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SI Materials and Methods
We publish a data matrix of bioclimatic and physical character-
istics, ordination and clustering results, and species richness
predictions for the 17,883 islands >1 km2 investigated in this
article as comma-separated text file (Dataset S1, dx.doi.org/
10.5061/dryad.fv94v). The table is sorted by IDs (ID) unique to
each island. Each island refers to a polygon in the GADM da-
tabase of Global Administrative Areas, version 1 (www.gadm.
org/version1). Twelve islands identified in a previous study (1) to
be missing from the GADM data or to be connected to con-
tinents erroneously (IDs: 85133, 85137, 85138, 85139, 85145, 85149,
85150, 100046, 100049, 100050) were drawn manually or clipped
from continents. Longitude (Long) and Latitude (Lat) were calcu-
lated as polygon mass centroids. International Organization for
Standardization country codes (CountryISO) and country names
(Country) were adopted from GADM. In the case of multiple
countries per island, country codes were amalgamated (up to five
characters) and country names listed separated by semicolons.
Where applicable, an archipelago name (Archip) was assigned.
For 11,546 islands, names (Island) were assigned using the

NGA GEOnet Names Server (downloaded on March 29, 2012,
from earth-info.nga.mil/gns/html/index.html; indicated as “gns”
in column Gazetteer) for all regions but the United States, and
the US Geological Survey Geographic Names Information Sys-
tem (downloaded on March 29, 2012, from geonames.usgs.gov/
index.html; indicated as “gnis”) for the United States. Only
names classified as islands in these two resources were con-
sidered. Original ID (Name_ID) and geographic coordinates
(Name_long and Name_lat) were adopted from the gazetteers. In
total, 7,475 islands were assigned single names that fell inside
their polygons (indicated as “inside” in column Name_meth). In
1,751 cases, more than just one name was located inside an is-
land polygon (No_names), e.g., due to erroneously located
names of closely adjacent islands or inland freshwater islands.
For all islands with 10 or less names, the name located nearest
(based on Name_dist) (in kilometers) to the island’s mass cen-
troid was chosen automatically (indicated as “insideclosest”). In
this case, the alternative names are also given (Name_alt). For 73
islands with more than 10 names (large and well-known islands),
the right name was chosen manually (indicated as “manually”).
For 2,320 islands without a name within the polygon, names
could be assigned because the island polygons were the closest
features to island names not assigned previously and their mass
centroids were not further than 10 km from the name’s coor-
dinates (indicated as “closest”). In this case, No_names indicates
the number of names each polygon was the closest (based on
Name_dist; in kilometers) feature for. If No_names was >1, the
closest name was chosen. A quality check of 100 randomly drawn
islands for each method found that about 93% of the names of
method “inside,” 84% of method “insideclosest,” and 78% of
method “closest” can be assumed to be correct. Hence, the is-
land names may help to find data for certain islands in our da-
taset, but due to their insecure assignment they must not be used
for automated matchups. The island coordinates should be used
instead as a spatially explicit reference.
Island area (Area) (in square kilometers) was calculated for

each GADM polygon in cylindrical equal area projection. As
measures of island isolation, we provide the distance from an
island’s mass centroid to the nearest mainland coast (Dist) (in
kilometers) measured in azimuthal equidistant projection using
the “Near Table” tool in ArcGIS Desktop 9.31 (Esri) and the
log10-transformed sum of the proportions of landmass within

buffer distances of 100, 1,000, and 10,000 km around the island
perimeter (SLMP) (1). Estimates of whether an island was
connected to the mainland during the last glacial maximum
(LGM) or not (GMMC) were based on global bathymetry data
(2) assuming a sea level decrease of −122 m at 18,000 years
before present (3). However, this metric does not account for
regional differences in sea level fluctuations and plate tectonics.
Maximum elevation above sea level (a.s.l.) of each island (Elev)
(in meters) was extracted from the digital elevation model at 30-s
resolution provided in WorldClim (4), which is based on SRTM
(5) and GTOPO30 (6) using the “Zonal Statistics” tool in Arc-
GIS. For 1,891 small islands that did not fully enclose a 30-s
WorldClim raster cell, we applied a 1-km buffer as indicated in
column Buffer.
We extracted bioclimatic variables from WorldClim (BIO1,

BIO7, BIO12, and BIO15) in a similar manner to Elev. When
interpreting the climate patterns, one has to consider possible
shortcomings of the WorldClim data. WorldClim interpolates
climatic measurements between climate stations accounting for
latitude, longitude, and elevation but disregards other important
information like slope aspect or predominant wind directions
(4). Especially for precipitation in mountainous tropical regions
with few climate stations, the data might be imprecise (7).
Here, we provide maximum values per island polygon of annual

mean temperature (Temp) (in degrees Celsius) and annual pre-
cipitation (Prec) (in millimeters), and minimum values of the
annual temperature range (varT) (in degrees Celsius) and the
coefficient of variation in monthly precipitation (varP). For
a region of 129 islands >1 km2 including parts of French Poly-
nesia and the Pitcairn Islands that lack WorldClim temperature
data, we modeled Temp and varT based on the relationships of
sea surface temperature and its range with Temp and varT on
neighboring islands. We extracted sea surface temperature data
(8) for all islands of French Polynesia, the Cook Islands, the
Pitcairn Islands, Kiribati, Wallis and Futuna, Fiji, American
Samoa, Niue, Tokelau, Tonga, and Samoa. We then fitted linear
models of the maximum values of annual mean temperature and
minimum values of the temperature range from WorldClim for
the islands covered by WorldClim (n = 255) and mean annual
sea surface temperature (ssTemp) and range (ssvarT) and used
the model to predict maximum mean annual temperature and
minimum temperature range for the islands not covered
(Temp = −9.36 + 1.29 × ssTemp, R2 = 0.87, P < 0.001; varT =
4.96 + 1.39 × ssvarT, R2 = 0.93, P < 0.001). Islands with modeled
temperature data are marked in column modeled_T.
We calculated climate change velocity (CCVT) (in meters per

year) since the LGM 21,000 y ago following refs. 9 and 10. Cli-
mate change velocity is the ratio between the temporal change in
temperature (temporal gradient) and the contemporary spatial
change in temperature (spatial gradient), and is expressed in
distance units per time. We calculated the temporal gradient as
the difference between the current annual mean temperature
and the annual mean temperature at the LGM divided by 21,000
y. Current climate data were based on the 30-s WorldClim data
and our model predictions for parts of French Polynesia and the
Pitcairn Islands. Based on the predicted maximum annual mean
temperature at sea level as intercepts, we modeled annual mean
temperatures (meanT) for each WorldClim raster cell of the 129
missing islands. We used the mean slope of regressions between
WorldClim annual mean temperature and elevation a.s.l. for the
neighboring highly elevated volcanic islands Tahiti, Raiatea,
Savaii, Upolu, and Kauai (meanT = Temp + (−0.0056) × Ele-
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vation; R2 values of all meanT ∼ Elevation models > 0.99, all
P values < 0.001). Data from two past climate models (CCSM3
and MIROC3.2) were taken from the Paleoclimate Modeling
Intercomparison Project Phase II (11). We used the mean of the
two model predictions as LGM mean annual temperature ac-
cording to ref. 10. For comparison with current climate, we
downscaled the estimates to 30-s resolution and then calculated
the spatial mean annual temperature gradient based on the
contemporary climate data as the slope from each raster cell to
its four nearest neighbors. To avoid dividing by zero, all values
below 0.01 °C/km and values of cells with less than four direct
neighbors were replaced with 0.01 °C/km. We then extracted
mean values of climate change velocity for each island. If not
stated otherwise above, GIS analyses were performed using R
statistical software, version 2.14.2 (R Development Core Team;
available at cran.r-project.org) and packages sp (12), maptools
(13), raster (14), and rgdal (15).
Column names starting with “PAM” refer to results from

nonhierarchical partitioning around medoids (PAM), and col-
umn names starting with “UPGMA” refer to results from the
hierarchical unweighted pair-group method with arithmetic
mean (UPGMA). Axis scores of principal component analyses
(PCAs) are stored in columns starting with “PCA.” Name suf-
fixes refer to the set of bioclimatic and physical variables con-
sidered in each case (nAE, all variables except Area and Elev; all,
all 10 variables; cli, contemporary bioclimatic variables; geo,
physical variables). For all combinations of clustering method
and variable subset, we present eight distinct groups. We used
the Cali�nski and Harabasz index (16) to determine the optimal
number of clusters. In the majority of cases for UPGMA, the
optimum or local optimum was reached at eight clusters. How-
ever, for PAM, index values usually decreased with increasing
number of clusters. We therefore adopted the number of eight
clusters for all presented regionalizations because eight clusters
were well suited for graphical presentation and conceptual dis-
cussion. This semiquantitative approach is in line with other
studies that highlight the adequacy of choosing an arbitrary
number of clusters (17). Ordination, cluster analyses, and evalu-
ation were performed using the R packages vegan (18), flashClust
(19), cluster (20), and fpc (21).
As demonstration application of the presented data and

multivariate framework in macroecology and biogeography, we
used it to develop statistical predictions of the species richness of
native vascular plants on all 17,883 islands >1 km2. We built on
existing richness data for vascular plants, including all 345 islands
from ref. 1 that could be assigned to a single GADM polygon
(22–94) and 130 islands for which data were available from
published floras, checklists, and online databases (95–139). Fol-
lowing the rational of ref. 140, we used as predictors the 10
bioclimatic and physical variables presented here. As additional
predictor, we included the species richness of the closest main-
land grid cell derived from the cokriging based estimates pro-
vided by ref. 141 (column SRML). We allowed for first-order
interactions among Area and Temp, Dist and SRML, Temp and
Prec, as well as Area and Dist. For comparison, we fitted gener-
alized linear models (GLMs) of the Gaussian and Poisson fami-
lies, spatial simultaneous autoregressive lag models (SARs)
accounting for spatial autocorrelation (142), and generalized
additive models (GAMs) allowing nonlinear and spatial effects
(143, 144). We preferred SARs of the lag type over SARs of the

error type because the latter does not consider the spatial effect
in predictions for new data (142). In GLMs and SARs, all varia-
bles were included as linear effects. For both, based on corrected
Akaike information criterion (AICc)-based model comparisons
and to reduce skewness, we log10-transformed the following pre-
dictors: Area, SLMP + 0.5, Elev + 1, CCVT + 1, Prec +1, and
SRML (constants were added to avoid taking the logarithm of
zero). Optimal lag distances for SARs were defined following ref.
145 evaluating model AICs and the improvement of Moran’s I
values of spatial autocorrelation in model residuals compared with
nonspatial GLMs. In GAMs, each factor was added as penalized
regression splines with up to three degrees of freedom (143, 144).
Interactions were added as tensor product interactions with up to
three degrees of freedom for each basis. In addition to the
aforementioned interactions, GAMs included an isotropic smooth
of Lat and Long on a sphere to account for spatial patterns in the
response variable. All variables entered the GAMs untransformed
except Area, which was log10-transformed after visual model in-
spection. For all model types, we ran a model selection procedure
to identify the best among all possible candidate models and
conducted multimodel inference by averaging all candidate
models up to a sum of AICc weights of 0.95 (146). Although
smooth terms in GAMs are already penalized to prevent over-
fitting, the minimum degrees of freedom is larger than zero (147),
necessitating further model selection. Despite the “count” nature
of the response variable, Gaussian GLMs with log10-transformed
species richness as response variable performed better than
Poisson GLMs of untransformed richness in terms of model fit
and model diagnostics (pseudo-R2 of best Poisson candidate
model = 0.671 compared with pseudo-R2 of best Gaussian can-
didate model = 0.734). Furthermore, the use of SARs did not
improve model fit compared with GLMs (pseudo-R2 of best SAR
candidate model = 0.705). We therefore do not present results
and predictions from Poisson GLMs and SARs. Model statistics
and predictions from the best candidate models were very similar
to those based on multimodel inference (e.g., pseudo-R2 of best
Gaussian GLM and pseudo-R2 of averaged Gaussian GLMs,
both = 0.734; pseudo-R2 of best GAM = 0.937 compared with
pseudo-R2 of averaged GAMs = 0.936). However, we focus on
predictions from multimodel inference here because for both
GLMs and GAMs their prediction error (averaged mean error
based on 10-fold cross-validation) was slightly smaller (GLM: best
model prediction error = 0.137, averaged model prediction error =
0.127; GAM: best model prediction error = 0.044, averaged model
prediction error = 0.031). Predicted species numbers together with
their SEs can be found in the columns SR_GLM and SR_SE_GLM
for GLM predictions and SR_GAM and SR_SE_GAM for GAM
predictions. Both species richness and SEs were backtransformed
[as log10(species richness + 1) was the modeled response variable]
to represent actual species numbers. In the main results (Figs. 4 and
5), we focus on predictions based on GAMs because they are more
flexible, account for spatial patterns, fit the data better (AIC best
GAM = −167.8, AIC best GLM = 392.6), and yield more realistic
predictions in regions where the other approaches strongly over-
estimate richness (e.g., on the western coasts of Africa and Canada;
Fig. S7). Model averaging and multimodel inference, generalized
additive models, spatial simultaneous autoregressive models, and k-
fold cross-validation were applied using the R packages MuMIn
(148), mgcv (143, 144), spdep (142), and boot (149).
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Fig. S1. (A) Histogram of area size of all 80,604 islands >10−1.5 km2 included in the GADM dataset (www.gadm.org/version1). The 17,883 >1-km2 islands
considered in the bioclimatic and physical characterization are shown in gray. The 1,509 islands >1 km2 that were not included due to lacking climate data are
colored red and mapped in B. These encompass mainly islands only slightly larger than 1 km2 distributed more or less evenly across island rich regions of the
globe, and include also all islands south of −60°, where no WorldClim climate data coverage is available.
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Fig. S2. Correlations among bioclimatic and physical variables for 17,883 islands >1 km2 worldwide. Coefficients and P values were corrected for spatial
autocorrelation. Solid lines denote significant relationships at P < 0.05, whereas dashed lines are nonsignificant. Abbreviations follow SI Materials and
Methods.
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Fig. S3. Scree plots of eigenvalues (black) of principal components. PCAs were conducted for 17,883 islands >1 km2 worldwide including (A) all 10 bioclimatic
and physical variables used in the bioclimatic and physical characterization of the world’s islands, (B) all variables but Area and Elev, (C) contemporary bio-
climatic variables only (Temp, varT, Prec, varP), and (D) physical variables only (Area, Elev, Dist, SLMP, GMMC). Abbreviations follow SI Materials and Methods.
Gray dots and lines indicate square roots of eigenvalues used for weighting in cluster analyses.
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Fig. S4. PAM clustering using weighted PCA axes (Euclidean distance) based on (A and B) all 10 variables, (C and D) contemporary bioclimatic variables only
(Temp, varT, Prec, varP), and (E and F) physical variables only (Area, Dist, SLMP, GMMC, Elev). Colors are calculated as mean RGB values of all constituent islands
of each cluster based on the corresponding PCA colors in Fig. 2. Points were plotted in decreasing order of Area. Circles in B, D, and F indicate variable
characteristics within clusters: circle, arithmetic mean; shaded ring, SD. Abbreviations follow SI Materials and Methods. Spec indicates predicted vascular plant
species richness.
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Fig. S5. Ecoregions derived from PAM clustering using weighted PCA axes (Euclidean distance) calculated for 17,883 islands >1 km2 worldwide. Each map in
A–H refers to one cluster (I-VIII) in Fig. 4. PCA was based on eight environmental variables (Dist, SLMP, GMMC, Temp, varT, CCVT, Prec, varP), excluding Area
and Elev. Abbreviations follow SI Materials and Methods. Colors are calculated as mean red–green–blue (RGB) values of all constituent islands of each cluster
based on the PCA colors in Fig. 2E.
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Fig. S6. UPGMA clustering using weighted PCA axes (Euclidean distance) based on (A–C) all 10 variables, (D–F) all variables but Area and Elev, (G–I) con-
temporary bioclimatic variables only (Temp, varT, Prec, varP), and (J–L) physical variables only (Area, Dist, SLMP, GMMC, Elev). Colors are calculated as mean
RGB values of all constituent islands of each cluster based on the corresponding PCA colors in Fig. 2. Points were plotted in decreasing order of Area. Circles in
C, F, I, and L indicate variable characteristics within clusters: circle, arithmetic mean; shaded ring, SD. Abbreviations follow SI Materials and Methods. Spec
indicates predicted vascular plant species richness.

Fig. S7. Predicted pattern of species richness for vascular plants on 17,883 islands >1 km2 worldwide based on model averaging of generalized additive
models (A–C), and generalized linear models (D–F). A and D show the predicted species richness values, with circles plotted in order of increasing species
richness and embedded histograms providing an impression of the distribution of predicted richness on a logarithmic scale [log10(species richness + 1)]. B and E
show residual species richness for the islands included in the training dataset (side plots provide biplots of observed vs. predicted values and corresponding
pseudo-R2 values). C and F show SEs of the richness predictions. In B, C, E, and F, values are plotted in order of decreasing frequency to show rare values on top
of frequent values if points overlap. Both residuals and SEs were backtransformed [as log10 (species richness + 1) was the modeled response variable] to
represent actual species numbers.
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Table S1. Summary statistics of 10 bioclimatic and physical variables for 17,883 islands >1 km2

worldwide (untransformed)

Statistic Area Dist SLMP GMMC Elev Temp varT Prec varP CCVT

Min 1.00 0.00 0.12 0.00 0.00 −210.00 53.00 0.00 0.00 0.00
Mean 428.99 441.64 1.11 0.74 98.24 113.56 229.98 1,446.61 46.77 35.71
Median 4.08 50.84 1.17 1.00 13.00 111.00 196.00 1,191.00 40.00 15.71
Max 773,633.97 6,067.08 2.17 1.00 4,613.00 314.00 613.00 7,628.00 193.00 168.57
SD 11,372.76 811.98 0.41 0.44 251.19 146.57 127.35 1,152.59 29.26 37.68
Moran’s I 0.00 0.94 0.70 0.58 0.10 0.99 0.92 0.75 0.78 0.82
Unit km2 km — Yes/No m °C °C mm — m/y

Abbreviations follow SI Materials and Methods. All Moran’s I values are significant at P < 0.001 except for
area (P = 0.433).

Table S2. Matrix of Pearson correlation coefficients among 10 bioclimatic and physical variables for 17,883 islands
>1 km2

Area Elev Temp varT Prec varP CCVT GMMC Dist SLMP

Elev 0.618***
Temp 0.064 0.048
varT −0.111** −0.182* −0.835**
Prec 0.126*** 0.226*** 0.583* −0.692**
varP −0.027 −0.119** 0.219 0.090 −0.126
CCVT −0.326*** −0.312*** −0.633* 0.635* −0.533* −0.216
GMMC −0.101*** −0.048 −0.150 0.288** −0.059 0.131* 0.264**
Dist 0.141*** 0.126** 0.120 −0.334* 0.170 −0.259** −0.230 −0.685***
SLMP −0.115*** −0.191*** −0.431 0.590** −0.393* 0.225* 0.486* 0.583*** −0.658***
Age 0.049 −0.248* 0.195* −0.209* −0.182 0.203* 0.140 — −0.416*** 0.381***

Correlations with geologic age could only be calculated for a subset of 102 volcanic islands. A correlation coefficient between island
age and GMMC is not given because age was only assessed for islands not connected to the mainland during the last glacial maximum.
Correlation coefficients and significances were corrected for spatial autocorrelation: ***P < 0.001, **P < 0.01, *P < 0.05. Abbreviations
follow SI Materials and Methods.
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Table S3. Axis scores of variables used in PCAs calculated for 17,883 islands >1 km2 worldwide
and axis eigenvalues, based on (A) all 10 bioclimatic and physical variables, (B) all variables but
Area and Elev, (C) contemporary bioclimatic variables only, and (D) physical variables only

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

A
Area −0.165 0.014 −0.664 0.160 −0.598 0.205 −0.021 0.239 0.211 0.062
Elev −0.185 0.013 −0.660 −0.059 0.501 −0.351 −0.232 −0.288 −0.087 −0.087
Temp −0.374 −0.372 0.211 0.027 −0.315 −0.330 −0.251 −0.014 −0.018 −0.636
varT 0.441 0.177 −0.152 0.187 0.207 0.245 0.207 0.089 0.195 −0.724
Prec −0.354 −0.247 0.025 −0.416 0.224 0.675 −0.128 −0.155 0.298 −0.072
varP 0.051 −0.423 0.072 0.744 0.261 0.134 −0.314 0.060 0.184 0.192
GMMC 0.268 −0.458 −0.142 −0.361 0.168 −0.066 −0.085 0.699 −0.199 0.022
Dist −0.294 0.498 0.084 0.150 0.109 0.284 −0.417 0.350 −0.484 −0.115
SLMP 0.403 −0.265 −0.125 −0.021 −0.266 0.302 −0.201 −0.461 −0.579 −0.042
CCVT 0.394 0.248 0.083 −0.234 −0.139 −0.129 −0.710 −0.039 0.423 0.046
Eigenvalue 3.895 1.800 1.547 1.050 0.395 0.363 0.323 0.307 0.227 0.093

B
Temp −0.397 0.368 −0.044 0.546 −0.032 −0.006 0.096 0.630
varT 0.460 −0.174 −0.176 −0.373 0.018 −0.053 −0.214 0.735
Prec −0.362 0.246 0.420 −0.403 0.580 0.156 −0.318 0.085
varP 0.046 0.422 −0.762 −0.031 0.363 −0.186 −0.175 −0.200
GMMC 0.282 0.461 0.372 −0.118 −0.037 −0.697 0.263 −0.011
Dist −0.303 −0.500 −0.153 −0.098 0.443 −0.335 0.552 0.110
SLMP 0.418 0.268 0.036 0.019 0.299 0.566 0.585 0.024
CCVT 0.390 −0.249 0.215 0.613 0.493 −0.139 −0.313 −0.054
Eigenvalue 3.748 1.800 1.037 0.413 0.346 0.318 0.242 0.097

C
Temp −0.583 0.261 −0.391 −0.663
varT 0.608 0.076 0.347 −0.710
Prec −0.539 −0.202 0.813 −0.085
varP −0.003 0.941 0.255 0.223
Eigenvalue 2.412 1.095 0.385 0.108

D
Area −0.250 0.657 0.477 0.519 −0.098
Elev −0.252 0.661 −0.400 −0.578 0.074
GMMC 0.524 0.257 −0.483 0.459 0.465
Dist −0.558 −0.202 0.099 0.046 0.798
SLMP 0.537 0.156 0.608 −0.430 0.364
Eigenvalue 2.397 1.512 0.465 0.330 0.295

Abbreviations follow SI Materials and Methods.
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Table S4. Summary statistics for clusters from PAM clustering using weighted PCA axes (Euclidean distance) based on (A) all 10
bioclimatic and physical variables, (B) all variables but Area and Elev, (C) contemporary bioclimatic variables only (Temp, varT, Prec, varP),
and (D) physical variables only (Area, Elev, Dist, SLMP, GMMC)

Variable I II III IV V VI VII VIII

A
Area 41 ± 217 44 ± 419 8 ± 17 4 ± 11 11 ± 28 124 ± 779 3,181 ± 32,250 24 ± 81
Dist 1,047 ± 328 132 ± 176 27 ± 73 73 ± 162 546 ± 473 1,486 ± 1,314 161 ± 297 35 ± 130
SLMP 1.23 ± 0.27 1.42 ± 0.27 1.44 ± 0.22 1.18 ± 0.26 0.86 ± 0.24 0.51 ± 0.2 1.08 ± 0.3 1.33 ± 0.27
GMMC 0 ± 0 0.99 ± 0.08 1 ± 0 0.99 ± 0.09 1 ± 0 0 ± 0 0.91 ± 0.29 0.96 ± 0.19
Elev 65 ± 139 40 ± 81 28 ± 49 20 ± 35 34 ± 56 145 ± 319 404 ± 466 22 ± 43
Temp −7.5 ± 7.2 −11.2 ± 3.8 3.8 ± 4.5 14.8 ± 6.8 22.5 ± 8 23.8 ± 6.4 11 ± 8.9 25.9 ± 3.5
varT 30.7 ± 8.9 44.3 ± 5.9 30.6 ± 6.3 22.6 ± 7 10.4 ± 2.6 11.1 ± 3.4 18.2 ± 7.2 17.3 ± 5.5
Prec 446 ± 398 260 ± 128 830 ± 354 1,374 ± 677 2,791 ± 965 2,036 ± 973 2,003 ± 1,138 1,692 ± 1,290
varP 34.3 ± 18 55.8 ± 13.2 24.4 ± 8.7 42.7 ± 19.7 31.3 ± 21.6 40.3 ± 21.6 34.9 ± 21 98.8 ± 23.9
CCVT 57.3 ± 21.12 62.61 ± 38.84 97.55 ± 27.38 34.63 ± 23.63 11.13 ± 7.27 7.73 ± 3.89 16.27 ± 16.95 9.76 ± 4.54
Spec 18 ± 26 25 ± 29 147 ± 107 212 ± 120 231 ± 168 188 ± 231 469 ± 690 287 ± 227

B
Area 438 ± 6197 649 ± 14,247 199 ± 5775 30 ± 302 1,334 ± 24,159 656 ± 11,894 90 ± 2,306 37 ± 174
Dist 1,036 ± 335 256 ± 183 34 ± 77 17 ± 48 418 ± 462 1,445 ± 1,309 86 ± 177 23 ± 81
SLMP 1.23 ± 0.27 1.23 ± 0.2 1.55 ± 0.23 1.44 ± 0.22 0.88 ± 0.25 0.52 ± 0.22 1.16 ± 0.28 1.35 ± 0.26
GMMC 0 ± 0 1 ± 0 1 ± 0.04 1 ± 0 1 ± 0 0 ± 0 0.99 ± 0.1 0.97 ± 0.17
Elev 113 ± 259 67 ± 151 29 ± 65 38 ± 89 162 ± 346 175 ± 392 98 ± 181 37 ± 96
Temp −7.3 ± 7.4 −8.4 ± 5 −11.9 ± 5 3.6 ± 4.9 20 ± 9.2 23.6 ± 6.6 13.8 ± 7 25.9 ± 3.1
varT 30.6 ± 9 39 ± 4.7 47.8 ± 4.8 30.7 ± 6.7 11.1 ± 2.9 11.3 ± 3.7 21.5 ± 6.4 17.3 ± 5.5
Prec 468 ± 418 382 ± 243 225 ± 153 834 ± 382 2,855 ± 971 2,011 ± 994 1,428 ± 702 1,730 ± 1,277
varP 33.9 ± 18.1 45.8 ± 13.3 62.8 ± 13.9 25.2 ± 9.1 31.3 ± 22.3 41.1 ± 22.6 40.6 ± 18.1 98.8 ± 23.7
CCVT 54.44 ± 22.75 87.35 ± 32.12 35.71 ± 21.59 97.01 ± 29.19 9.33 ± 5.47 7.65 ± 3.94 29.75 ± 21.37 9.57 ± 4.59
Spec 23 ± 39 31 ± 39 35 ± 51 151 ± 129 334 ± 550 216 ± 378 261 ± 189 314 ± 260

C
Area 321 ± 5939 431 ± 11,207 823 ± 23,872 169 ± 2743 711 ± 9,603 995 ± 19,228 72 ± 778 36 ± 187
Dist 144 ± 251 364 ± 467 310 ± 546 325 ± 602 161 ± 454 1,323 ± 1,298 251 ± 516 105 ± 291
SLMP 1.47 ± 0.24 1.36 ± 0.28 1.12 ± 0.39 1.19 ± 0.37 1.03 ± 0.31 0.68 ± 0.35 0.99 ± 0.37 1.27 ± 0.34
GMMC 0.87 ± 0.34 0.78 ± 0.41 0.82 ± 0.39 0.78 ± 0.41 0.93 ± 0.26 0.44 ± 0.5 0.67 ± 0.47 0.86 ± 0.34
Elev 35 ± 79 75 ± 180 81 ± 253 95 ± 232 219 ± 324 130 ± 353 83 ± 222 42 ± 130
Temp −14.2 ± 2.5 −7.5 ± 4.6 26.7 ± 0.8 6.4 ± 5.8 8.2 ± 2.7 26.6 ± 1.1 21.9 ± 5.2 25 ± 4.4
varT 48.2 ± 4 38.1 ± 4.7 12.5 ± 3.5 24.5 ± 6.6 15.3 ± 3.9 9.3 ± 1.9 19.3 ± 6.9 19.3 ± 6.8
Prec 159 ± 64 377 ± 172 3,508 ± 957 978 ± 360 2,754 ± 849 2,559 ± 696 1,112 ± 527 1,057 ± 648
varP 66.2 ± 10 40.1 ± 11.3 83.9 ± 20 23.2 ± 7.9 25.2 ± 12.8 29.8 ± 11.7 59.4 ± 12.4 108.6 ± 19.7
CCVT 38.86 ± 22.77 79.63 ± 35.52 6.54 ± 3.13 61.72 ± 41.83 24.73 ± 25.94 7.46 ± 3.45 18.97 ± 16.39 12.3 ± 8.79
Spec 19 ± 20 36 ± 41 411 ± 506 177 ± 178 247 ± 279 294 ± 519 254 ± 210 254 ± 207

D
Area 9 ± 42 3 ± 4 7 ± 7 3 ± 4 5 ± 6 1,817 ± 18,540 2,787 ± 32,024 17 ± 26
Dist 978 ± 403 5 ± 7 316 ± 359 332 ± 365 1,575 ± 1,437 1,191 ± 946 179 ± 296 11 ± 17
SLMP 1.22 ± 0.24 1.41 ± 0.25 0.98 ± 0.26 1.07 ± 0.3 0.49 ± 0.18 0.68 ± 0.36 1.1 ± 0.3 1.43 ± 0.24
GMMC 0 ± 0 1 ± 0 1 ± 0.06 1 ± 0 0 ± 0.02 0 ± 0 1 ± 0.02 1 ± 0.04
Elev 5 ± 15 5 ± 5 80 ± 82 4 ± 4 17 ± 26 466 ± 512 369 ± 410 54 ± 71
Temp −0.4 ± 14.3 10.2 ± 14.5 11.7 ± 13.4 8.6 ± 15.9 23.5 ± 7.6 15.1 ± 15.1 10.9 ± 12.6 9.2 ± 13.7
varT 27.1 ± 10.2 28.7 ± 12.5 20.1 ± 11.4 24.5 ± 13.9 11.3 ± 4.2 16.7 ± 10.3 20.9 ± 11.1 27.3 ± 12.2
Prec 676 ± 656 1,074 ± 991 1,858 ± 1,250 1,428 ± 1,201 1,915 ± 953 1,749 ± 1,222 1,842 ± 1,275 1,237 ± 1,024
varP 41.3 ± 24.9 56.1 ± 34 41.6 ± 25.6 42.5 ± 25.4 40 ± 21.4 39.6 ± 24.1 42 ± 28 54.1 ± 31.8
CCVT 50.61 ± 25.42 48.21 ± 43.15 34.94 ± 36.06 47.91 ± 42.15 10.89 ± 12.97 11.4 ± 15.28 19.36 ± 22.16 43.79 ± 40.19
Spec 43 ± 65 144 ± 112 177 ± 136 110 ± 92 102 ± 61 335 ± 536 512 ± 675 241 ± 205

Abbreviations follow SI Materials and Methods. Spec indicates predicted vascular plant species richness. Note that cluster numbers in A to D do not
correspond to each other but refer to Fig. 4 and Fig. S5 for B and to Fig. S4 for A, C, and D.
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Table S5. Variable importance of all 10 bioclimatic and physical
variables, mainland plant species richness and interaction terms
for vascular plant species richness on 475 islands >1 km2

worldwide

Variable GAM GLM

Area 1.00 1.00
Dist 0.83 1.00
SLMP 1.00 1.00
GMMC 0.74 0.39
Elev 0.56 0.30
Temp 1.00 1.00
varT 0.30 0.26
CCVT 0.31 0.39
Prec 1.00 1.00
varP 0.27 0.27
SRML 0.33 1.00
Area:Temp 0.97 0.96
Prec:Temp 0.29 0.87
Dist:Area 0.70 0.67
Dist:SRML 0.13 1.00

Variable importance was assessed as cumulative AICc weights based on
multimodel inference for generalized additive models (GAMs) and general-
ized linear models (GLMs). In addition to the here listed variables, all candi-
date GAMs included an isotropic smooth of Lat and Long on a sphere to
account for spatial patterns. Abbreviations follow SI Materials and Methods.

Other Supporting Information Files

Dataset S1 (CSV)
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