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Supplementary Figures 

 

Supplementary Figure S1 Consistence between TRMC and TA results. a, b, Excitation density 

dependent transient absorption traces for EDA and BDA QD solids. From these traces, the ratio of the 

bleach at 1 ns to 3 ps (peak value) is determined. c, d, The max    value determined by TRMC (dots) 

and the ratio of transient absorption bleach at 1 ns and at 3 ps (peak value) (open squares) show 

identical absN   dependence. An excellent agreement between them is observed. The fact that the 

TRMC photoconductivity at 3 ns and the TA at 1 ns have such a similar intensity dependence shows 

that the photoconductivity is due to same excitations that result in the 1Se1Sh absorption bleach, hence 

due to electrons and holes in the 1Se and 1Sh levels. The identical excitation density dependence 

observed here, along with the fact that the traces of THz absorption by mobile charge carriers are 

identical to TA traces,
1
 suggests that the yield   of photo-generation of mobile charge carriers is close 

to unity for both EDA and BDA QD solids. As both the THz absorption and the microwave absorption 

are due to mobile charge carriers, identical decay kinetics of THz absorption and TA shows that the 

decay on sub-nanosecond is due to decay of mobile charge carriers, while the identical excitation 

dependence of max    and the TA ratio shows that what remains from the fast decay are also mobile 

charge carriers.   
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Supplementary Figure S2 Absence of charging effects on the observed transients. We performed a 

pump-probe experiment on a BDA QD film with 795 nm, 1.2 mW pump pulses, corresponding to 

<Nabs> = 0.09. The resulting transient, probed at the first exciton maximum, is shown as the red line in 

the figure. Subsequently we performed the same experiment but we introduced a second, high-power, 

pump pulse 100 ps after the first (blue line). The power of the second pump pulse corresponds to <Nabs> 

= 5.7, i.e. much higher than in all other experiments discussed here. The pump-probe and pump-pump-

probe transients are identical in the first 100 ps. This demonstrates that the observed transient absorption 

signals are purely due to the weak pump pulse at zero time delay. Hence, any eventual long-term 

increase in charge density or temperature has no detectable effect on the decay kinetics. This implies 

that the density of mobile charge carriers that is left after 1 ms (when the next laser pulse hits the 

sample) is much lower than the density of charges that is generated by the laser pulse itself.  
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Supplementary Figure S3 Experimental results and simulations for BDA QD solids. a, 
Experimental (solid lines, TA) and simulated (dashed lines, Monte Carlo simulations) carrier decay 

traces for a QD solid of 4.5 nm PbSe QDs and BDA ligands at various excitation densities. b, Charge 

carrier combinations (0,i), (1,1) and others (AR reactive) with  = 0.15 on a lin-log time scale 

(the first 100 fs are on a linear time scale, subsequently a logarithmic scale is used). c, Histograms of the 

Multiple Carrier Distributions for five delay times. The parameters used for the Monte Carlo 

simulations were as follows: Electron-hole Coulomb interaction energy 80 meV, energy disorder 36 

meV, positional disorder 1 nm, a mobility of 0.015 cm
2
/Vs and a trion decay rate of 70 ps. Compared to 

the EDA QD solids discussed in the main text the energy disorder is somewhat smaller (since the 1S 

peak in the absorption spectrum is narrower) and the mobility is lower. The lower mobility results in 

slower exciton dissociation and carrier diffusion and, hence, slower Auger recombination. 

 

 

 
 

Supplementary Figure S4 Transient absorption results and Monte Carlo Simulations for a second 

QD size a, Experimental (solid lines, TA) and simulated (dashed lines, Monte Carlo simulations) carrier 

decay traces for a QD solid of 3.8 nm PbSe QDs and EDA ligands at various excitation densities. b, 

Charge carrier combinations (0,i), (1,1) and others (AR reactive) with  = 0.15 on a lin-log time 

scale (the first 100 fs are on a linear time scale, subsequently a logarithmic scale is used). c Histograms 

of the Multiple Carrier Distributions for five delay times. For these smaller QDs the trion lifetime is 

shorter
2
, 60 ps. The other simulation parameters were as follows: electron-hole Coulomb energy 98 

meV, energy disorder 90 meV, positional disorder 1 nm and a mobility of 12.9 cm
2
/Vs. The higher 

mobility and shorter trion lifetime result in Auger recombination that is even faster than for the 4.4 nm 

PbSe QD solid discussed in the main text. 
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Supplementary Figure S5: Half lifetime of the Auger decay. The half lifetime of the Auger decay is 

extracted from Figure 1d in the main text for various excitation densities. The data are shown on a log-

log scale and are extrapolated to obtain a rough estimate of the half lifetime at low excitation density.  

 
 

 

Supplementary Figure S6 Additional transients form mixed QD films. Absorption transients on QD 

films that consist of a purely 4.8 nm QDs  (“Small QD film”, red line), purely 7.5 nm QDs (“Big QD 

film”, black line), or alternating layers of these small and large QDs (“Mixed QD film”) probed at the 

1S exciton maximum of the small QDs (green line) or the big QDs (blue line). The samples are excited 

with 795 nm pump pulses at an excitation density of 0.0024 per QD, and are probed at the indicated 

wavelengths. In the mixed QD film a fast decay of the absorption bleach due to the small QDs is 

accompanied by a similarly fast increase of the absorption bleach of the big QDs. 
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Supplementary Figure S7 Charge transfer in mixed QD films that exhibit phase separation. a, 

Absorption spectra of a QD dispersion and a film, with two sizes of QDs mixed. Unlike the sample shown in 

Fig. 3 of the main text, this film was prepared by mixing two QD dispersions and using that mixture for 

dipcoating. The size ratio of the particles used corresponds to 0.6875. For this size ratio it is both 

predicted theoretically
3
 and observed experimentally for colloidal QDs

4
 that phase separation into 

domains of single component small and large particles occurs and that no mixing takes place. This 

phase separation leads to lower transfer rates than those shown in Figure 3: (25 ps)
-1

 here vs. (1.3 ps)
-1

 

in Figure 3, where phase separation is avoided. b, Transient absorption spectra with 
absN   of 0.019 

probed at 1430 nm and 1800 nm reveal charge carrier transfer from the small QDs to the large ones. c, d, 

The excitation density dependent TA spectra in the solid, with 
absN   from 0.019 to 0.15, probed at 1430 

nm and 1800 nm indicate that charge carriers first undergo transfer from the small QD to the large ones and 

then decay via Auger recombination in the big QDs.  
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Supplementary Figure S8: Simulated (dashed lines) and experimental (solid lines) charge carrier decay 

traces. The simulated curves were obtained with varying extent of disorder in inter-particle distance. 

 
 
 
 
 

 
 

Supplementary Figure S9: A Schematic illustration of how E , i.e. the sum of direct Coulomb 

interaction energy dirE  and the cross-polarization energy polE , is calculated. a, E  for an exciton. b, E  

for a trion (ehh) including contributions from interactions between particles 1&2, 1&3, and 2&3. 
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Supplementary Figure S10: The mean squared displacement 
2r  as a function of time for various 

values of the energy disorder w . Black lines are linear fits to the linear part of the diffusion curves. 

These fits are used to derive the charge carrier mobility. 
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Supplementary Tables 

 

Supplementary Table S1 The Coulomb energy change 
CoulombE  is calculated for a carrier hopping 

between various combinations of charge carriers. A(n,m)B(n,m) represents two QDs with n  electrons 

and m  holes. For clarity only dir

e,hE  and pol

e,hE  are used. 

Initial occupation Final occupation 
initialE  

finalE  
CoulombE  

A(0,1)B(0,0) A(0,0)B(0,1) 0 0 0 

A(1,1)B(0,0) A(1,0)B(0,1) dir pol

e,h e,hE E  0 dir pol

e,h e,h( )E E   

A(2,0)B(0,0) A(1,0)B(1,0) dir pol

e,h e,h( )E E   0 dir pol

e,h e,hE E  

A(2,1)B(0,0) A(1,1)B(1,0) dir pol

e,h e,hE E  dir pol

e,h e,hE E  0 

A(2,1)B(0,0) A(2,0)B(0,1) dir pol

e,h e,hE E  dir pol

e,h e,h( )E E   dir pol

e,h e,h2( )E E   

A(1,1)B(1,1) A(0,1)B(2,1) dir pol

e,h e,h2( )E E  dir pol

e,h e,hE E  dir pol

e,h e,h( )E E   

 
 

Supplementary Table S2: The fit parameters obtained from simulations including disorder in the inter-

particle distance. 

d distribution (nm) Least squares (a.u.) 
tr (ps)  (cm

2
/Vs) 

0.3 12.1 69.4 13.7 

[0, 0.5] 12.8 69.8 4.88 

[0, 1] 12.0 71.0 1.46 

[0, 2] 10.1 69.1 0.48 
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Supplementary Notes 

 

 Supplementary Note 1: Coulomb interaction energy 

To estimate the dissociation energy of a photogenerated electron-hole pair we first consider the 

energy E
 of a well separated electron-hole pair where the electron and hole occupy different QDs and 

do not interact. With respect to the unexcited QD film the energy is: 
pol pol

1e 1h e hE E E E E        (S1) 

Here 
1eE  and 

1hE  are the site energies of the electron and hole, respectively and pol

eE  and pol

hE  are the 

electron and hole self energies. When the electron and hole are brought together on a single QD the 

energy becomes: 
pol pol dir pol

1e 1h e h e,h e,hE E E E E E E          (S2) 

dir

e,hE  is the direct Coulomb interaction between electron and hole and pol

e,hE  is the interaction of the 

electron with the polarization induced by the hole, and vice versa. The dissociation energy 
dissE  is 

obtained as the difference between E
 and 

e-hE  and contains the direct Coulomb interaction dir

e,hE  

between electron and hole, as well as the cross-polarization energy pol

e,hE . 

Expressions for these contributions have been derived by Delerue resulting in the following final 
expression for the dissociation energy:5 

2 2

in out
diss

0 in 0 in out

1.79

4 4

e e

a
E

a

 

    
 


     (S3) 

where 
0  is the vacuum permittivity, a  is the QD radius, in  is the dielectric constant of PbSe QDs, 

and out  is the dielectric constant outside of the QDs.  out  is determined by the capping molecules, in 

this case 1,2-ethanediamine, and neighboring QDs. We consider it to be the effective dielectric constant 

of the film and obtain an estimate of its value by applying the Bruggeman effective medium theory:
6
 

in m

in m

( 1)f f
   

     

 
 

 
     (S4) 

where f  is the fill factor of the QDs,   is the effective dielectric function of the film, i.e. out   

and 
m  the dielectric function of the capping material. For QDs with a radius of 2.2 nm, a capping layer 

of 0.2 nm and a total packing density of 0.7, the fill factor is 0.54.  With the optical dielectric constant of 

PbSe (23.9) and EDA (2.11) this results in a out  of 10.2 and an dissE  of 80 meV. This value agrees 

with the experimental observation of an electron-hole interaction energy of 80 meV in films of 

PbSe/CdSe core-shell QDs by Swart et al.
7
 

Following the same procedure as above, we estimate the Coulomb energy change CoulombE  for a 

carrier hopping between any combination of carriers. The site energy, including the first and second 

terms of Supplementary Equation (S2), and electrostatic self-energy, will not contribute to CoulombE , so 

for simplicity we temporarily only consider the direct Coulomb interaction term dir

e,hE  and the cross-

polarization energy pol

e,hE . The sum of these two terms is referred to as E . 

Supplementary Figure S9a shows E  for an exciton. Supplementary Figure S9b shows E  for a 

trion (eeh), where we assume that the interactions between two charge carriers are not influenced by the 

presence of other charge carriers. As a result, in Supplementary Figure S9, the interaction between 

particle 1 and 2 leads to an energy of dir pol

e,h e,hE E , the interaction between 1 and 3 leads to another 
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dir pol

e,h e,hE E , and the interaction between 2 and 3 gives dir pol

h,h h,hE E . Between two electrons or two holes, 

the Coulomb repulsion and cross polarization have the same absolute values as for an electron and a 

hole, but the signs are opposite. To be clear, it is written down here as dir dir dir

e,e h,h e,hE E E    and 

pol pol pol

e,e h,h e,hE E E   . By this approach, E  can be calculated for any carrier combination. By comparing 

E  before and after charge carrier hopping, 
CoulombE  can be calculated, which is presented in 

Supplementary Table S1. 

 

Supplementary Equation (S3) shows that the dissociation energy and the dielectric constants are 

directly related. A complexity comes from the fact that the dielectric constant is frequency dependent. In 

bulk semiconductors, the exciton binding can be determined experimentally, and the proper value of the 

dielectric constant can be determined.
8
 With the magnitude of the exciton binding energy the angular 

frequency of the electron and hole changes. If this frequency is higher than the frequency of the optical 

phonons the use of the optical dielectric constant is appropriate, if the frequency is below the optical 

phonon frequencies, the static dielectric constant applies
8
. As mentioned in the main text, we assume 

that for QDs the use of the optical dielectric constant is always more appropriate. This results from the 

fact that electrons and holes always have a high kinetic energy as a result of quantum confinement and 

the associated frequency will be higher than the optical phonon frequencies
9
. However, using the Monte 

Carlo simulation we may still evaluate the effect of using various values of the dielectric constants. 

With the static   of 250 for PbSe and 13.8 for 1,2-ethanediamine, the dissociation energy is ~10 

meV; with optical frequency values of 23.9 for PbSe and 2.1 for 1,2-ethanediamine, the dissociation 

energy is ~80 meV.  

 

Supplementary Note 2: Influence of disorder in the inter-particle distance 

A uniform distribution is used to describe the variation of the inter-particle barrier width d  (i.e. dot 

edge-to-edge distance), and the hopping rate is expressed as: 
10, 11

 

0

B

1 ,

(1 / )exp( )
exp ,

i j

i j j i j

i j

E E

n g d E E
E E

k T






     
 
 






   (S5) 

where   is the tunneling decay paramter with value of 8.7 ns
-1

 as determined previously.
12

 

The values of energy disorder w  the exciton dissociation energy and the trion Auger recombination 

rate are kept constant at 50 meV, 80 meV and ~1/(70 ps), respectively. Supplementary Table S2 and 

Supplementary Figure S7 show that the coupling disorder decreases the fitted charge carrier mobility 

and has a small effect on the quality of the simulations. 

 

Supplementary Note 3: Estimate of charge carrier density in solar cells and QD LEDs  

In QD solar cells, a short circuit current density with tens mA/cm
2
 is frequently measured with a QD 

solid thickness of several hundred nanometers.
13, 14, 15, 16, 17

 A 20 mA/cm
2
 current density corresponds to 

a charge cross-section flow rate of 1.2 1710 electrons/(cm
2 

s). With a thickness of L =300 nm QD solid, 

the number of charge carriers flowing through per unit of space per second is 4.010
21

 electrons/(cm
3
 

s). For a QD solid with a fill factor of 55% estimated above and a QD diameter of 4.4 nm, the QD 

density is 1.2 1910  QD/cm
3
. Hence, in each second, there are about 330 electrons flowing through every 

QD. With a charge carrier mobility of  =1 cm
2
/Vs, the residence time for the charge carrier in the solid 
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is 2

r B/ (6 * ) 5.8 nsL kt T  . The charge carrier density, which is the product of the residence time and 

the electron flow rate of 330 electrons/(QD s), is about 210
-6

 electrons/QD.  

The QD LED in ref.
18

 has a reported luminance of 23040 cd/m
2
 at 637 nm. The light radiant power is 

calculated from the luminous intensity as: 

e

( )

683 (
)

)
(

I
I

y

 



     (S6) 

where 
e ( )I   is the radiant intensity (in unit of watts per steradian), I  is the luminous intensity (in unit 

of candelas), and ( )y   is the standard luminosity function.
19

 The radiant power for the above luminous 

intensity is: 

2

e

23040*4
(637 ) 168(W/m )

683*0.2
I nm


    (S7) 

corresponding to a photon flux is 20 2 -110 (4 m5 s).  .  With a radiative emission rate of 1/(30 ns), and 2 

monolayers of quantum dots with 4 nm diameter,
18

 the exciton density is estimated as: 
20 9

4

18

5.4 10 30 10
1.3 10 excitons/QD

2 / (16 )
)

1
(

0
n






  
 


   (S8) 
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Supplementary Methods: Monte Carlo simulation details 

Monte Carlo simulations were performed on a computer cluster using a program written in 
Matlab. The flow chart of the simulations is: 

 
We assume that the QDs are situated on a regular cubic lattice. The lattice size is 50 50 50   for 
most of the simulations except for the charge carrier mobility simulation where a size of 

200 0200 2 0   is used. The energy levels of electrons and holes are subject to disorder and are 
drawn from a Gaussian density of states, 

2

0

2

)
(

(
exp

(2 )
)

E

w
g E a

E


 
 
 

     (S9) 

where a  is the normalizing constant, and 
0E  is an arbitrary energy since it does not contribute to 

the hopping rate. Positional disorder is not included for most of the simulations, although its effect 
is discussed below. Electrons and holes behave identically in these simulations: their density of 
states and the attempt hopping rates are the same. 
Photoexcitation of an electron-hole pair was modeled by assigning a number pair (1,1) on a site in 
the lattice, and two electron-hole pairs (2,2) are generated by assigning (1,1) two times on the 
same site, and so on. For an excitation density of  

absN  , the number pair (1,1) was randomly 

assigned to a site, which was repeated for abs (number of sites)N   times. As a consequence, the 

distribution of the electron-hole pairs on the lattice follows a Poisson  distribution 

 (n,n) abs absexp / !nP N N n   . 

After the initial charge carrier generation, the carrier hopping process is modeled by repopulating 
the charge carriers one by one according to their hopping probabilities. For a charge carrier 
situated on a site i , in a time interval it may hop to one of its six nearest neighbors sites j . This 

was modeled by generating a random “decision” number according to its staying and hopping 
probabilities (i.e. seven decision numbers for a cubic lattice). The probability for a specific 
hopping event from site i  to j  is:  

 i j

1,...,6

1,...,6

1 exp( )
i j

i ii

ii i ii

ii

P t


 

 



 
  






 



    (S10) 
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0

B

1 ,

(1 / )
exp ,

i j

i j j i j

i j

E E

n g E E
E E

Tk





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   (S11) 

The sum runs over the six nearest neighbor sites 1,...,6ii   of the site i , and t  is the simulation 

time interval with a small value that is less than 10 fs. The term within the bracket in 
Supplementary Equation (S10) describes the total hopping probability of a charge carrier in the 
time interval t , while the second fractional term is the chance of hopping to the site j  if a 

hopping process occurs. The energy change ( )i jE E  in Supplementary Equation (S11) includes 

contributions of site energy and the Coulomb interaction energy (see Supplementary note 1).  
The charge carrier decay via Auger recombination was modeled by removing electron-hole pairs 
site by site according the Auger decay probabilities  

  
e h,

AR

,( )1 exp ni ni tkP         (S12) 

where 
e h,( ),i n nk  is the Auger decay rate given by Supplementary Equation (2) in the main text. After 

the removing of the charge carriers, the information of the charge carrier population was 
extracted, and the simulation proceeded to the next step of the hopping process simulations, as 
shown in Supplementary Figure S8.  

The charge carrier mobility   is related to the diffusion coefficient D  via the Einstein-

Smoluchowski relation: 

B

e
D

k T
        (S13) 

and the diffusion coefficient can be determined by simulating the mean squared displacement 
2r  of 

charge carriers  as a function of time t :
20

 
2 2r nDt       (S14) 

where n  is the dimensionality of the system (i.e. n =3 here). 

The mean squared displacement is determined by simulations of a single charge carrier diffusing in 

the system. Supplementary Figure S10 shows 
2r  as a function of time for various values of the 

energy disorder w . The linear region is used to determine the diffusion coefficient via Supplementary 

Equation (13). The fact that for high values of w  the initial slope is higher results from thermalization 

of the charge carrier in the disordered DOS and a concomitant reduction in mobility
21

. 
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