METHODS

Construction of linker DNA for the assembly of VH and VL fragments

For the construction of linker DNA, 24 separate PCR reactions (Platinum PCR Supermix; Invitrogen, Life Technologies, Carlsbad, Calif) were performed in which all possible combinations of the 4 VH- and 6 VL-specific primers^{E1} were used to amplify a DNA sequence coding for a 15-amino-acid linker (Gly₄Ser)₃. Twenty-four linker products were purified on a 2% agarose gel, eluted as described, and ligated into the precut pSTBlue-1 AccepTor Vector (Novagen, Inc, Madison, Wis) that allows direct ligation of a PCR product with 3'-dA overhangs produced by Taq-Polymerase that anneal with 3'-dU on the vector. Sequences were confirmed by means of double-strand sequencing (Microsynth, Balgach, Switzerland) performed with the standard T7 and SP6 primers and were further used as templates for another PCR step, followed by purification, as previously described. Concentrations of the 24 separate linkers were determined by means of Nanodrop (Peqlab, Erlangen, Germany), and an equimolar mix was produced.

Analysis of expression of constructed ScFvs

ScFvs were tested for reactivity with an antibody directed to the C-terminal peptide tag (E tag) by means of immunoblotting (Schleicher & Schuell, Dassel, Germany).^{E2} Membrane-bound ScFvs were traced with a monoclonal mouse anti–E tag antibody (Amersham Biosciences), followed by a horseradish peroxidase–labeled sheep anti-mouse antiserum (Amersham Biosciences). Blots were developed with the ECL Plus Western Blotting Detection System (GE Healthcare, Fairfield, Conn), followed by exposure to Kodak XOMAT films with intensifying screens (Kodak, Heidelberg, Germany).

Cross-reactivity of light chain–shuffled ScFvs with nitrocellulose-blotted natural grass pollen allergens

SDS extracts were prepared from pollen of 3 different grass species (*P pratense*: timothy grass; *P pratensis*: Kentucky bluegrass; and *L perenne*: ryegrass), as previously described.^{E3} The extracts were subjected to SDS-PAGE under reducing conditions and blotted onto nitrocellulose membranes (Schleicher & Schuell). *E coli* lysates containing the soluble ScFvs (dilution 1:2) were exposed to nitrocellulose-blotted natural allergens. Natural Phl p 5 was detected with rabbit anti-sera specific for Phl p 5.^{E4} Bound rabbit antibodies were traced with a horseradish peroxidase–labeled donkey antirabbit antiserum (Amersham Biosciences). Blots were developed as described previously.

REFERENCES

- E1. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991;222:581-97.
- E2. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979;76:4350-4.
- E3. Madritsch C, Flicker S, Scheiblhofer S, Zafred D, Pavkov-Keller T, Thalhamer J, et al. Recombinant monoclonal human immunoglobulin E to investigate the allergenic activity of major grass pollen allergen Phl p 5. Clin Exp Allergy 2011;41: 270-80.
- E4. Focke M, Marth K, Flicker S, Valenta R. Heterogeneity of commercial timothy grass pollen extracts. Clin Exp Allergy 2008;38:1400-8.

	Isolated VH	IGHV gene*allele_01	Nucleotide sequence Identity	Accession No	IGHD gene*allele_01	Nucleotide sequence Identity	Accession No	IGHJ gene*allele_01	Nucleotide sequence Identity	Accession No
Phl p 5- specific VH	5VH	IGHV3-30-3*01	87.50%	X92283	IGHD1-1*01	88.24%	X97051	IGHJ3*01	94.00%	J00256
		IGHV3-30*01	86.81%	M83134	IGHD1-14*01	82.35%	X13972	IGHJ4*01	75.00%	J00256
		IGHV3-33*01	86.11%	AB019439	IGHD1-20*01	82.35%	X97051	IGHJ1*01	69.23%	J00256
		IGHV3-NL1*01	83.33%	HM855939	IGHD1-7*01	82.35%	X13972	IGHJ5*01	68.63%	J00256
		IGHV3-7*01	81.25%	M99649	IGHD7-27*01	72.73%	J00256	IGHJ2*01	67.92%	J00256
fic VH		IGHV4-31*01	92.47%	L10098	IGHD5-18*01	80.00%	X97051	IGHJ4*01	85.11%	<u>J00256</u>
		IGHV4-30-4*01	91.76%	<u>Z14238</u>	IGHD5-5*01	80.00%	X13972	IGHJ5*01	82.00%	J00256
	94VH	IGHV4-30-2*01	89.96%	L10089	IGHD5-24*01	70.00%	X97051	IGHJ3*01	75.51%	J00256
		IGHV4-61*01	87.81%	M29811	IGHD2-15*01	60.00%	J00234	IGHJ1*01	74.51%	J00256
		IGHV4-39*01	87.10%	AB019439	IGHD3-16*01	60.00%	X93614	IGHJ6*01	72.41%	J00256
	60VH	IGHV4-30-4*01	91.40%	Z14238	IGHD1-26*01	63.64%	X97051	IGHJ4*01	85.11%	J00256
sci		IGHV4-31*01	91.40%	L10098	IGHD5-24*01	63.64%	X97051	IGHJ5*01	78.00%	J00256
PhI p 2-spc		IGHV4-30-2*01	89.25%	L10089	IGHD6-25*01	62.50%	X97051	IGHJ1*01	76.47%	J00256
		IGHV4-61*01	87.46%	M29811	IGHD1-7*01	54.55%	X13972	IGHJ3*01	75.51%	J00256
		IGHV4-39*01	87.10%	AB019439	IGHD5-12*01	53.85%	X13972	IGHJ6*01	63.93%	J00256
	100VH	IGHV4-30-4*01	94.27%	Z14238	IGHD1-26*01	60.00%	X97051	IGHJ4*01	87.23%	J00256
		IGHV4-31*01	94.27%	L10098	IGHD5-24*01	60.00%	X97051	IGHJ5*01	80.00%	J00256
		IGHV4-30-2*01	92.11%	L10089	IGHD6-13*01	60.00%	X13972	IGHJ1*01	76.47%	J00256
		IGHV4-59*01	90.48%	AB019438	IGHD5-5*01	60.00%	X13972	IGHJ3*01	73.47%	J00256
		IGHV4-61*01	90.32%	M29811	IGHD7-27*01	55.56%	J00256	IGHJ6*01	68.97%	J00256
	25VH	IGHV3-9*01	90.58%	M99651	IGHD5-5*01	54.55%	X13972	IGHJ4*01	91.49%	J00256
fic VH		IGHV3-20*01	85.87%	M99657	IGHD6-13*01	53.85%	X13972	IGHJ5*01	80.00%	J00256
		IGHV3-43*01	85.14%	M99672	IGHD6-6*01	53.33%	X13972	IGHJ1*01	76.47%	J00256
		IGHV3-23*01	82.97%	M99660	IGHD2-15*01	52.94%	J00234	IGHJ3*01	69.39%	J00256
		IGHV3-48*01	82.97%	M99675	IGHD4-23*01	52.94%	X97051	IGHJ2*01	69.23%	J00256
		IGHV3-9*01	93.84%	M99651	IGHD1-26*01	69.23%	X97051	IGHJ4*01	82.98%	J00256
eci		IGHV3-20*01	88.04%	M99657	IGHD2-15*01	68.75%	J00234	IGHJ1*01	74.51%	J00256
Phl p 1-sp	43VH	IGHV3-43*01	88.04%	M99672	IGHD2-2*01	68.75%	J00232	IGHJ5*01	72.00%	J00256
		IGHV3-h*01	83.15%	AJ879484	IGHD6-25*01	61.54%	X97051	IGHJ3*01	71.43%	J00256
		IGHV3-48*01	82.61%	M99675	IGHD3-10*01	58.82%	X13972	IGHJ2*01	69.23%	J00256
	10VH	IGHV3-9*01	92.75%	M99651	IGHD1-26*01	69.23%	X97051	IGHJ4*01	85.11%	J00256
		IGHV3-20*01	86.59%	M99657	IGHD2-15*01	68.75%	J00234	IGHJ5*01	78.00%	J00256
		IGHV3-43*01	85.51%	M99672	IGHD1-7*01	61.54%	X13972	IGHJ3*01	75.51%	J00256
		IGHV3-h*01	83.15%	AJ879484	IGHD6-25*01	61.54%	X97051	IGHJ1*01	74.51%	J00256
		IGHV3-48*01	82.61%	M99675	IGHD6-6*01	56.25%	X13972	IGHJ2*01	69.23%	J00256

A Comparison of isolated heavy chains with germline genes

FIG E1. Comparison of VH **(A)** and VL **(B)** sequences from the original IgE Fabs with germline genes (allele*01) from the ImMunoGeneTics database. The closest related germline genes and those with sequence identities of no less than 5% to the latter are displayed in boldface, together with their accession numbers and nucleotide sequence identities. Likewise, variable (IGHV), diverse (IGHD), and joining (IGHJ) genes of heavy chain sequences were identified in Fig E1, *A*, as well as variable (IGKV) and joining (IGKJ) genes of light chain sequences in Fig E1, *B*.

В	Isolated VL	IGKV gene*allele_01	Nucleotide sequence Identity	Accession No	IGKJ gene*allele_01	Nucleotide sequence Identity	Accession No
1		IGKV1-12*01	96.34%	V01577	IGKJ2*01	94.12%	J00242
		IGKV1D-12*01	95.60%	X17263	IGKJ1*01	85.29%	J00242
	5VL	IGKV1D-16*01	91.94%	K01323	IGKJ3*01	79.41%	J00242
		IGKV1-16*01	90.84%	J00248	IGKJ4*01	79.41%	J00242
		IGKV1-9*01	90.48%	Z00013	IGKJ5*01	64.71%	J00242
		IGKV1-39*01	95.70%	X59315	IGKJ1*01	96.97%	J00242
c VL		IGKV1D-39*01	95.70%	X59312	IGKJ4*01	78.79%	J00242
	14VL	IGKV1-17*01	89.25%	X72808	IGKJ2*01	75.76%	J00242
ΞĮ.		IGKV1-6*01	89.25%	M64858	IGKJ3*01	75.76%	J00242
) ec		IGKV1-NL1*01	89.25%	<u>Y14865</u>	IGKJ5*01	66.67%	J00242
-S		IGKV1-39*01	93.04%	<u>X59315</u>	IGKJ1*01	90.62%	<u>J00242</u>
5		IGKV1D-39*01	93.04%	<u>X59312</u>	IGKJ3*01	78.12%	J00242
l L	28VL	IGKV1-9*01	86.81%	Z00013	IGKJ4*01	75.00%	J00242
E		IGKV1-6*01	86.45%	<u>M64858</u>	IGKJ2*01	71.88%	J00242
		IGKV1D-13*01	86.45%	<u>X17262</u>	IGKJ5*01	68.75%	J00242
		IGKV1-39*01	97.49%	<u>X59315</u>	IGKJ2*01	94.12%	<u>J00242</u>
		IGKV1D-39*01	97.49%	<u>X59312</u>	IGKJ1*01	73.53%	J00242
	31VL	IGKV1-12*01	91.40%	<u>V01577</u>	IGKJ3*01	73.53%	J00242
	94VL	IGKV1-9*01	90.68%	Z00013	IGKJ4*01	73.53%	J00242
		IGKV1D-12*01	90.68%	<u>X17263</u>	IGKJ5*01	73.53%	J00242
		IGKV1-39*01	93.77%	<u>X59315</u>	IGKJ2*01	94.87%	<u>J00242</u>
		IGKV1D-39*01	93.77%	<u>X59312</u>	IGKJ1*01	84.21%	J00242
		IGKV1-12*01	88.64%	<u>V01577</u>	IGKJ4*01	84.21%	J00242
F		IGKV1-9*01	88.64%	Z00013	IGKJ3*01	81.58%	J00242
		IGKV1-17*01	88.28%	<u>X72808</u>	IGKJ5*01	71.05%	J00242
Phl p 2-specific		IGKV1-39*01	92.67%	<u>X59315</u>	IGKJ3*01	86.84%	<u>J00242</u>
	(017	IGKV1D-39*01	92.67%	<u>X59312</u>	IGKJ2*01	82.05%	<u>J00242</u>
	60VL	IGKV1-12*01	86.81%	<u>V01577</u>	IGKJ1*01	76.32%	J00242
		IGKV1-37*01	86.81%	<u>X59316</u>	IGKJ4*01	73.68%	J00242
		IGKV1D-3/*01	86.81%	<u>X/1893</u>	IGKJ5*01	/3.68%	J00242
		IGKV1-12*01	95.97%	<u>V01577</u>	IGKJ2*01	94.74%	<u>J00242</u>
	1003/1	IGKVID-12*01	95.24%	<u>X1/263</u>	IGKJ1*01	80.84%	<u>J00242</u>
	100 V L	IGKVID-16*01	91.58%	100248	IGKJ3*01	81.38%	100242
		IGK V1-10*01	90.48%	700012	IGKJ4*01 ICK15*01	69.420	100242
	-	IGK V1-9*01	90.11%	<u>200013</u> <u>250215</u>	IGKJ5*01	08.42%	100242
c VL	25VI	ICKV1D 20*01	95.24%	X50212	IGKJ3*01	71.05%	100242
		IGKV1 12*01	93.24 %	V01577	IGK1/*01	71.05%	100242
	23 V L	IGKV1 17*01	90.11 <i>%</i> 80.38%	¥72808	IGK11*01	68 42%	100242
		IGKV1D-12*01	89.38%	X17263	IGK13*01	68.42%	100242
		IGKV1.39*01	90.32%	X59315	IGK 14*01	89.47%	100242
Ξ.		IGKV1D-39*01	90.32%	X 59312	IGK12*01	76.32%	100242
ul p 1-spec	43VL	IGKV1-17*01	85.66%	X72808	IGK13*01	76.32%	100242
		IGKV1-9*01	85.66%	Z00013	IGKJ1*01	73.68%	J00242
		IGKV1-12*01	84.95%	V01577	IGK15*01	65.79%	J00242
		IGKV1-39*01	91.76%	X59315	IGKJ4*01	97.37%	J00242
Ł		IGKV1D-39*01	91.76%	X59312	IGKJ1*01	81.58%	J00242
	10VL	IGKV1-12*01	86.38%	V01577	IGKJ3*01	81.58%	J00242
	10 V L	IGKV1-27*01	86.02%	X63398	IGKJ2*01	78.95%	J00242
		IGKV1-9*01	86.02%	Z00013	IGKJ5*01	71.05%	J00242

Comparison of isolated light chains with germline genes

FIG E1. (Continued)

FIG E2. Detection of complete ScFvs in nitrocellulose-blotted bacterial lysates with an anti–E tag antibody. The analysis of a representative number of bacterial clones expressing original and shuffled ScFvs *(top)* is shown. Molecular weight markers (in kilodaltons) are indicated on the *left margin*.

FIG E3. Detection of cross-reactivity of original and shuffled ScFvs and a control ScFv (*top*) to nitrocelluloseblotted natural grass pollen extracts from *P pratense (left)*, *P pratensis (middle)*, and *L perenne (right)*. Rabbit anti–PhI p 5 antiserum was used to identify group 5 allergens in the extracts. Molecular weight markers (in kilodaltons) are displayed on the *left margin*.

TABLE E1. Amino acid sequence identities (in percentages) and mean percentage sequence identities between the analyzed VL regions are displayed

	PhI p 1-specific				PhI p 2-specific				Phl p 5-specific				
	25VL	43VL	10VL	Mean	94VL	60VL	100VL	Mean	5VL	28VL	31VL	14VL	Mean
Phl p 1 specific													
25VL	100%			82.7%									
43VL	82%	100%											
10VL	83%	83%	100%										
Phl p 2 specific													
94VL	83%	75%	78%	78.8%	100%			81.0%					
60VL	82%	79%	79%		82%	100%							
100VL	83%	74%	76%		81%	80%	100%						
Phl p 5 specific													
5VL	83%	74%	76%	82.2%	81%	80%	100%	85.2%	100%				86.0%
28VL	88%	81%	84%		83%	84%	82%		82%	100%			
31VL	90%	82%	82%		86%	85%	87%		87%	89%	100%		
14VL	87%	79%	80%		88%	83%	83%		83%	86%	89%	100%	