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PREFACE 10 

 The data and analyses presented in the main paper represent an initial reporting of a subset of 11 

a much larger integrated effort intended to examine innovative sensing of exposures, activity 12 

patterns, and energy expenditures at the personal level.  The relatively narrow focus of the 13 

current analyses is describing initial approaches that facilitate more robust assessments of 14 

exposure by using triaxial accelerometers incorporated into personal exposure assessment 15 

devices.  The focus in the main paper is reporting is the estimation of pulmonary ventilation in 16 

adults and children while performing a variety of physical activities.  The breadth and 17 

complexity of this topic has resulted in significantly more material than is likely to be acceptable 18 

for publication.  The importance of the topic, however, suggested submittal of additional 19 

supplemental material for the main paper Background, Materials and Methods, and Results 20 

sections. 21 

  22 

1.  Supplemental Background Material 23 
 The linking of accelerometry to ventilation volume to ultimately allow potential dose 24 

estimates is only useful when it is clear that the exposure monitor is truly being worn.  25 

Additional background material is provided here to supplement the limited information provided 26 

in the main paper on the importance of quantifying personal exposure monitor wearing 27 

compliance as a precursor step.  Additional background is also provided on the potential 28 

importance of computing potential dose as an adjunct variable to less robust exposure measures. 29 

 30 

 1.1  Motion Sensing to Characterize Wearing Compliance Levels 31 

 The National Research Council (NRC, 2004) observed that the epidemiologic studies most-32 

robustly linking airborne particulate matter (PM) with adverse health outcomes were those 33 

applying metrics with minimal exposure misclassification biases.  Personal level exposure 34 

characterization devices have been applied in occupational settings for decades, albeit in rather 35 

cumbersome and expensive packages that have limited adoption in larger cohort studies in non-36 

occupational settings.  Recently, Rodes et al. (2010) showed that personal-level PM2.5 exposure 37 

measurements for the most-exposed (> 90th percentile) were substantially higher -- factors of 38 

two or more -- in a 3-year cohort study in Detroit, Michigan than those measured at either 39 

ambient or indoor measurements would have suggested.  They also showed that accounting for 40 

confounding by adjusting for monitor wearing compliance was important to minimize 41 

misclassification bias.  Rabinovitch et al. (2005) applied a wearing compliance threshold to 42 

identify statistically significant links between endotoxin exposures and changes in severity levels 43 

for asthmatic children carrying a burdensome 900g backpack-located system.  Brook et al. 44 

(2010) used a 60% wearing compliance level to optimally-link cardiovascular changes to 45 

personal level exposures for participants in the Detroit cohort wearing a vest weighing a 2.3 kg 46 
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vest containing personal monitors.  In both cases, a motion sensor was used to identify when a 1 

threshold level had been exceeded defining periods of protocol (wearing) compliance.  Smaller, 2 

lighter, and more versatile sampling/sensing systems are definitely suggested as a developmental 3 

research goal to facilitate future cohort studies. 4 

 The application of motion sensing to estimate when a personal sensing system is actually 5 

moving, and hence likely to be worn, has been applied for at least the past decade in personal 6 

exposure studies conducted by RTI International and Columbia University.  A capacitance-based 7 

motion sensor was developed over 10 years ago for inclusion with the pumping system, which 8 

resulted in a patented approach to characterizing wearing compliance (Lawless, 2003).  Recent 9 

data (Rodes et al., 2010) applying the capacitance based approach confirmed that a substantial 10 

fraction of a general population cohort in Detroit, MI, were often wearing the personal monitors 11 

less than 50% of the time.  Understanding the levels of wearing compliance allowed subsequent 12 

panel study analysts to adjust for the potential confounding and strengthened the linkages 13 

between exposure and vascular flow parameters (Brook et al., 2009). 14 

 While less-sensitive capacitance detection could readily identify ambulatory events as 15 

"worn," that approach was not sufficiently sensitive to correctly identify worn from unworn for 16 

low-energy events that can often comprise a large fraction of the daily activity patterns for 17 

adults.  The application of more sensitive MEMS triaxial accelerometers offered the potential to 18 

improve the identification of wearing compliance, especially for low energy activities such as 19 

working at a computer.  Another goal of the current work was to collect accelerometer data 20 

across a range of recumbent, sedentary, and ambulatory activities to determine if sufficient 21 

signals were produced that could identify worn versus unworn periods by simple threshold 22 

detection.  Simple algorithms useable in either on-board or post-processing modes would support 23 

a binary (worn/not worn) wearing compliance variable that would be stored in real-time along 24 

with the exposure metric under study. 25 

 The Columbia group has extended the compliance approach by adding an activity monitor to 26 

the subject’s wrist with a hospital band that cannot be taken off without cutting the hospital band 27 

so that the study team can identify when the subject is awake with time periods when the monitor 28 

is worn.   29 

 30 

 1.2  Additional Rationale for Justifying Potential Dose Over Concentrations - Does 31 

estimating pulmonary ventilation and size of  aerosol dose as a function of time advance the 32 

current art?  Is the added complexity of including triaxial accelerometry in personal level 33 

exposure sensor packages justified?  More strenuous activities often produce "personal aerosol 34 

clouds" from floor dust re-suspension and other processes, and those clouds have been surmised 35 

to enhance exposures for both adults and children (e.g. Rodes et al., 2001; Rabinovitch et al., 36 

2005).  Higher ventilation rates during these periods of elevated concentrations could indeed 37 

significantly increase both short term (e.g. hourly) and longer term (daily) dose levels in 38 

g/min/kg.  Is the frequency of occurrence for these periods high and/or the concentration 39 

excursions sufficiently high so that associative analyses linking exposures to adverse health 40 

outcomes would benefit from this additional stressor data manipulation?  41 

 Risk estimates for PM for a range of outcomes require either chronic and/or acute level 42 

exposure data that are the most appropriate for the underlying physiological response patterns.  43 

Clearly the values of predicting potential doses in real-time for personal exposure data are more 44 

valuable (appropriate) for the subset of health outcomes with response lag times in minutes and 45 

hours, rather that days or weeks.  This subset includes a wide range of cardiopulmonary response 46 
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outcomes, including studies of environmental triggers for asthma (e.g. Delfino et al., 2002; 1 

Rabinovitch et al., 2005) and vascular flow (Brook et al., 2009; Brook et al., 2010), could 2 

significantly benefit from estimates of potential dose in real-time, rather that having to utilized 3 

less robust exposure data.  The ability to predict minute ventilation rates (m
3
/min) in real-time 4 

facilitates computation of potential doses as the simple cross-product with the concurrent 5 

exposure level (in g/m
3
), then divided by the body weight of particles in g/min/kg.  6 

 The ability to robustly predict V data in real-time opens the door to predicting potential dose 7 

levels (g/min/kg) instead of the more commonly collected exposures (g/m
3
).  This could result 8 

is significant strengthening of associations between exposures to aerosol toxicants and adverse 9 

health effects in situations where the aerosol concentrations are elevated simultaneously with the 10 

ventilation volume.  For example, walking events on residential carpeting can readily increase 11 

the vertical gradients within a room by factors of two to more between breathing zone levels and 12 

other room heights (Rosati et al., 2008).  Re-suspended dusts in the breathing zone have been 13 

associated with increased exposures to endotoxin (Rabinovitch et al., 2005) during walking 14 

events.  During these walking events, typical adult ventilation volumes increased from sedentary 15 

activities to walking at 4 mph (Activity 8 in Figure 5) by roughly a factor of three.  Thus, 16 

modeling potential dose estimates with concentrations measured at a fixed location and using a 17 

constant ventilation rate rather than applying a measured and varying V, would mis-characterize 18 

the peak respiratory burdens by a factors of 6 or more.  While this single activity impact is 19 

substantial, it has to be placed in context with the amount of time each day that a participant 20 

actually is walking on an aerosol sink such as carpeting that would produce such extremes in 21 

peak concentrations and potential doses.   22 

 23 

2.  Supplemental Graphics and Tables 24 
 2.1  Figure 1S  Rapid Data Viewer Example - An example of the viewer output for 25 

accelerometer data for an entire 2 hour scripted activity test is shown in Figure 1S, where the hip 26 

located Wocket is compared with the time series data, comparing the chest located Columbia, 27 

RTI, and Zephyr units, and the hip located Actigraph.  Note the consistency of the time synching 28 

and the functionality for all units except the Columbia system was found to have been set up 29 

with a programming error and not responding properly.  Modifying the on-board programming 30 

corrected the inconsistency.  Importantly, the viewer data provided confidence that the 31 

accelerometer outputs across a very diverse range of brands and types, all provided nearly 32 

identical fine structure in the data. 33 

 34 

 2.2  Figure 2S  Additional Photos of Testing During Indoor and Outdoor Cycling 35 

 36 

 2.3  Figure 3S  Composite Linear Regression for All Participants for Activities 1 to 16. 37 

 38 

 2.4  Figure 4S  Composite Regression Intercepts by Participant for RTI Monitors for All 39 

Participants for Activities 1 to 16. 40 

 41 

 2.5.  Figure 5S  Potential for Categorical Pattern Recognition from the Triaxial 20 Hz Data - 42 

As noted in the main paper (Section 4.5), an inability to identify when cycling was occurring 43 

would significantly bias the ventilation predictions.  Review of the high frequency time series 44 

data for each scripted activity showed strong differences in the x, y, and z signals, strongly 45 

suggesting that focused efforts applying pattern recognition approaches could be very rewarding.  46 
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Figure 4S shows an example comparison of each directional component for Sitting at a 1 

Computer, Walking at 2 mph on a Treadmill, and (Indoor) Cycling at 70 RPM for 5s periods 2 

(one hundred 0.05s time steps).  Note that the resolution of the accelerometer signals (~0.02 G 3 

for each axis), combined with the obvious pattern differences by axis for the two more energetic 4 

activities should allow fairly specific activity determinations to be made on-board and storable 5 

along with the exposure data.  That would be a huge advance in the technology, since this would 6 

be accomplished completely transparently to the participant - i.e. no time-activity diaries 7 

required!  The analysis of the substantial data bases produced by the currently research to 8 

examine the possibilities is hoped to be the topic of dedicated paper in the near future.  While 9 

rigorous pattern recognition software is certainly a possibility to distinguish between activity 10 

types, much simpler approaches may also be possible.  Combinations of the magnitude, standard 11 

deviation, and simplistic presence/absence of a cyclical pattern across the x, y, and z directions 12 

appear to provide distinctive differences to at least identify cycling activities separately.  Further 13 

investigation is definitely warranted. 14 

 15 

 2.6  Figure 6S  On-Board Computation of Potential Dose from Exposure Data 16 

 The supporting Docking Station software for the RTI MicroPEM™ merges the real-time 17 

concentration data with real-time estimates of the ventilation volume to output potential dose 18 

levels in g/min/kg.  An example screenshot of this software showing the parallel outputs of 19 

exposure, estimated ventilation volume, and potential dose are provided in Figure 6S. This 20 

capability readily would allow parallel concentration and potential dose metrics against which 21 

biological or health outcomes could be linked to determine which variable provided the most 22 

robust statistics. 23 

 24 

 2.7  Table 1S  Additional AUC Standard Deviations for Selected Activities Compared with 25 

an Unworn RTI MicroPEM Value 26 

 27 

 2.8  Table 2S  Comparison of Linear Regression Data for Columbia Monitor - The linear 28 

regression data (ACCEL versus V) for the RTI monitor are provided in Table 4 of the main 29 

paper.  The comparable regression data for the Columbia monitor are provided in Table 2S.  30 

Since the ACCEL variable is scaled differently for the Columbia monitor, the slopes cannot be 31 

compared directly (by participant) with the RTI data, but overall the regression data provided by 32 

the two different monitoring approaches are very similar.  The only obvious differences for the 33 

Columbia data are slightly larger and more asymmetrical 95% confidence intervals about the 34 

slope (RTI -23.4%/+23.1%;  Columbia -27.4%/+37.8%).  These differences likely resulted from 35 

the slower 1 Hz data rate of the Columbia accelerometer compared with the much higher 20 Hz 36 

rate of the RTI unit. 37 

 38 

 39 
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Figure 1S.  Rapid review data screener allowed examining raw data for inconsistencies and 1 

potential validation issues; example shown highlighted logging issue with Columbia sensor 2 

 3 

 4 

5 
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Figure 2S.  Sensor array during stationary biking; outdoor bicycling 1 

 2 

 3 

 4 

 5 

6 
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  1 
Figure 3S.  RTI sensor relationship for ACCEL variable against ventilation volume (V) for all 2 

22 participants, but activities 1 through 16 only.  Note limited divergence of data points for the 3 

more strenuous treadmill 6 and 9% elevation at 4 mph. 4 

 5 

6 

higher METS 
activities: treadmill at 
4 mph, but with 6 or 
9% elevation. 
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Figure 4S.  RTI Composite Regression Intercepts (ACCEL versus V by Oxycon); activities 1 1 

through 16, by participant for all tests.  The median value of 10.7 lpm represents the composite 2 

ventilation volume at rest across all adults tested 3 

 4 

 5 
 6 

7 



REVISED SUBMITTAL DRAFT  3/14/12 - Atmospheric Environment 10 

 1 

 2 

Figure 5S.  RTI Accelerometric raw data example signatures by axis at an elevated 20 Hz 3 

collection rate, illustrating distinctive patterns that could leave to transparent activity type 4 

identification 5 

6 
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1 

Figure 6S.  Example screenshot of RTI MicroPEM™  output showing real-time traces for both 2 

aerosol concentration (g/m
3
) and potential dose (g/min/kg).  Included on this screen is the 3 

estimated ventilation volume (lpm), concurrent temperature and relative humidity, compliance 4 

level indication (worn/not worn), and a running estimate of the mass collected on the parallel 5 

filter, based on the nephelometer calibration.  The ACCEL vs V regression slope and intercept is 6 

entered here as well (either an all cohort composite) or values specific for the participant), plus 7 

the participants body weight (kg). 8 

 9 

10 
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 1 

Table 1S.  Computed triaxial standard deviations of the AUC variable (see text) for Participant 2 

#30, comparing that for an unworn unit with recumbent, sedentary, ambulatory, and bicycling 3 

activities. 4 

 5 

Activity 

# Description Category Sx,y,z 

0 Unworn na 0.0078 

1 
Lying down 

(but awake) 
recumbent 0.016 

3 
Sitting at 

computer 
sedentary 0.013 

6 
Sitting 

reading 
sedentary 0.014 

7 

Walking on 

treadmill, 4 

mph 

ambulatory 0.22 

19 

Stationary 

indoor 

bicycling 

higher 

energy, 

cycling 

0.12 

20 
Outdoor 

bicycling 

higher 

energy, 

cycling 

0.21 

 6 

 7 

 8 

 9 

10 
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 1 

Table 2S.  Linear Regression Statistics for Columbia Exposure Monitor 2 

 3 

95% Confidence

 Intervals

95% Confidence

 Intervals

Test
 # Part. #

Columbia 

side

activities

n

Columbia 

Slope Slope - Slope +

Columbia

Intercept Intercept - Intercept +

1 6 na 12 36.80 22.9 48.7 7.26 5.15 9.37

2 15 R 11 32.60 11.50 53.70 13.00 6.32 19.70

3 16 R 8 38.90 24.90 51.30 7.16 3.52 10.80

4 17 R 11 30.00 2.30 57.80 7.31 2.07 12.50

5 18 R 8 31.10 25.00 37.20 9.30 2.25 11.40

6 19 R 13 39.70 23.30 56.10 11.70 5.64 17.70

7 20 R 9 34.70 26.90 42.40 11.80 9.74 13.86

8 21 L 12 36.20 26.30 46.10 8.63 6.29 10.95

9 22 L 14 52.90 41.10 64.70 11.20 8.10 14.29

10 23 L 11 18.90 7.73 30.10 12.80 9.31 16.40

11 24 L 12 45.80 31.10 60.60 12.80 8.76 16.80

12 25 L 12 36.00 25.60 46.40 7.40 5.00 9.80

13 26 L 13 20.30 16.20 24.30 12.60 10.60 14.60

14 27 L 13 41.40 34.60 48.20 9.31 7.56 11.10

15 29 L 15 19.10 7.37 30.90 14.90 10.10 19.80

16 30 L 13 33.90 26.10 41.80 9.64 7.39 11.90

17 31 L 13 50.50 36.90 64.10 11.70 7.71 15.70

18 32 L 13 35.20 27.60 42.80 12.10 10.00 14.20

19 33 L 11 40.30 26.80 53.80 12.60 9.12 16.00

20 34 L na na na na na na na

21 35 L 12 44.00 34.70 53.40 9.04 6.62 11.50

22 36 L 14 81.50 54.80 108.30 15.30 8.90 21.60

n 21 21 21 21 21 21 21

ALL DATA median 12.0 36.10 26.20 49.75 11.70 7.64 14.25

average 11.9 38.15 25.54 50.70 11.01 7.25 14.53

std dev 13.4 12.1 17.1 2.5 2.5 3.5

RSD % 35.2 47.3 33.7 22.6 34.7 24.0

min 8 18.90 2.30 24.30 7.16 2.07 9.80

max 15 81.50 54.80 108.30 15.30 10.60 21.604 
 5 

 6 

 7 

 8 


