Minimizing the Amount of Nitromethane in Palladium Catalyzed Cross Coupling with Aryl Halides

Ryan R. Walvoord and Marisa C. Kozlowski*

Supporting Information

Table of Contents

General Methods	S2
Parallel Microscale Experimentation Data	S3-4
NMR Spectra for Arylnitromethane Products	S5-28

General Methods.

All commercial reagents were used as received without additional purification unless otherwise noted. Nitromethane was distilled from calcium hydride and stored at 0 °C away from light. Anhydrous 1,4-dioxane was purchased from Acros and used as received. Potassium phosphate (tribasic) was dried at 100 °C under vacuum overnight and stored in the glovebox. All purifications were performed via flash column chromatography using EM Reagents Silica Gel 60 (230-400). Analytical thin-layer chromatography (TLC) was performed using EM Reagents 0.25 mm silica gel 254-F Visualization was accomplished with UV light and/or ceric ammonium plates. molybdate stain. ¹H NMR and ¹³C NMR chemical shifts are reported relative to the chloroform solvent resonance peak δ 7.27 for 1H and δ 77.23 for $^{13}C.$ Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, bs = broad singlet, dd = doublet of doublets, td = triplet of doublets, tt = triplet of triplets, m = multiplet), coupling constants, and number of protons. Melting points are uncorrected. All yields refer to isolated yields, and product purity was determined by ¹H NMR spectroscopy.

Parallel Microscale Experimentation Data

96 well plate: 8 bases, 4 ligands, 3 solvents

Bases:

NaOt-Bu, K₃PO₄, Cs₂CO₃, K₂CO₃, Na₂CO₃, CsHCO₃, KHCO₃, NaHCO₃

Ligands:

XPhos, BrettPhos, JohnPhos, CataCXium POMetB

Solvents:

THF, 1,4-dioxane, CPME

The ligands (4 µmol) were dosed into the 96-well reactor equipped with 1 mL vials as solutions (50 μ L, 0.08 M) in 1,2-dichloroethane. Pd₂dba₃ (1.0 μ mol, 50 μ L of a 0.02 M solution in benzene) was then added to the vials and the resulting solutions were evacuated to dryness on a JKem-blow-down block. Base (24 µmol, 25 mg/mL slurry in THF) was then added to the ligand/catalyst mixture, and the resulting mixture was evacuated to dryness on a JKem-blow-down block. A parylene stir-bar was added to each vial. Substrate/nitromethane/solvent solutions were prepared with 4-bromoanisole (0.2 M, 20 µmol/reaction) and nitromethane (0.4 M, 40 µmol/reaction) in the requisite solvent and then dosed in the reaction vials (100 μ L reaction volume). The reactor block was sealed, removed from the glovebox and heated at 70 °C for 18 h on an Alligator tumble stirrer (500 rpm). After cooling to ambient temperature, the reactions were quenched via dilution with a solution of internal standard in MeCN (2 µmol biphenyl, 0.002M, 500 µL), and the contents were stirred. Into a separate 96-well plate LC block (Analytical Sales and Services, part # 17P687) was added 700 µL of MeCN and then 25 μ L aliquots of the diluted reaction mixtures. The 96-well plate LC block was then sealed with a polypropylene 1 mL cap mat (Analytical Sales and Services, part # 96057). The reaction mixtures were analyzed using an Agilent Technologies 1200 series HPLC with a 96-well plate auto-sampler. Assay conditions: Supelco Ascentis Express C18 100 mm x 4.6 mm or ZORBAX Eclipse XDB-C8, 4.6 x 50 mm, 1.8 μ m. MeCN with H₂O + 0.1 % H₃PO₄. 1.8 mL/min; 10 % in MeCN to 95 % MeCN in 6 min, hold for 2 min. Post time 2 min. Column at 40 °C; 210 nm.

Bubble chart of the results: Bubble size corresponds to Product:Internal Standard ratio as determined by LC. Note: BrettPhos, CsHCO₃, CPME was incorrectly dosed (excess SM and MeNO₂) leading to an inaccurately high P/IS value.

Top results based on P/IS ratios.

Ligand	Base	Solvent	P/IS
Xphos	K ₃ PO ₄	THF	5.854
Xphos	K ₂ CO ₃	THF	4.998
cataCXiumPOMetB	K ₃ PO ₄	THF	4.567
BrettPhos	K ₃ PO ₄	THF	4.519
BrettPhos	K ₃ PO ₄	Diox	4.412
Xphos	Cs_2CO_3	THF	4.062
cataCXiumPOMetB	K ₃ PO ₄	Diox	4.050
Xphos	K ₃ PO ₄	Diox	4.047
cataCXiumPOMetB	NaOtBu	Diox	4.015

`NO₂ H

Table 3, entry 5

