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APPENDIX A: GENERAL WEIGHT FUNCTIONS

In this section, we consider a family of local diagnostic functions, which
is the weighted average of Yi’s near the point of interest x

D(x, h) =
n∑
i=1

wi(x)Yi,

where wi(x) = wi−x, and w = (· · · , w−1, w0, w1, · · · ), satisfying the following
conditions:

1. local supportedness: ∃ an integer h� n, such that wi = 0 for |i| > h;
2. quasi-symmetry: i · wi ≤ 0 and

∑
i≤0wi = −

∑
i>0wi i.e.

∑
wi = 0;

3. unity:
∑

i≤0 | wi |=
∑

i>0 | wi |= 1, and hence ‖ w ‖`1=
∑
| wi |= 2;

4. negligibility: ‖ w ‖2`2 / ‖ w ‖
2
`1

=
∑
w2
i /4 = O(h−1).

We denote by W the set of all weight vectors satisfying these four con-
ditions. These four conditions are quite natural. The locally supported con-
dition makes D(x) depend on only those Yi’s within distance h. The quasi-
symmetric condition ensures that D(x) measures the difference between the
left-hand-side Yi’s and right-hand-side Yi’s. The unity condition is not es-
sential, but helpful for easy presentation. The negligible condition, a little
stronger than the traditional negligible condition, prevents the weights from
concentrating on few points as the bandwidth h tends to infinity. It is easy
to see that all weights introduced in Section 2.2, up to a normalizing con-
stant, are special cases of this family. Moreover, the SaRa with any local
diagnostic function in this family satisfies the sure coverage property.

APPENDIX B: PROOFS

We shall prove Theorem 1 in three steps, represented by three lemmas.
We introduce the notation and outline the proof first.

A point x is called h-flat if there is no change-point in the h-neighborhood
of x, i.e. the interval (x−h, x+h). We omit h and say x is a flat point if h is
obvious in the context. Let Fh be the set of all h-flat points of step function

µ. Consider the event Aτ =
{
|D(τ, h)| > λ

}
for change-point τ ∈ J and

the event Bx =
{
|D(x, h)| < λ

}
for flat point x ∈ Fh. Define the event

En =

(⋂
τ∈J
Aτ

)⋂ ⋂
x∈Fh

Bx

 .

In Lemma 1, we derive the distribution of D(x, h) at a given point x when
there is no change-point other than possibly x in the interval (x− h, x+ h).
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Then we calculate the probability P(En) in Lemma 2. In the final step, we
show that J ⊂: Ĵ ± h holds under the event En.

Lemma 1 If the noises are i.i.d. Gaussian, then for fixed x and h, D(x, h)
is Gaussian. In particular, if x is a flat point, D(x, h) ∼ N (0,∆2). If τ is a
change-point with jump size δ, D(τ, h) ∼ N (δ,∆2). Here,

∆2 =
∑
i

w2
i σ

2 = O(h−1)σ2.

Proof of Lemma 1. D(x, h) is a linear combination of Gaussian variables,
so it is Gaussian as well. It follows from the quasi-symmetric and unity
conditions that the mean of D(x, h) is zero for a flat point and δ for a
change-point with jump size δ. The variance is

∑
iw

2
i σ

2, which is of order
O(h−1)σ2 by the condition 4 on the family W. In particular, for the equally
weighted case (??), ∆2 = 2

hσ
2. 2

Lemma 2 Under Assumption (??), there exist h and λ such that

(B.1) P (En)→ 1 as n→∞.

Proof of Lemma 2. It suffices to show that there exist λ and h such that

P(Ecn) ≤ P

{⋃
τ∈J
Acτ

}
+ P

 ⋃
x∈Fh

Bcx

→ 0.

Take λ = 1
2δ and h = 1

2L where δ = min |δj |, L = min
1≤j≤J+1

(τj − τj−1). By

Lemma 1, it is obvious that for each τ ∈ J and x ∈ Fh, P(Acτ ) < 1−Φ( δ
2∆)

and P(Bcx) = 2(1−Φ( δ
2∆)), where Φ is the cumulative distribution function of

standard normal distribution. Note the following inequality for the Gaussian
tail probability (?)

1− Φ(t) < t−1e−
1
2
t2 .

By Bonferroni inequality and ∆ =
√

2/hσ = 2σ/
√
L, we have

P(Ecn) < 2n
2∆

δ
e−

δ2

8∆2 =
8nσ

δ
√
L
e−

Lδ2

32σ2 =
8n

S
e−

S2

32 .(B.2)

It is guaranteed by Assumption (??) that the right hand side of (B.2) goes
to zero as n→∞. 2

Lemma 3 J ⊂: Ĵ ± h holds under event En.
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Proof of Lemma 3. We want to show that there is a one-to-one correspon-
dence between J and Ĵ . Under event En, no flat points can be selected into
Ĵ at the screening step. In other words, for any point τ̂ ∈ Ĵ , there is at
least one change-point in its h-neighborhood (τ̂ − h, τ̂ + h). In fact, there
is at most one such change-point by our assumption that L = 2h. There-
fore, there is exactly one change-point within (τ̂ − h, τ̂ + h) for each τ̂ ∈ Ĵ .
On the other hand, under event En, for every change-point τ ∈ J , we have
|D(τ, h)| > λ. Moreover, τ − h and τ + h must be flat points since L = 2h.
It follows that max

{
|D(τ − h, h)|, |D(τ + h, h)|

}
< λ and there is a local

maximum, say τ̂ , which is in (τ − h, τ + h) and |D(τ̂ , h)| ≥ |D(τ, h)| > λ. 2
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