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SUMMARY

Spontaneous nucleation of actin is very inefficient in
cells. To overcome this barrier, cells have evolved a
set of actin filament nucleators to promote rapid
nucleation and polymerization in response to spe-
cific stimuli. However, the molecular mechanism of
actin nucleation remains poorly understood. This is
hindered largely by the fact that actin nucleus, once
formed, rapidly polymerizes into filament, thus
making it impossible to capture stable multisubunit
actin nucleus. Here, we report an effective double-
mutant strategy to stabilize actin nucleus by prevent-
ing further polymerization. Employing this strategy,
we solved the crystal structure of AMPPNP-actin in
complex with the first two tandem W domains of
Cordon-bleu (Cobl), a potent actin filament nucle-
ator. Further sequence comparison and functional
studies suggest that the nucleation mechanism of
Cobl is probably shared by the p53 cofactor JMY,
but not Spire. Moreover, the double-mutant strategy
opens the way for atomic mechanistic study of actin
nucleation and polymerization.

INTRODUCTION

Actin is involved in a wide range of cellular processes through

tight spatial and temporal control of actin polymerization and

disassembly. Formation of the actin nucleus is the rate-limiting

step of spontaneous actin polymerization in cells. To cope with

this, cells have evolved a set of actin nucleators to promote rapid

actin nucleation in response to specific stimuli (Campellone and

Welch, 2010; Chesarone and Goode, 2009; Chhabra and Higgs,

2007; Dominguez and Holmes, 2011; Pollard, 2007; Qualmann

and Kessels, 2009; Reisler and Egelman, 2007; Robertson

et al., 2009). The recent few years have witnessed a fast expan-

sion of the list of actin nucleators with roles in development,

genetic disorders, and pathogenic processes. In addition to

the well-known actin-related proteins 2/3 (Arp2/3) complex
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together with various nucleation-promoting factors and formins

(Campellone and Welch, 2010; Chesarone et al., 2010; Pollard,

2007), the newest class of actin nucleators is exemplified by

Spire (Quinlan et al., 2005), Cobl (Ahuja et al., 2007; Carroll

et al., 2003; Gasca et al., 1995; Schwintzer et al., 2011),

and JMY (Zuchero et al., 2009) that contain three to four

tandem Wiskott-Aldrich syndrome protein-homology domains

2 (W domains).

The W domains are small but ubiquitous actin-binding motifs

of �35 residues (Dominguez, 2004, 2007; Paunola et al., 2002)

composed of an N-terminal amphipathic a helix and a C-terminal

LKKT-related motif. The N-terminal a helix binds to the con-

served hydrophobic cleft between actin subdomains 1 and 3 at

the barbed end, while the C-terminal LKKT-relatedmotif extends

toward the nucleotide-binding site at the pointed end. Tandem

W domains are expected to ‘‘stitch’’ together multiple actin sub-

units to overcome the largest energy barriers in actin nucleation,

the formation of actin dimers and trimers, thus accelerating actin

polymerization. Despite various efforts in the past (Rebowski

et al., 2008, 2010), this process remains poorly understood,

owing to the inability to obtain high-resolution structures of

native multisubunit actin nucleus, which, once formed, rapidly

proceeds to long and dynamic actin filament.

Here, we report an effective strategy to prevent actin polymer-

ization, thus allowing for the capture of stable actin nucleus for

structural study. Using this strategy, we solved the crystal struc-

ture of actin, bound with nonhydrolyzable ATP analog adenylyl

imidodiphosphate (AMPPNP), in complex with the first two

tandem W domains of Cobl to 2.91 Å resolution. The structure

guided further biochemical and functional investigations that

together support an elegant model for Cobl-mediated actin

nucleation. In addition, the structure revealed a hydrophilic bind-

ing cleft between actin subdomains 3 and 4 that binds to the

hydrophilic side of the N-terminal a helix of the secondWdomain

in Cobl and JMY. The simultaneous binding of two actin subunits

to theN-terminal a helix of aWdomain facilitates the formation of

a compact nucleus for actin polymerization.

Cobl is an evolutionarily conserved protein involved in neural

tube closure and is required for development of motile cilia in

establishing left-right asymmetry (Ahuja et al., 2007; Carlier

et al., 2011; Carroll et al., 2003; Ravanelli and Klingensmith,
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Figure 1. The Double-Mutant Strategy for

Capturing Stable Actin Nucleus

(A) Schematic illustration of the strategy. Double

mutations introduced at the pointed- or barbed-end

interface of an actin subunit make them practically

nonpolymerizable. Their mixture, however, gives rise

to an actin nucleus that can be further stabilized by an

actin filament nucleator.

(B) Under the same condition where WT actin

forms filament, neither actin I, II, nor their mixture

polymerizes.

(C) The presence of Cobl-2W yields a stable actin-

Cobl-2W complex suitable for crystallization.

See also Figure S1 and Table S1.
2011). JMY was originally characterized as a binding partner of

p300 to co-activate many transcription factors including p53

(Shikama et al., 1999), but later also found to activate Arp2/3

complex and de novo nucleate actin filaments (Zuchero et al.,

2009). It is involved in key processes such as asymmetric

division and cytokinesis in mouse oocytes (Sun et al., 2011),

neuritogenesis (Firat-Karalar et al., 2011), and hypoxia-driven

cell motility (Coutts et al., 2011). The structural and functional

studies reported here for Cobl and JMY shed critical light

on how they control actin nucleation for cellular functions and

dynamics. Furthermore, the nonpolymerizable actin mutants

used in this study provide a valuable tool for studying actin

nucleation and oligomeric nuclear actin (de Lanerolle and

Serebryannyy, 2011).

RESULTS

Use of Nonpolymerizable Actin Mutants to Obtain a
Stable Actin Nucleus
The double-mutant strategy (Figure 1) takes advantage of the

fact that actin filament can be viewed as two right-handed

long-pitch helices of head-to-tail bound actin subunits through
Cell Reports 3, 1910–1
the conserved interactions of the pointed-

end surface of actin subunit n � 1 and the

barbed-end surface of actin subunit n + 1

(Fujii et al., 2010; Holmes et al., 1990; Mur-

akami et al., 2010; Oda et al., 2009) (Fig-

ure 1A, left panel). Therefore, actin subunits

can be rendered nonpolymerizable if proper

mutations are introduced at the pointed- or

barbed-end surface. When these two types

of nonpolymerizable actin mutants are

mixed together, a nucleus comprising two

to four actin subunits should form, but

without the ability to polymerize (Figure 1A,

middle panel). The addition of an actin fila-

ment nucleator will stabilize such an actin

nucleus for structural studies (Figure 1A,

right panel).

Two nonpolymerizable actin mutants

have been previously created by intro-

ducing mutations at the pointed-end sur-

face (Joel et al., 2004; Noguchi et al.,
2007; Rould et al., 2006). Of them, the AP-actin containing two

surface-accessible substitutions (A204E and P243K) in subdo-

main 4 has been shown indistinguishable from wild-type (WT)

actin in ATP hydrolysis, nucleotide exchange, and protease

digestion (Rould et al., 2006). The structures of AP-actin (Ducka

et al., 2010; Rould et al., 2006) and WT actin (Aguda et al., 2006;

Chereau et al., 2005; Hertzog et al., 2004; Irobi et al., 2004;

Kabsch et al., 1990; Otterbein et al., 2001) were highly similar

when alone or bound to various individual W domains. This

mutant is termed as ‘‘actin I’’ in our double-mutant strategy.

Based on the filamentous actin (F-actin) structures obtained

by fiber diffraction and cryo-electron microscopy (Fujii et al.,

2010; Holmes et al., 1990; Murakami et al., 2010; Oda et al.,

2009), we designed a second actin mutant, termed as ‘‘actin

II,’’ that is impaired at the barbed-end surface by two solvent-

accessible mutations, K291E and P322K, in subdomain 3

(Figure 1A, middle panel). Actin II was similar to WT actin in

nucleotide exchange (Figure S1). WT actin and actin I and II

exhibited a comparable binding affinity for individual Cobl-W

domains (Table S1). However, their polymerization activities

were almost completely abolished when present individually or

mixed together (Figure 1B). Therefore, the surface mutations
920, June 27, 2013 ª2013 The Authors 1911



Table 1. Statistics of Data Collection and Structural Refinement

Data Collection Statistics

Ligand AMPPNP

Space group P1

Unit cell

a, b, c (Å) 53.45, 99.80, 118.27

a, b, g (o) 65.41, 90.03, 77.77

Resolution (Å)a 45.02–2.91 (3.07–2.91)

Number of unique reflectionsa 46,313 (6,735)

Multiplicitya 2.7 (2.7)

Completeness (%)a 97.7 (97.3)

Rmerge (%)a 9.0 (49.1)

I/s(I)a 9.2 (2.2)

Structural Refinement Statistics

Resolution (Å) 45.02–2.91

Number of atoms 13,002

Rwork / Rfree (%)b 20.04/25.51

Rmsd bond length (Å)c 0.008

Rmsd bond angle (o)c 1.132

Mean B-value (Å2)d 66.7
aValues in parentheses are for the highest resolution shell.
bThe Rfree was calculated by using 5.1% data that were omitted from

structural refinement.
cThe rmsd of bond lengths and angles from ideal geometry for the final

model.
dThe mean temperature factor for all the atoms of the polypeptide chains

in the asymmetric unit.
introduced into actin I and II render them nonpolymerizable

without affecting their binding to Cobl-W domains.

We then purified Cobl-2W, the first two tandem W domains

(Wa and Wb) of Cobl with the highest binding affinity for actin

(Ahuja et al., 2007). Cobl-2W is functionally active in actin nucle-

ation and polymerization (Husson et al., 2011). The mixture of

Cobl-2W and actin I and II in the presence of AMPPNP gave

rise to a well-defined single species of stable actin nuclei,

AMPPNP-actin-Cobl-2W, that survived Superdex 200 size

exclusion chromatography (Figure 1C). We obtained plate-like

crystals of AMPPNP-actin-Cobl-2W that diffracted to 2.91 Å.

The crystals were in P1 space group containing two AMPPNP-

actin-Cobl-2W complexes in an asymmetric unit (Table 1).

Each AMPPNP-actin-Cobl-2W complex consists of one Cobl-

2W connecting two actin subunits, actin(Wa) and actin(Wb)

(Figure 2A).

The Actin Subunits in AMPPNP-Actin-Cobl-2W
Structure Are in ‘‘Open’’ State
Although we did not impose noncrystallographic symmetry in

structural refinement, all four actin subunits in an asymmetric

unit were very similar (Figure 2B). The only exception was for res-

idues 40–50 within the DNase I binding loop (D-loop) and a sur-

face loop in subdomain 4 in chain D, presumably due to their

involvement in different crystal packing. The high structural

similarity in the remaining portion of actin should reflect its true

conformational state.
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All known crystal structures of actin can be classified into two

groups according to the ‘‘openness’’ of the nucleotide-binding

site (Sablin et al., 2002): the ‘‘open’’ group is represented by a

profilin-b-actin structure (Chik et al., 1996) and the structures

of nucleotide-free or ADP-bound Arp3 (Nolen et al., 2004; Rob-

inson et al., 2001), and the ‘‘closed’’ group is composed of all

other available actin structures. Two conserved residues, S14

and G158, located on the opposite sides of the nucleotide-bind-

ing site, are of a shorter distance in the ‘‘closed’’ conformation

than in the ‘‘open’’ conformation (Sablin et al., 2002). Here, we

used as a criterion the distance between Ca-atoms of S14 and

G158 to compare the ‘‘openness’’ of known actin structures (Fig-

ure 2C). The averaged Ca(S14)�Ca(G158) distance was 5.5 ±

0.3 Å for a total of 74 ‘‘closed’’ actin crystal structures (including

13 complex structures between actin and individual W domains)

and 8.5 ± 0.3 Å for the ‘‘open’’ group (Table S2). For our

AMPPNP-actin-Cobl-2W structure, the Ca(S14)�Ca(G158) dis-

tance was averaged at 6.7 ± 0.4 Å, which is significantly larger

(p < 0.0001) than that of the ‘‘closed’’ group, but smaller (p <

0.0005) than that of the ‘‘open’’ group (Figure 2D). The structures

with a larger Ca(S14)�Ca(G158) distance have a larger cleft

between actin subdomains 2 and 4.

Q137was proposed to play a critical role in the ATPase activity

of actin (Vorobiev et al., 2003): the Q137A mutation cleaved the

g-phosphate group of bound ATP four times more slowly than

WT actin (Iwasa et al., 2008). The flattening of actin subunits

upon binding to growing actin filaments was suggested to bring

Q137 and the g-phosphate group closer to allow efficient ATP

hydrolysis (Fujii et al., 2010; Oda et al., 2009; Vorobiev et al.,

2003). We compared the distances between Q137 and the

g-phosphate group of bound ATP/AMPPNP (Figure 2C) of

our AMPPNP-actin-Cobl-2W structure and 13 known com-

plex structures of actin with various individualWdomains (Aguda

et al., 2006; Chen et al., 2012; Chereau et al., 2005; Didry et al.,

2012; Ducka et al., 2010; Hertzog et al., 2004; Irobi et al., 2004).

Of the 13 actin-W complex structures, one has an ADP as the

ligand and was excluded from this analysis. The actin subunits

in our AMPPNP-actin-Cobl-2W structure had an average dis-

tance of 4.6 ± 0.3 Å between Q137 and the g-phosphate group

of bound AMPPNP, which was significantly shorter than the

average distance of 5.2 ± 0.4 Å in 12 complex structures of actin

and individual W domains (p < 0.005) (Table S2; Figure 2D).

In conclusion, judging from the distances of Ca(S14)�
Ca(G158) and Q137�g-phosphate and the cleft between subdo-

mains 2 and 4, the actin subunits in AMPPNP-actin-Cobl-2W are

in a more ‘‘open’’ conformation ready for efficient ATP hydroly-

sis. This likely resulted from the simultaneous binding of the first

two tandem W domains of Cobl, because the binding of individ-

ual W domains did not ‘‘open’’ the actin structures (Table S2).

The Actin-Cobl-2W Interfaces
Cobl-2W binds to actin via the N-terminal a helices and C-termi-

nal LRKV motifs of both Wa (Figures 3A and 3B) and Wb (Figures

3C and 3D) domains. The N-terminal a helices bind to the

conserved cleft between actin subdomains 1 and 3 at the barbed

end (Figures 3A and 3C) that is lined by hydrophobic residues

Y143 and Y169 from subdomain 1 and I345, L346, L349, F352,

and M355 from subdomain 3. The residues of the N-terminal



Figure 2. Structure of Actin-Cobl-2W

(A) AMPPNP-actin-Cobl-2W structure. Cobl is in red with the two tandem W domains labeled as Wa and Wb, while their interacting actin subunits, labeled as

actin(Wa) and actin(Wb), are in green and blue, respectively. AMPPNP is shown as ball-and-stick models, and the Mg2+ ions are shown as purple spheres.

(B) Comparison of all four actin subunits in an asymmetric unit of AMPPNP-actin-Cobl-2W structure superimposed on subdomains 3 and 4.

(C) Schematic illustration of the distances of Ca(S14)�Ca(G158) and Q137�g-phosphate (g-P) used to characterize the ‘‘open’’ or ‘‘closed’’ conformations of

actin, using AMPPNP-actin-Cobl-2W structure (chain B) as an example.

(D) Statistic comparison of actin subunits in the AMPPNP-actin-Cobl-2W structure with ‘‘open’’ and ‘‘closed’’ actin structures. (****p < 0.001; ***p < 0.005 in one-

tailed Student’s t test).

The data are represented as mean ± SD. See also Table S2.
a helices that are in contact with actin are predominantly hydro-

phobic, including residues L1185, L1189, M1190, and I1193 on

Cobl-Wa helix (Figure 3A) and L1229 and I1233 on Wb helix (Fig-

ure 3C). However, hydrophilic residues such asH1186 onWa and

E1225 and R1226 on Wb also contribute to binding (Figures 3A

and 3C). On the other hand, the hydrophobic residues in the

LRKV motifs in both Cobl-Wa and Wb bind to the hydrophobic

pockets on the surface of actin, while R1203 in Wa and R1243

in Wb each forms a salt bridge with the conserved residue D24

on actin (Figures 3B and 3D).

To investigate the contributions of Cobl-2W residues to the

formation of actin-Cobl-2W complex and to the nucleation of

actin filaments, we created a series of single and double muta-

tions on key residues of Cobl-2W. The effects of thesemutations

were first assessed by comparing the elution profiles of actin I

and II with WT or mutant Cobl-2W on size exclusion chromatog-

raphy (Figures 3E and 3F). All the tested single mutations caused

varying degrees of right shift of the eluted complex peak

(indicating smaller molecular sizes) on size exclusion chroma-

tography (Figures 3E and 3F), presumably due to substantial

weakening or complete disruption of actin-Cobl-2W interaction

on a particular interface. However, given the presence ofmultiple

interfaces between actin and Cobl-W domains, even a complete

disruption of a particular actin-Cobl-W interface (for instance,

actin-Cobl-Wa) by a single mutation would still leave the other

interface (for instance, actin-Cobl-Wb) intact, thus resulting in

relatively small changes in elution volumes for single mutations

(Figure 3F). In contrast, mutations on both Wa and Wb domains

had much more profound changes. In some cases, they
C

completely distabilized the complex and resulted in elution

profiles the same as actin alone without Cobl-2W (Figure 3F). A

pyrene-based actin polymerization assay showed that despite

the small changes in elution profiles, the actin polymerization

activities of single mutations such as I1193A and L1229A were

severely compromised or completely lost (Figure S2). The dou-

ble mutation I1193A/L1229A completely lost its actin polymeri-

zation activity.

We further gauged the impacts of these mutations on the abil-

ity to promote the formation of actin-rich ruffles in COS-7 cells

(Figures 3G–3I). Clearly, all the tested single and double muta-

tions caused significant decreases in actin-rich ruffle induction

compared to the WT (p < 0.001) (Figure 3J), confirming that the

actin-Cobl interfaces observed in the AMPPNP-actin-Cobl-2W

structure are genuine and important for Cobl-mediated filament

nucleation in cells. The significant decreases in ruffle induction

by these mutants, instead of complete abolishment, could be

explained by the fact that actin filament nucleation is a highly

dynamic process where even a transient, weak stabilization of

actin nuclei could result in accelerated formation of actin fila-

ment, albeit at amuch lower rate than a fully functional nucleator.

The Two Actin Subunits Adopt a Non-Filament-Like
Conformation in the Actin Nucleus
Distinctly different from the head-to-tail conformation in F-actin

filament (Figure 4A), the actin(Wa) subunit in actin-Cobl-2W

structures is at an angle to actin(Wb). To allow a direct compar-

ison of filament growth based on the existing actin nucleus

formed byCobl with known F-actin structures, we superimposed
ell Reports 3, 1910–1920, June 27, 2013 ª2013 The Authors 1913



Figure 3. Actin-Cobl-2W Interfaces

(A–D) The interface between (A) actin(Wa) and Cobl-Wa, (B) actin(Wa) and Cobl-Wa LRKV, (C) actin(Wb) and Cobl-Wb, and (D) actin(Wb) and Cobl-Wb LRKV.

(E) Comparison of elution profiles on Superdex 200 size exclusion chromatography, using WT and L1229A Cobl-2W as an example.

(F) Mutations of Cobl-2W at the interfaces with actin disrupt the formation of actin-Cobl-2W complex as judged by size exclusion chromatography.

(G–I) Cobl-3W induces the formation of membrane ruffles enriched for F-actin in COS-7 cells. EGFP-Cobl (green) (G) and F-actin stained by phalloidin (red) (H)

colocalize in ruffles (I). The nuclei are stained in blue.

(J) Mutations of Cobl-3W at the interfaces with actin impair ruffle induction. Data are presented as mean ± SD from three to five independent experiments

(****p < 0.001 in two-tailed Student’s t test).

See also Figure S2.
actin(Wb) onto F-actin n+1 subunit. This superposition resulted in

actin(Wa) lying on the outside of F-actin and partially overlapping

with actin n-1 subunit (Figure 4B).

The unexpected conformation of actin(Wa) in relation to

actin(Wb) urged us to investigate whether it is a biologically

meaningful state. To address this, we found that in order to adopt

the observed conformation, the linker between Wa and Wb, de-

noted as L1, was extensively curled (Figure 4C), which is very

obvious when various structures of actin subunits with single

W domains were aligned (Chereau et al., 2005; Ducka et al.,

2010) (Figure 4D). Indeed, if the Wa and Wb domains were

destined to bind to two longitudinally neighboring actin subunits

n � 1 and n + 1, they needed to span a distance of 22–23 resi-
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dues in extended conformation (shown as a red dashed line in

Figure 4A). This would be possible for the total of 22 residues be-

tween the two N-terminal a helices ofWa andWb (residues 1199–

1220). However, if this region is shortened by four residues, the

remaining 18 residues would not be able to span this distance

but would still be sufficient for exhibiting the conformation

observed in our structure. In other words, a four residue deletion

mutant of Cobl-2W would validate the unexpected conformation

of AMPPNP-actin-Cobl-2W as biologically relevant if it does not

severely impair actin nucleation and polymerization. We made a

four residue deletion at residues 1210–1213 of Cobl (Figure 4C in

cyan), denoted as D1210–1213, to ensure that the remaining

residues 1209 and 1214 could be easily connected without



Figure 4. The Observed Conformation of Actin-Cobl-2W Is Biologically Relevant

(A) F-actin structure from fiber diffraction, with two neighboring longitudinal actin subunits highlighted. The number of residues required to span the W-binding

sites on two neighboring longitudinal actin subunits was estimated using the structure of actin-WIP-Wa (PDB 2A41) as a reference and shown as a red

dashed line.

(B) Superposition of actin-Cobl-2W structure onto F-actin.

(C) The extensively curled L1 linker.

(D) Comparison of known actin-W structures. The PDB codes are Spire-Wd (3MN5), N-WASP-Wb (2A3Z), WIP-Wa (2A41), and WAVE-W (2A40).

(E) Elution profiles of D1210–1213.

(F) The mutant D1210–1213 is fully active in membrane ruffle induction activity. Data are presented as mean ± SD from three to five independent experiments

(****p < 0.001 in two-tailed Student’s t test).

(G) The actin(Wa)-Wb interface.

(H) Comparison of ruffle induction activities for designed mutations. Data are presented as mean ± SD from three to five independent experiments (****p < 0.001;

***p < 0.005 in two-tailed Student’s t test).

(I) Sequence alignment of W domains from tandem W-domain-containing actin filament nucleators and from nucleation-promoting factors. GenBank

sequence accession numbers are AAP74341 (Cobl), Q9U4F1 (Spire), AAI30625 (JMY), O00401 (N-WASP), P50552 (VASP), P42768 (WASP), and O43312

(MIM). The LKKT-related motifs are colored in brown. Residues corresponding to the hydrophobic side of the N-terminal a helix, A1231, and R1234 in

Cobl-Wb are in yellow, green, and blue, respectively. The key sequence differences on the hydrophilic side of the N-terminal a helix in Spire-Wb, JMY-Wb, and

Wc are highlighted in purple.

See also Figures S3, S4, S5, and S6.
significant structural rearrangement. Impressively, D1210–1213

behaved almost the same as WT Cobl in size exclusion chroma-

tography (Figure 4E), pyrene-based polymerization assay (Fig-

ure S3) and ruffle induction assay (Figure 4F). Therefore, the

non-filament-like conformation of actin-Cobl-2W nucleus re-

vealed in our structure is biologically relevant. In fact, crosslink-

ing and small-angle X-ray scattering studies of tandem W do-

mains in Spire concluded that the actin-Spire-4W complex is

also not strictly filament like (Chen et al., 2012; Ducka et al.,

2010; Sitar et al., 2011).

Next, to investigate the molecular signatures on Cobl-2W

responsible for the unexpected conformation of actin-Cobl-
C

2W, we found that the interface between actin(Wa) and Cobl-Wb

might hold the key (Figure 4G). This interface has well-designed

complementarities: the actin(Wa) surface presents positively

(K238 and R254) and negatively (E226) charged surfaces to

which the residues of opposite charges, E1223 at the N terminus

and R1234 at the C terminus of Wb, interact. In addition,

conserved small polar residues such as S1227 and small hydro-

phobic residues A1228 and A1231 on Cobl also appear to be

important for the interactions.

To test the contributions of theseCobl-Wb residues to the inter-

actionwith theactin(Wa) subunit,weperformedactin-rich ruffle in-

duction assays on mutant Cobl-3W containing small-to-large
ell Reports 3, 1910–1920, June 27, 2013 ª2013 The Authors 1915



Figure 5. ATP Hydrolysis Is Required for Cobl Functions and Deletions in the L2 Linker Impair Cobl Function

(A) SDS-PAGE and (B) Westernwestern blot of the supernatant and pellet fractions of actin polymerization reaction in the presence of ATP or AMPPNP.

(C and D) Models of actin-Cobl-3W superimposed on F-actin in two different modes.

(E) Elution profiles of two Cobl-3W deletions, D1270–1289 and D1277–1291.

(F) The ruffle induction activities of D1270–1289 and D1277–1291.

Data are presented as mean ± SD from three to five independent experiments (***p < 0.005 in two-tailed Student’s t test).
mutations A1228W/A1231W, or A1231D, and positive-to-nega-

tive mutation R1234E. All of these mutations caused significant

loss of ruffle induction activity compared to WT (p < 0.001) (Fig-

ure 4H). Pyrene-based polymerization assay on A1231D and

R1234E agreed well with the ruffle assay results (Figure S4).

Therefore, the interactions between actin and Cobl-2W at this

interface play important roles in the nucleation function of Cobl

in cells.

Cobl Is Released from Actin Filaments upon ATP
Hydrolysis
To investigate whether and how Cobl is released from the

pointed end of growing filament, we compared the amounts of

actin and Cobl-3W in the soluble supernatant fractions versus

those in the F-actin pellet fractions in the presence of ATP or

AMPPNP. The amounts of actin in supernatant and pellet in

different nucleotides were compared on SDS-PAGE (Figure 5A),

whereas those of Cobl-3Wweremonitored bywestern blot using

pentahistidine antibody that recognized the N-terminal his6-tag

of Cobl-3W (Figure 5B). Clearly, comparing with the mixture

with ATP, AMPPNP resulted in a smaller amount of actin incor-

porated into the filaments (Figure 5A) and fewer Cobl-3W mole-

cules observed in the supernatant fraction (Figure 5B). This was

probably due to the inability to release Cobl-3W from actin fila-

ments in the absence of ATP hydrolysis; thus, fewer actin nuclei

could be initiated. Thus, in normal cellular functions, Cobl is likely

released from the pointed end of growing filaments and ATP

hydrolysis is required for this release.

Deletions in the Linker L2 Impair Cobl Function
A previous study found that the 65 residue length of the L2 linker,

but not the sequence, is required for normal Cobl functions,

possibly by allowing Cobl-Wc to bind to the actin subunit on a

different protofilament (Ahuja et al., 2007). Based on our
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AMPPNP-actin-Cobl-2W structure, Wc and actin(Wc) have two

most likely locations on actin filaments (Figures 5C and 5D). To

probe the impact of shorter deletions on Cobl functions, we

removed 20 and 15 residues from L2 of Cobl-3W, termed as

D1270–1289 and D1277–1291, respectively. For both mutants,

the complex elution profiles changed (Figure 5E) and the ruffle in-

duction activities were substantially impaired compared to WT

(p < 0.005) (Figure 5F). These data suggest that actin(Wc) prob-

ably take the longer route as shown in Figure 5D.

JMY Shares a Similar Nucleation Mechanism as Cobl
Once we had identified the key characteristics that bestow

Cobl-Wb the ability to bind to two actin subunits simultaneously

with a unique conformation, we wondered whether this ability is

shared by other W domains. We performed a sequence align-

ment for the W domains from tandem W-domain nucleators

such as Cobl (Wa�Wc), JMY (Wa�Wc), and Spire (Wa�Wd) and

from several nucleation-promoting factors such as WASP

and N-WASP (Figure 4I). Clearly, the hydrophobic side of the

N-terminal a helix that interacts with the hydrophobic cleft

between actin subdomains 1 and 3, and the LKKT-related motif,

are highly conserved. However, a higher degree of variation

exists on the hydrophilic side of the N-terminal a helix. In partic-

ular, residues other than positively charged ones such as I and

Q are observed on the equivalent position to R1234, and larger

residues such as D, E, and N are observed on the equivalent

position to A1231. According to the results in Figure 4H, residues

that disrupt the ionic interactions between Cobl R1234 and

actin E226 or larger residues at A1231 would lead to significant

deficiency in actin nucleation functions. Thus, only Spire-Wb,

JMY-Wb, and Wc might be able to interact with actin subunits

in a similar manner as Cobl-Wb. To further examine these

candidates, we tested E1223L/S1227E/A1228I, E1223S/

S1227D/A1228E, and S1227N/A1228N, the combinations that



Figure 6. Proposed Models of Actin Filament Nucleation and Polymerization Mediated by Tandem W Domains

(A–C) Proposed model of Cobl-mediated actin nucleation. The actin-Cobl nucleus allows the pointed-end but not the barbed-end growth (A). Slow growth at the

pointed end triggers ATP hydrolysis in actin(Wb). The bound Cobl-Wb is expulsed from actin(Wb), and the steric hinderance imposed by actin(Wa) is released (B).

Rapid growth of actin filament proceeds at the barbed end, and slow depolymerization at the pointed end eventually releases the bound Cobl into solution (C).

(D) Proposed nucleus of actin-JMY.
are observed in Spire-Wb, JMY-Wb, and Wc, respectively. Only

the combination from JMY-Wb (E1223S/S1227D/A1228E) re-

sulted in the same level of activities as WT Cobl in pyrene-based

actin polymerization (Figure S5) and cellular ruffle induction as-

says (p < 0.001 when compared with blank or vector) (Figure 4H).

The interface of actin-Cobl-Wb can easily accommodate

E1223S/S1227D/A1228E from JMY-Wb by forming favorable in-

teractions between the introduced residues E1223S and A1228E

on JMY-Wb and K238 and R254 on actin(Wa) (Figure S6). There-

fore, JMY-Wb likely employs a similar mechanism to Cobl-Wb in

binding to actin (Figure 4B).

DISCUSSION

Models of Actin Filament Nucleation and Polymerization
Mediated by Cobl and JMY
Taken together, we propose a model for the action of Cobl in

promoting actin filament nucleation and polymerization (Figures

6A–6C). The AMPPNP-actin-Cobl-2W structure presented here

represents the starting state of actin-Cobl nucleus. Because

the position of actin(Wa) in ATP (or AMPPNP)-bound state would

passively block the growth of actin filament at the barbed end

(Figure 6A), Cobl-mediated actin polymerization would start

from slow growth at the pointed end. This is similar to the model

proposed for formin-mediated nucleation (Otomo et al., 2005).

The elongation of actin at the pointed end could induce ATP

hydrolysis in Cobl-bound actin subunits, especially in actin(Wb),

given that the actin-Cobl nucleus is in a more ‘‘open’’ con-

formation poised for ATP hydrolysis. The hydrolysis of ATP and

subsequent release of inorganic phosphate could induce a

conformational change in actin (Murakami et al., 2010) to open

the Cobl-binding site between subdomain 1 and 3 in actin(Wb),

and the lower affinity of the W domains with ADP-actin com-

pared to ATP-actin would discharge the bound Cobl-Wb and

its interacting actin(Wa) (Hertzog et al., 2004) (Figure 6B). The
C

moved-away actin(Wa) would release the steric clash it imposes

on the initial nucleus, thus allowing rapid actin filament polymer-

ization at the barbed end (Figure 6C). The slow disassembly at

the pointed end would eventually release Cobl to the solution

where it could be recycled for another round of actin nucleation.

Although the first two W domains of JMY are expected to bind

to actin subunits similarly as observed for Cobl-2W, the actin

nucleus formed by JMY is different from that of Cobl in terms

of the location of actin(Wc): the shorter L2 linker in JMY could

place actin(Wc) on the same protofilament as actin(Wb) (Fig-

ure 6D), in opposite to Cobl where actin(Wc) is placed on a

different protofilament (Ahuja et al., 2007) (Figure 6A).

The Function of the Hydrophilic Face of N-Terminal
a Helix on W Domains
The W domains are small but versatile actin-binding motifs with

multifunctionality such as actin monomer sequestration, actin

filament nucleation, elongation, and severing (Campellone and

Welch, 2010; Carlier et al., 2011; Chesarone and Goode, 2009;

Dominguez, 2007; Husson et al., 2010; Paunola et al., 2002;

Qualmann and Kessels, 2009). Due to the inability to structurally

study actin oligomers in the past, previous studies have focused

on the hydrophobic side of the N-terminal amphipathic a helix

that binds to the highly conserved hydrophobic cleft located

between actin subdomains 1 and 3. Our structure of AMPPNP-

actin-Cobl-2W revealed the importance of the hydrophilic side

of the N-terminal a helix in the functionality of the W domains,

which should be expanded to other W domains in future studies.

This is particularly relevant to understanding the molecular

mechanisms of W-domain-containing actin-binding proteins of

pathogen origins. The more unique features exhibited by the

hydrophilic binding face of theWdomainsmay allow specific tar-

geting against pathogens with minimal cytotoxicity. In addition,

an in-depth understanding of the sequence-structure-function

relationship of the hydrophilic binding face would ultimately
ell Reports 3, 1910–1920, June 27, 2013 ª2013 The Authors 1917



assist rational design and engineering of W domains with novel

functions.

A General Tool for Structural Study of Actin Nucleation
Unlike previous studies, the AMPPNP-actin-Cobl-2W structure

reported in this study represents an atomic structure of native

actin nucleus formed by a natural actin filament nucleator. The

unexpected conformation of actin subunits in this structure un-

derscores the significance of high-resolution structural studies

of this kind. The lack of structural insights into actin nucleation

by three classes of specific actin nucleators (Campellone and

Welch, 2010; Chesarone et al., 2010; Chesarone and Goode,

2009; Dominguez and Holmes, 2011; Pollard, 2007; Reisler

and Egelman, 2007) was largely due to the inability to control

the rapid polymerization of actin from a nucleus. This also limited

high-resolution structural study of interactions between F-actin

and F-actin binding proteins. Therefore, the double-mutant strat-

egy reported in this study provides a valuable tool to overcome

these obstacles.

EXPERIMENTAL PROCEDURES

Molecular Cloning

The gene of full-length Drosophila 5C actin was kindly provided by Dr. Loy

Volkman (Volkman et al., 1996) and subcloned into pFastBac-Dual vector

(Invitrogen) with an N-terminal his6-tag. The gene encompassing the C-termi-

nal residues (1176–1337) of mouse Cobl (GI:32251014) (Cobl-3W) was cloned

into pET-45b vector (Clontech Laboratories) with an N-terminal his6-tag. The

gene of Cobl-3W was cloned into pEGFP-C1 (Clontech) to allow expression

of EGFP-fused Cobl-3W protein. The genes of Cobl-Wa (residues 1176–

1224) and Cobl-Wb (residues 1206–1276) were cloned into pGEX-6p1 (Clon-

tech) to generate glutathione S-transferase (GST) fusion proteins. Actin I and

II and various Cobl mutants were introduced by site-directed mutagenesis

using Quikchange kit (Agilent Technologies) and verified by DNA sequencing.

Expression and Purification of Recombinant Proteins

Expression of actin I and II using baculovirus/insect cell system and lysis of

infected insect cells were as previously described (Joel et al., 2004; Rould

et al., 2006). Cleared cell lysate was incubated with Ni-NTA agarose (QIAGEN)

at 4�C for binding and followed by extensive washes to remove unbound

proteins. Bound actin mutants were eluted with 400 mM imidazole and further

purified using Source 15Q 4.6/100 PE (GE Healthcare).

Expression of Cobl constructs used E. coli Rosetta(DE3) strains. For GST

fused Cobl-W domains, the clarified supernatant was incubated with GST

resin (BD Biosciences) at 4�C. Bound proteins were then eluted with 50 mM

reduced glutathione and further purified by Superdex 200 10/300 (GE Health-

care). For Cobl-2W, the clarified supernatant was incubated with Ni-NTA

agarose (QIAGEN) at 4�C. Bound proteins were eluted in 500 mM imidazole

and further purified by Source 15S 4.6/100 PE and Superdex 200 10/300

(GE Healthcare). Purified protein was analyzed by mass spectrometry,

revealing an actual molecular weight of 14.33 kDa with an intact N terminus.

Thus, the purified protein contains residues 1176–1301 encompassing Wa,

L1, Wb, and most of L2, denoted as Cobl-2W.

Binding Affinities between Actin and Individual Cobl-W Domains

WT actin was purified rabbit skeletal muscle as previously described (Spudich

and Watt, 1971). The actin-Cobl-W-binding affinities were measured using

Octet RED96 (ForteBio) in which GST-Cobl-Wa or GST-Cobl-Wb was loaded

onto biosensors coated with GST antibodies (ForteBio, 18-5096), and associ-

ation and dissociation curves were generated by incubating biosensors with

WT actin, actin I, or actin II. The binding affinities were represented as equilib-

rium dissociation constantKD calculated fromKon and Koff that weremeasured

from the slope of the association and dissociation curves, respectively.
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Different actin concentrations were used to obtain a full range of binding

curves.

Actin Precipitation Assay

Freshly made WT actin, actin I, actin II, or the mixture of actin I and II was in

G-buffer (2 mM Tris-HCl [pH 8.0], 0.2 mM CaCl2, 0.5 mM ATP, and 1 mM

DTT). Actin polymerization was triggered by bringing the sample to a final con-

centration of 100 mM KCl and 1 mM MgCl2, which was then incubated for

30 min at room temperature before centrifugation at 90,000 rpm at 4�C to

separate filamentous actin in the pellet and soluble actin in the supernatant.

The two fractions were then analyzed by SDS-PAGE.

Purification of AMPPNP-Actin-Cobl-2W Complex

Purified actin I, actin II and Cobl-2W were mixed together in 1:1:1 molar ratio

in F-buffer (10 mM HEPES [pH 7.6], 100 mM KCl, 1 mM MgCl2, 0.2 mM

AMPPNP, and 1 mM DTT). The mixture was then loaded onto Superdex

200 10/300 column (GE Healthcare) to separate AMPPNP-actin-Cobl-2W

complex from any extra monomers according to their sizes. The elution

volume of actin-Cobl complex was also used to assess the compactness of

the complex.

Crystallization, Data Collection, and Structural Refinement

Crystals of AMPPNP-actin-Cobl-2W complex were obtained using vapor

diffusion hanging drop method in the solution of 0.1 M Pipes (pH 7.5),

0.16–0.19 M NaCl, and 11% PEG 3350 through serial microseeding. The

crystals were frozen in the mother liquid supplied with 18% glycerol. X-ray

diffraction data were collected at 100 K at the 21ID-D beamline at Advanced

Photon Source. The data were processed using MOSFLM (Battye et al.,

2011; Powell, 1999). The structure of an isolated monomeric actin (Protein

Data Bank ID code [PDB] 1NWK) (Graceffa and Dominguez, 2003) was

used as the search model for molecular replacement by PHENIX (Adams

et al., 2010). The model was refined by simulated annealing using PHENIX

and then subjected to iterative cycles of positional and B-factor refinement

using REFMAC5 (Murshudov et al., 1997) in CCP4 (Collaborative Computa-

tional Project, Number 4, 1994) and manual model building in O (Jones

et al., 1991) guided by composite omit 2Fo-Fc maps. Additionally, normal-

mode-based X-ray crystallographic refinement method (Chen et al., 2007;

Poon et al., 2007) was used at the final stage of structural refinement to pro-

vide better descriptions of B-factors, resulting in new densities in flexible

regions in both Cobl and actin. Three rounds of normal-mode anisotropic

B-factor refinement and manual adjustment were applied until the structure

was converged.

Pyrene-Based Actin Polymerization Assay

The pyrene-actin polymerization assay was performed as previously

described (Ahuja et al., 2007; Husson et al., 2011). Freshly thawed pyrene-

labeled rabbit skeletal muscle actin (Cytoskeleton) was incubated on ice for

1 hr in G-buffer to depolymerize actin oligomers. Labeled and unlabeled

G-actin was mixed and centrifuged at 90,000 rpm for 30 min at 4�C to remove

residual nucleating centers. Actin polymerization was initiated by adding 4 ml

actin mixture of 45 mM unlabeled G-actin and 5 mM pyrene-labeled G-actin

(final 2 mM actin) into 96 ml reaction mixtures containing tested proteins in

F-buffer. The rate of actin polymerization was measured by monitoring

the change in fluorescence intensity over time with excitation wavelength

355 nm and emission wavelength 410 nm using FLUOstar Omega (BMG

Labtech).

F-Actin-Rich Ruffle Induction Activity Assay of Cobl-3W

COS-7 cells were grown in Dulbecco’s modified Eagle’s medium supple-

mented with 10% heat-inactivated fetal bovine serum, 100 units/ml penicillin,

100 mg/ml streptomycin, and 2 mM L-glutamine (Invitrogen). Transient trans-

fection was carried out using Lipofectamine 2000 Transfection Reagent

(Invitrogen) following the manufacturer’s recommendations. At 48 hr post-

transfection, the cells were stained with phalloidin and DAPI (Sigma) and

analyzed using Zeiss LSM 510 confocal Laser Scanning Microscope. Quanti-

fication of ruffles was presented as mean ± SD from three to five independent



experiments, each examining 120–300 cells. The statistic analysis was per-

formed using two-tailed Student’s t test.

ATP Hydrolysis and Cobl-3W Release

Freshly madeWT actin was diluted to 20 mM and split into two halves. One half

of the sample was exchanged into G-buffer containing ATP, while the other

half was into AMPPNP. The actin samples with ATP or AMPPNP were sepa-

rately mixed with 0.5 mM purified Cobl-3W, and actin polymerization for

5 min and precipitation by centrifugation were performed as in ‘‘Actin precip-

itation assay.’’ The two fractions were analyzed by SDS-PAGE followed by

western blot using pentahistidine antibody (Sigma) to detect the Cobl-3W

with an N-terminal his6-tag.
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Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N.,

Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010).

PHENIX: a comprehensive Python-based system for macromolecular struc-

ture solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221.
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Supplemental Information

Figure S1. Nucleotide Exchange of WT Actin and Actin II, Related to Figure 1

Actin II behaves similarly to WT actin.
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Figure S2. Results of Pyrene-Based Actin Polymerization Assay Comparing WT Cobl-2W and Its Mutants, Related to Figure 3

The mutations of I1193A, L1229A, and I1193A/L1229A on Cobl-2W clearly cause significant decrease or complete loss in actin polymerization activity.
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Figure S3. Pyrene-Based Actin Polymerization Assay of a Four-Residue Deletion, Related to Figure 4

The four-residue deletion at the L1 linker, D1210–1213, behaves similarly to the WT Cobl-2W.
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Figure S4. Pyrene-Based Actin Polymerization Assay of Mutations at the Actin(Wa)-Cobl-Wb Interface, Related to Figure 4

Both the R1234E and A1231D mutations impair actin polymerization activity.
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Figure S5. Pyrene-Based Actin Polymerization Assay of Cobl-2W Containing Combinatorial Sequences, Related to Figure 4

Among the combinatorial sequences from Spire-Wb (E1223L/S1227E/A1228I), JMY-Wb (E1223S/S1227D/A1228E,) and JMY-Wc (S1227N/A1228N), only the

mutant corresponding to JMY-Wb has a full activity.
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Figure S6. The Hypothetical Actin(Wa)-JMY-Wb Interface, Related to Figure 4

Constructed based on the structure of actin-Cobl-2W where the three residues from the JMY-Wb sequence are highlighted in red. Clearly, the introduced S1223

and D1227 interact with K238 and R254 of actin(Wa), thus stabilizing the complex.
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