Associations of traffic related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPSS study. *Occup Environ Med*, 2006. 63(12):844-51.
- 82. Lee, I.M., et al., Air pollution and hospital admissions for congestive heart failure: are there potentially sensitive groups? *Environ Res*, 2008. 108(3):348-53.
- 83. Mann, J.K., et al., Air pollution and hospital admissions for ischemic heart disease in persons with congestive heart failure or arrhythmia. *Environ Health Perspect*, 2002. 110(12):1247-52.
- 84. Medina-Ramon, M., A. Zanobetti, J. Schwartz, The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. *Am J Epidemiol*, 2006. 163(6):579-88.
- 85. Middleton, N., et al., A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the effect of short-term changes in air pollution and dust storms. *Environ Health*, 2008. 7:39.
- 86. Namdeo, A., A. Tiwary, E. Farrow, Estimation of age-related vulnerability to air pollution: assessment of respiratory health at local scale. *Environ Int*, 2011. 37(5):829-37.
- 87. Nuvolone, D., et al., Short-term association between ambient air pollution and risk of hospitalization for acute myocardial infarction: results of the cardiovascular risk and air pollution in Tuscany (RISCAT) study. *Am J Epidemiol*, 2011. 174(1):63-71.
- 88. Oftedal, B., et al., Traffic related air pollution and acute hospital admission for respiratory diseases in Drammen, Norway 1995-2000. *Eur J Epidemiol*, 2003. 18(7):671-5.
- 89. Oudin, A., et al., Estimation of short-term effects of air pollution on stroke hospital admissions in southern Sweden. *Neuroepidemiology*, 2010. 34(3):131-42.
- 90. Peel, J.L., et al., Ambient air pollution and cardiovascular emergency department visits in potentially sensitive groups. *Am J Epidemiol*, 2007. 165(6):625-33.
- 91. Qorbani, M., et al., Effect of air pollution on onset of acute coronary syndrome in susceptible subgroups. *East Mediterr Health J*, 2012. 18(6):550-5.
- 92. Ren, C. S. Tong, Temperature modifies the health effects of particulate matter in Brisbane, Australia. *Int J Biometeorol*, 2006. 51(2):87-96.
- 93. Silverman, R.A. K. Ito, Age-related association of fine particles and ozone with severe acute asthma in New York City. *J Allergy Clin Immunol*, 2010. 125(2):367-373 e5.
- 94. Sousa, S.I., et al., Short-term effects of air pollution on respiratory morbidity at Rio de Janeiro--Part II: health assessment. *Environ Int*, 2012. 43:1-5.
- 95. Stieb, D.M., et al., Air pollution, aeroallergens and cardiorespiratory emergency department visits in Saint John, Canada. *J Expo Anal Environ Epidemiol*, 2000. 10(5):461-77.
- 96. Tramuto, F., et al., Urban air pollution and emergency room admissions for respiratory symptoms: a casecrossover study in Palermo, Italy. *Environ Health*, 2011. 10:31.
- 97. Tsai, S.S., et al., Air pollution and hospital admissions for myocardial infarction: are there potentially sensitive groups? *J Toxicol Environ Health A*, 2012. 75(4):242-51.
- 98. Villeneuve, P.J., et al., Short-term effects of ambient air pollution on stroke: Who is most vulnerable? *Sci Total Environ*, 2012. 430:193-201.
- 99. Wellenius, G.A., et al., Particulate Air Pollution and the Rate of Hospitalization for Congestive Heart Failure among Medicare Beneficiaries in Pittsburgh, Pennsylvania. *Am J Epidemiol*, 2005. 161(11):1030-6.
- 100. Wellenius, G.A., J. Schwartz, M.A. Mittleman, Particulate air pollution and hospital admissions for congestive heart failure in seven United States cities. *Am J Cardiol*, 2006. 97(3):404-8.
- 101. Wong, C.M., et al., A tale of two cities: effects of air pollution on hospital admissions in Hong Kong and London compared. *Environ Health Perspect*, 2002. 110(1):67-77.
- 102. Wong, C.M., et al., Modification by influenza on health effects of air pollution in Hong Kong. *Environ Health Perspect*, 2009. 117(2):248-53.
- 103. Zanobetti, A., J. Schwartz, D. Gold, Are there sensitive subgroups for the effects of airborne particles? *Environ Health Perspect*, 2000. 108(9):841-5.
- 104. Zanobetti, A., J. Schwartz, D.W. Dockery, Airborne particles are a risk factor for hospital admissions for heart and lung disease. *Environ Health Perspect*, 2000. 108(11):1071-7.

- 105. Zanobetti, A. J. Schwartz, Are diabetics more susceptible to the health effects of airborne particles? *Am J Respir Crit Care Med*, 2001. 164(5):831-3.
- 106. Zanobetti, A. J. Schwartz, Cardiovascular damage by airborne particles: are diabetics more susceptible? *Epidemiology*, 2002. 13(5):588-92.
- 107. Zanobetti, A. J. Schwartz, The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. *Environ Health Perspect*, 2005. 113(8):978-82.
- 108. Zanobetti, A., et al., Fine particulate air pollution and its components in association with cause-specific emergency admissions. *Environ Health*, 2009. 8:58.