Supporting Information

Thomas et al. 10.1073/pnas.1308115110

Fig. S1. (*A*) The relationship between estimates of US SO₂ emissions (million metric tons) and SO₄ deposition (kg·ha⁻¹) between 1979 and 2008. (*B*) The relationship between US NO_x emissions (million metric tons) and NO₃ deposition (kg·ha⁻¹) between 1979 and 2008. Both SO₄ and NO₃ are wet deposition measurements from the National Atmospheric Deposition Program Monitoring Location, Parsons WV18, Tucker County, WV, which began in 1979 (1). US SO₂ emissions are taken from refs. 2 and 3.

1. National Atmospheric Deposition Program (NRSP-3) 2013. NADP Program Office, Illinois State Water Survey. Available at http://nadp.sws.uiuc.edu/sites/siteinfo.asp?net=NTN&id=WV18.

2. Lefohn AS, Husar JD, Husar RB (1999) Estimating historical anthropogenic global sulfur emission patterns for the period 1850–1990. Atmos Environ 33(21):3435–3444.

3. US Environmental Protection Agency (2012) National Emissions Inventory (NEI) Air Pollution Emissions. Available: www.epa.gov/ttn/chief/trends/index.html. Accessed September 8, 2012.

Fig. S2. Temporal trends of (*A*) the ratio of internal leaf CO₂ concentration to atmospheric CO₂ concentration. (C_r/C_a) derived from $\Delta^{13}C$ from tree rings of Juniperus virginiana and (*B*) C_i derived from C_r/C_a and C_a . Values of C_a were taken from refs. 1 and 2.

 Keeling RF, Piper SC, Bollenbacher AF, Walker JS (2009) Atmospheric CO₂ records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN). Available at http://cdiac.ornl.gov/trends/co2/sio-mlo.html.

^{1.} Etheridge DM, et al. (1998) Historical CO₂ records from the Law Dome DE08, DE08-2, and DSS ice cores. *Trends: A Compendium of Data on Global Change* (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN). Available at http://cdiac.ornl.gov/trends/co2/lawdome.html.

Fig. S3. Temporal trends of US emissions of sulfur dioxide (blue line) and nitrogen oxides (red line) (1, 2). The vertical dotted blue line at 1982 represents the year predicted from a third-order polynomial where the shift in Δ^{13} C occurs in the *Juniperus virginiana* tree rings (Fig. 2*B*).

1. Lefohn AS, Husar JD, Husar RB (1999) Estimating historical anthropogenic global sulfur emission patterns for the period 1850-1990. Atmos Environ 33(21):3435-3444.

2. US Environmental Protection Agency (2012) National Emissions Inventory (NEI) Air Pollution Emissions (US Environmental Protection Agency, Chicago). Available at www.epa.gov/ttn/chief/trends/index.html. Accessed September 8, 2012.

Fig. S4. Temporal trends in climate factors, including (A) growing season temperature (y = 0.003x + 12.35; $r^2 = 0.022$, P < 0.142), (B) yearly temperature (y = 0.004x + 3.80; $r^2 = 0.037$, P < 0.057), (C) growing season precipitation (y = 0.030x - 14.55; $r^2 = 0.010$, P < 0.315), and (D) yearly precipitation (y = 0.124x - 151.56; $r^2 = 0.063$, P < 0.012). Climate data are from West Virginia District 6, which is the region that contains the *J. virginiana* stand in this study (1).

1. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (2012) West Virginia Climate Region 6 Meteorological Data 1895–2009 (NOAA, Asheville, NC). Available at www.ncdc.noaa.gov/temp-and-precip/time-series/index.php?parameter=tmp&month=4&year=2008&filter=12&state=46&div=6.

Fig. S5. Comparison of temporal trends of (A) δ¹³C, (B) C/C_a, (C) C_i, and (D) intrinsic water-use efficiency (iWUE) of J. virginiana during 1930–1940 and after 1980.

Fig. S6. The relationship between basal area increment of J. virginiana with US SO₂ emissions from 1930 to 1940. US SO₂ emissions are taken from ref. 1.

1. Lefohn AS, Husar JD, Husar RB (1999) Estimating historical anthropogenic global sulfur emission patterns for the period 1850-1990. Atmos Environ 33(21):3435-3444.

Fig. S7. Relationships after 1980 between simulated seasonally integrated photosynthesis with atmospheric CO₂ concentrations (A) and US SO₂ emissions (B). Relationships after 1980 between simulated seasonally integrated stomatal conductance to CO₂ with atmospheric CO₂ concentrations (C) and US SO₂ emissions (D). Atmospheric CO₂ concentrations were taken from (1) and US SO₂ emissions are taken from (2).

1. Keeling RF, Piper SC, Bollenbacher AF, Walker JS (2009) Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN). Available at http://cdiac.ornl.gov/trends/co2/sio-mlo.html. 2. US Environmental Protection Agency (2012) National Emissions Inventory (NEI) Air Pollution Emissions (US Environmental Protection Agency, Chicago). Available at

www.epa.gov/ttn/chief/trends/index.html. Accessed September 8, 2012.

Fig. S8. Comparison of seasonally integrated (A) photosynthesis and (B) stomatal conductance of J. virginiana during 1930–1940 and after 1980.

Fig. S9. Changes in stomatal conductance for *J. virginiana* from 1909 to 2008 due to the combined effects of increasing atmospheric CO_2 and acid deposition. Assuming that a complete recovery from acid deposition occurred between 1980 and 2008, the difference in stomatal conductance from 1909 to 2008 reflects the effect of CO_2 (18.5% reduction; dotted red line). Before 1980, the 35% reduction in stomatal conductance is partitioned between a 13% reduction caused by increased CO_2 and a 22% reduction attributable to acid deposition (35–13% = 22%).

Table S1.	Correlations between e	environmental factors	and the chronology	of Juniperus
virginiana	basal area increment us	sing Kendall's rank co	rrelation analysis	

Environmental factor	Kendall's rank correlation coefficient (τ)	Kendall's rank correlation <i>P</i> value
CO ₂ concentrations	0.7155	<0.0001
NO _x emissions	0.5860	<0.0001
SO ₂ emissions	-0.1843	0.0075
Temperature		
Year	0.1584	0.0233
April–August	0.0775	0.2667
Precipitation		
Year	0.1179	0.0871
April–August	0.0610	0.3761
PDSI		
Year	0.1254	0.0692
April–August	0.1309	0.0577

PNAS PNAS