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SI Materials and Methods
Modeling the Rate of Reproductive Isolation Evolution. Our general
inference framework is essentially a random-effects model, where
the random effects themselves are the key quantities of interest.
Given a species-specific velocity of reproductive isolation (RI)
evolution, ψ , we can define three functional models for the
evolution of RI with respect to genetic distance. In addition to
a simple linear model, we considered an asymptotic model and
a quadratic model. The asymptotic model allowed the rate of RI
accumulation to decelerate as a function of genetic distance, and
the quadratic model allowed for the possibility of an acceleration
in the rate of RI accumulation. For Drosophila, the asymptotic
prediction model for reproductive isolation (Y) for sympatric
pairs of species i and j is given by
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where β0,S and β1,S are the corresponding parameters for sym-
patric species pairs and X is the corresponding genetic distance.
Thus, the simplest version of the model for the Drosophila data-
sets, where all species have identical ψ values (ψ = 0), contains
five parameters: two shape parameters for sympatric and allo-
patric species pairs, respectively, plus the variance parameter for
the error distribution. For birds, the corresponding model con-
tained three parameters, because the data did not distinguish
between sympatric and allopatric species pairs. The same general
logic underlies our implementation of the linear and quadratic
functional models. For the special case with clade-specific ψ
values, all species within a particular clade are simply con-
strained to have identical ψ values. The full model, with a sepa-
rate ψ parameter for each species, accounts for statistical
nonindependence of observations (e.g., a given species may be
represented by multiple crosses). However, we generally found
that clade-specific models outperformed models with species-
specific ψ values as well as models with ψ = 0 (with the exception
of Drosophila premating isolation).
We used a censored model to estimate species-specific and

clade-specific values of ψ , such that 0 ≤ Y ≤ 1.0. This enables us
to account for the contribution of ψ values to total reproductive
isolation in fully probabilistic framework. In the censored model,
the likelihood of the model parameters given the data are given by

LðθjDÞ= ∏
y∈L

FðyL = 0Þ ∏
y∈U

½1−FðyU = 1Þ� ∏
y∉L;U

f ðyÞ;

where yL and yU are the lower and upper observable values (0
and 1), and f(...) and F(...) are the probability density functions
and cumulative distribution functions for each observation as
specified by parameters β0, β1, ψ , and «.
We implemented the models described above and in the main

text in a Bayesian framework. The posterior distribution of the
parameters given the data D can be written as

f ðβ;ψ ; θjDÞ∝ f ðDjβ;ψ ; θÞf ðβÞf ðψÞf ðθÞ;

where β and θ denote shape and error parameters for the model
and ψ denotes species or clade-specific factors that affect the
rate at which RI evolves. We specified a normal (μ = 0, σ = 1)
prior on the distribution of species- and clade-specific ψ values,

to reflect our belief that these values should, on average, be
equal to zero. From the perspective of our analyses, the variance
of the prior distribution on ψ is largely irrelevant: We are con-
cerned with the relative rates of evolution of RI for individual
species or clades. We also placed normal (μ = 0, σ = 1) priors on
all β0 parameters, and normal (μ = 0, σ = 5) priors on β1 param-
eters. Finally, we assumed a lognormal prior on the error vari-
ance with a log-transformed mean of −1 and a log SD of 1.
All models were analyzed by simulating the joint posterior

density of model parameters using Markov chain Monte Carlo
(MCMC). For our MCMC implementation, all unbounded
parameters (β and ψ) were updated using a sliding window
proposal mechanism. The sliding window proposal involves the
addition of a small uniformly distributed (−U, +U) random
variable to the current value of a particular parameter, where U
is a tuning parameter that can be arbitrarily changed to facilitate
efficient simulation of the posterior. The proposal ratio for the
uniform sliding window proposal is 1.0. The error variance θ was
updated using a proportional shrinking-expanding mechanism
(1), such that a proposal involved choosing a new parameter
value as

θ’= θV = θezðr−0:5Þ;

where z is a tuning parameter and r is sampled from a uniform
(0, 1) distribution. The proposal ratio for this update is V.
MCMC simulations were performed multiple times using a range
of starting values to ensure that posterior distributions for pa-
rameters and marginal likelihood estimates converged on similar
values. All MCMC chains were run for 20 million generations,
updating β, ψ , and « parameters with relative frequency 50:1:1.
Convergence and appropriate burn-in thresholds were estimated
from simulation output by computing the effective sample sizes
for each parameter using the CODA library for the R program-
ming environment.
For models with clade-specific rates of RI evolution, we nu-

merically maximized the posterior probability of the data using
standard numerical methods for optimization. This provided a
direct estimate of the parameter set with the maximum a poste-
riori (MAP) probability. This approach was not feasible for
models with species-specific ψ values, owing to the large number
of parameters in the model. All results presented in the text for
clade-specific models used MAP parameter estimates optimized
in this fashion, but credible intervals on parameters (e.g., Fig. 3)
were derived from the marginal posterior densities for each
parameter simulated using MCMC. For each model with clade-
specific ψ values, we estimated MAP parameter values from
2,000 independent optimizations using randomly sampled start-
ing parameters.

Drosophila Diversification Rates. Using the BEAST-derived esti-
mates of crown-clade age, we computed estimators of net spe-
ciation rates (2) under relative extinction rates of 0 and 0.95.
These estimators make the strong assumption that speciation
rates have been constant through time and have been shown to
perform poorly in many real datasets when age and species
richness are decoupled (3–6). Within the full set of nine Dro-
sophila clades, (log-transformed) species richness and clade age
are not significantly correlated (rp = 0.33, P = 0.39; rs = 0.49, rs =
0.18). However, this lack of relationship is largely attributable to
the inclusion of the Hawaiian Drosophila radiation, which is a
clear outlier in species richness (n > 1,000). When this young but
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exceptionally species-rich radiation is excluded, crown clade age
is significantly correlated with log-transformed species richness
(rp = 0.73, P = 0.041; rs = 0.72, P = 0.045). This suggests that
crown-based estimators of speciation rates provide some in-
formation about the underlying dynamics of speciation in major
Drosophila clades. We used crown clade estimators of net di-
versification because our taxon sampling generally included most
or all representatives of subsubgroups within each of the nine
focal clades.
“ananassae” clade. Our sampling includes representatives of main
complexes, ananassae (ananassae) plus bipectinata (bipectinata),
as well as Drosophila ercepeae.
“melanogaster” clade. We included representatives of the major
subgroups: ficusphila (ficusphila), takahashii (takahashii), suzukii
(lucipennis), melanogaster (melanogaster and all other species),
eugracilis (eugracilis), and elegans (elegans). Our analyses re-
covered these groups as sister lineages to the core eight species
of the melanogaster species group. This result is consistent with
Flybase taxonomy (www.flybase.org) and systematic studies (7).
“montium” clade. Our analyses included representatives of serrata
(serrata), auraria (auraria), kikkawai (kikkawai), and bakoue
(tsacasi) groups.
“willistoni” clade.Drosophila nebulosa and Drosophila willistoni are
believed to span crown for D. willistoni species group (based on
the Flybase taxonomy). These are representatives from the bo-
cainensis subgroup and willistoni subgroup).
“obscura” clade. We included one member of each of the three
main subgroups that seem to span the crown (obscura, affinis,and
pseudoobscura).
“virilis” clade. We included representatives from each of the two
main subgroups: montana (Drosophila montana) and virilis
(Drosophila virilis).
Hawaii clade. We included five representatives from the Hawaiian
Drosophila radiation in our analyses. These representatives span
the core Hawaiian radiation in Van der Linde et al. (8). Previous
studies have supported themonophyly of theHawaiian radiation (9).
“repleta” clade. We included representatives from the four major
subclades within this group: hydei (Drosophila hydei), mulleri
(Drosophila mulleri), repleta (Drosophila repleta), and mercatorum
(Drosophila mercatorum).
immigrans. Drosophila hypocausta and Drosophila immigrans seem
to span the crown of this diverse clade (10) and are included in
our analysis (along with three other species).
Species richness estimates for each clade were taken from

several literature sources (10–12). For phylogenetic general-
ized least-squares (PGLS) analyses involving Drosophila, we
pruned the Drosophila maximum clade credibility (MCC) tree
to include only representatives from each of the nine major
clades described above. We fixed the terminal branch lengths
for each clade to be equal to one-half of the stem-clade age for
each group.

Avian Phylogeny and Speciation Rates.We used two phylogenies as
a framework for estimating speciation rates in birds, as well as for
PGLS analyses reported in the main text (Table 1). Both are
derived from the Jetz et al. (13) time-calibrated phylogeny for all
birds. We analyzed the MCC trees for both the Hackett et al.
(14) and Ericson (15) backbone trees used by Jetz et al. (13).
These trees contained only the 6,670 species for which genetic
data were available; hence, we did not include those species
whose phylogenetic positions were estimated from taxonomic
information alone (13).
To estimate branch-specific rates of speciation in birds, we

applied a new Bayesian method [Bayesian Analysis of Macro-
evolutionary Mixtures (BAMM)] for the analysis of speciation
and extinction rates to the time-calibrated avian phylogeny from
Jetz et al. (13). The method (16) uses reversible-jump MCMC to
move between model subspaces that vary in the number of dis-

tinct diversification regimes. The BAMM model assumes that
a given phylogeny has been shaped by a mixture of distinct,
potentially time-varying processes of diversification. The model
proposes that “events,” or rate shifts, are added to or removed
from the phylogeny according to a compound Poisson process.
The occurrence of an event on a particular branch ve defines an
“event subtree” τe: All nodes and branches descended from ve
inherit the collection of evolutionary processes Φ1 (defined by
the event at ve), until the event is terminated. An event termi-
nates at terminal branches, or at the next downstream event.
Speciation rates within each event were modeled as

λðtÞ= λ0ekt;

where t is the elapsed time from the initial occurrence of the
event, λ0 is the initial speciation rate, and k is the rate at which
the speciation rate changes through time. Extinction rates (μ)
were assumed to be constant in time within a given event sub-
tree. Each event subtree τe is thus associated with three param-
eters: λ, k, and μ. A full description of the model and likelihood
calculations when rates are constant through time within each
event subtree is given in Rabosky et al. (16).
We implemented the model in a Bayesian framework, in-

tegrating over prior distributions to obtain marginal distributions
of evolutionary rates for each branch in the avian tree. Under
a compound Poisson process, the number of events on the tree is
a Poisson-distributed random variable that occurs with rate Λ.
These events can change position, can be deleted from the tree,
and occur on any branch with probability proportional to the
length of the branch. There is no upper bound on the number of
events, because multiple events can occur on each branch. The
full model contains the following parameters: (i) Λ, the overall
event rate Λ; (ii) the root rates λR, μR, and kR; and (iii) λ, μ, and k
and location parameters for each event. The BAMM model
implements the Metropolis–Hastings–Green algorithm (17) to
construct a Markov chain that allowed movement between
model spaces of different dimensionality, as occurs when events
are added to or deleted from the tree.
When an event was added to the tree, all branches and nodes

downstream of the new event “belong” to the event, and they are
governed by the evolutionary rates [e.g., Φ1 = (λ1, μ1, k1)] asso-
ciated with the event. The addition of a new event on some
subtree would result in a new collection of processes or rates
(Φ1). Following the proposal of a new event, new rate parame-
ters were sampled from prior distributions for λ, μ, and k. This
leads to a Jacobian matrix with an absolute value of 1 for the
bijection between a state with N events and a state with N + 1
events. Likewise, deletion of an event collapses rates on all
branches governed by a given event to the rates associated with
the parent event. In the preceding example, deletion of the single
event would involve setting all branches/nodes governed by Φ1 to
the parent process at the root (ΦR). A tree with 0 events is
governed strictly by the evolutionary processes at the root and
would only contain three parameters in the current model for-
mulation (λR, μR, kR). There is no upper bound on the number of
events, because multiple events can occur on each branch. The
Jacobian for transdimensional moves (additions and deletions) is
1; all proposal ratios are described previously (16, 18).
In summary, the BAMM model assumes that changes in

evolutionary regimes occur across the branches of phylogenetic
trees under a compound Poisson process model of rate variation
and explicitly allows rates to vary both through time and among
lineages. We placed a prior expectation of 0.5 events on the avian
tree. With this prior expectation, the 95% credible interval on the
number of events was 20–24. We computed the mean of the
posterior distribution of speciation rates across each branch in
the full avian tree. We used these branch-specific speciation rate
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estimates in all subsequent analyses and to compute mean rates
of speciation for each family of birds in our analyses.
We also predicted that the maximum speciation rates within

clades might be more likely to respond to variation in ψ . If species
richness within clades is regulated by ecological or other extrinsic
factors, then simple “constant rate” estimators of speciation
might not reflect the true tempo of speciation (6, 19). Thus, for
birds, we also considered the maximum observed speciation rate
within clades, predicting that maximum speciation rates would
be more likely to reflect the intrinsic speciation potential of
clades and be less likely to show evidence for ecological damp-
ening, as predicted under diversity-dependent models of clado-
genesis (20–25). Finally, to reduce the sensitivity of our family-
level analyses to errors in estimating maximum speciation rates,
we estimated the 0.80 quantile of the distribution of rates within
each family. This metric, λq80, should also reflect the intrinsic
potential for speciation of a given clade while reducing the effect
of ecological dampening on overall clade-specific rates of spe-
ciation.

Power Simulations.We conducted a series of simulations to assess
whether our analyses would have had sufficient power to detect
a true correlation between ψ and the rate of speciation. We
simulated datasets with a known correlation between the rate of
speciation and ψ and used these ψ values to generate pseudo-
datasets that were structurally identical to the actual data.
The first step of our simulation protocol was to generate a dis-

tribution of ψ values and speciation rates with a particular cor-
relation. It is straightforward to generate bivariate normal data
with a fixed Pearson correlation rp. However, this is more difficult
for nonnormal data. In the present example, speciation rate esti-
mates across clades do not follow a normal distribution. For
Drosophila, the distribution of λ0 is better fit by a lognormal dis-
tribution than a normal distribution [Akaike information criterion
(AIC), lognormal = 42.4; AIC, normal distribution = 46.8]. The
lognormal also fits speciation rates better across avian families (for
the Hackett λ: AIC, lognormal: −51.8; AIC, normal = −46.7).
Hence, our protocol involved drawing bivariate normal data with
a fixed correlation structure, then mapping those values onto
distributions of ψ and speciation that were consistent with the
observed data. Finally, we reestimated the correlation between ψ
and speciation, because the correlation coefficient is not invariant
under such transformation.
For each dataset, a single simulation consisted of the following

procedure. We first sampled random deviates for each clade
(n = 9 for Drosophila; n = 30 for birds) from a bivariate normal
(mean = 0; SD = 1.0) distribution with fixed correlation rp,
where rp was sampled from a uniform (0.25, 1.0) distribution.
This gives a simulated draw of speciation and ψ for each clade,
but the values are on a scale that is dissimilar to that of the true
data. We scaled the vector of simulated ψ values to have a vari-
ance identical to the observed distribution of ψ values across
clades. We then mapped the vector of simulated speciation rates
onto a lognormal distribution that was identical in shape and
variance to the observed distribution. To do so, we first con-
verted all simulated speciation rates (standard normal deviates,
at this point) to quantiles of the standard normal distribution.
We then found the corresponding expected values of those
quantiles from a lognormal distribution that was parameterized
to the observed distribution of speciation rates for each group.
We then recomputed the Pearson correlation between the spe-
ciation rate and ψ . We recorded this value as the “true” un-
derlying correlation between speciation and ψ .
Each dataset simulated in this fashion was then used to gen-

erate a pseudodataset of RI. Using clade-specific (simulated)
values of ψ and the MAP estimated error variance, we simulated
a new dataset that contained exactly the same number of crosses
per clade as the observed data. To be clear, each simulated

observation also contained a noise term drawn from an error
distribution with variance identical to the one estimated for the
real dataset. We then estimated clade-specific ψ values from
each simulated dataset. Finally, we computed the correlation
between the estimated ψ values and (fixed) speciation rates for
the simulated data. We performed these power simulations un-
der a linear model for the two postzygotic datasets and the as-
ymptotic model for the premating dataset, owing to the poor fit
of the linear model in the case of Drosophila premating isolation.
Results are shown in Fig. S6 (left column) and indicate that
power to detect a true correlation between ψ and speciation is at
least moderate for both postzygotic datasets.
The preceding analyses are designed to address the following:

Given a true (known) correlation between ψ and the rate of
speciation, what distribution of P values would we expect to
observe, given the structure of the data? These simulations also
enable us to ask a complementary question: Given the predicted
distribution of correlation coefficients for a given simulation
parameterization, how plausible are the observed values? Given
a generating model with true correlation coefficient ρ = x, we are
interested in the probability of obtaining our observed correla-
tion y, or Pr (y j ρ = x). For example, all of our estimated Pearson
and Spearman correlation coefficients for the Drosophila post-
zygotic dataset were negative but nonsignificant. One in-
terpretation of Fig. S6 is that we should have had only low to
moderate power to obtain a significant result at the α = 0.05 level
if the true Pearson correlation between ψ and the rate of spe-
ciation was 0.50 or less. Using our simulation results described
above, we estimated the one-tailed probability of the observed
correlation coefficients under a model with a true positive cor-
relation between ψ and speciation.
Our results indicate that, for postzygotic isolation in both

Drosophila and birds, the observed correlation coefficients (both
Pearson and Spearman) are generally too low relative to the
distributions predicted if a true positive correlation existed (Fig.
S6, right column). For postzygotic isolation in Drosophila, the
observed negative correlations between ψ and speciation rate are
unlikely under all correlational scenarios examined. The proba-
bility of obtaining a Pearson correlation equal to −0.31 (the
observed value for both λ0 and λ95) if the true correlation is 0.40
is less than 0.01. Similar results were obtained for birds, such that
the probability of the observed correlations was also low under
a model with a true positive correlation. For prezygotic isolation
in Drosophila, the observed correlation coefficients would have
been plausible under a broad range of true correlations, con-
sistent with low overall power for this dataset. In summary, at
least for postzygotic isolation, we would have had only low to
moderate power to detect a true correlation between speciation
and ψ , if this correlation was not strong. However, our observed
correlations are generally lower than we would expect if there
was a substantial (positive) correlation between ψ and speciation.
The interpretation of these simulations should be treated

provisionally for several reasons. First, our simulation protocol
tests whether error in and/or the structure of the RI data could
have obscured a true relationship between ψ and the speciation
rate. As such, it ignores other forms of error that may have
influenced the reconstructed correlation between these param-
eters. Second, we have no information about “reasonable” values
for the correlation between speciation rates and ψ . If the rate at
which RI evolves is the dominant control on macroevolutionary
speciation dynamics, then we would expect this correlation to be
strong. However, many other factors might affect this relation-
ship and we can at best provide some insight into the possible
range of correlations between ψ and λ that would have been
likely to leave a signal in the data. Finally, we lack an appro-
priate model for generating speciation rates under a particular
correlation structure with ψ . In the simulations described above,
we sampled clade-specific speciation rates from a distribution
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with variance identical to the observed (estimated) rates for
clades, but it is possible that other models might be more

appropriate and/or lead to higher or lower power than that which
we report here.
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Fig. S1. Posterior distributions of log-likelihoods from Markov chain Monte-Carlo analysis of models for the evolution of reproductive isolation as a function
of genetic distance. Each column shows the results of fitting models to a different dataset (Left, Drosophila, premating RI; Center, Drosophila, postzygotic RI;
Right, birds, postzygotic RI). Each panel corresponds to a particular model parameterization with respect to ψ , the species-specific or clade-specific velocity
parameter for the rate of evolution of RI (top row, ψ = 0; middle row, clade-specific ψ values; bottom row, species-specific ψ values). Histograms give the
posterior distribution of log-likelihoods for each of three functional models for the accumulation of RI under each ψ parameterization (green, quadratic or
“snowball” model; red, asymptotic model; blue, linear model). Colored symbols denote mean posterior log-likelihoods for each distribution (red squares,
asymptotic; green circles, quadratic; blue triangles, linear). The number of parameters in each model is given by np. Table S1 shows comparison of corre-
sponding AICM scores for each model.
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Fig. S2. Accumulation of premating (Right) and postzygotic (Left) reproductive isolation in Drosophila for sympatric (red) and allopatric (blue) species pairs.
Lines show the corresponding model-predicted values under the best-fit model for each dataset (premating, asymptotic; postzygotic, linear). Black and gray
lines denote predictions for sympatric and allopatric pairs, respectively. All models assumed censoring of RI observations outside of the [0, 1] range.
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Fig. S3. Maximum clade credibility tree for 94 Drosophila species from BEAST analysis, showing the nine major clades for which clade-specific ψ values were
estimated. Black circles on interior nodes denote Bayesian posterior probabilities >0.95.
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Fig. S4. Pruned MCC trees used for PGLS analyses of avian families. (Upper) Hackett backbone tree. (Lower) Ericson backbone tree. Length of terminal
branches was set equal to 50% of the stem clade age for each family.
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Fig. S5. “Hackett” tree with branch-specific estimates of speciation rates across 6,670 extant bird species from BAMM analysis. Red, gray, and blue denote
fast, intermediate, and slow speciation rates, respectively. Horizontal bars to right of tree denote corresponding species-specific estimates of ψ , using the same
color scheme. If ψ and speciation rates are correlated, then clades with fast speciation (red) should tend to have an excess of fast (red) ψ values. No such pattern
occurs in the data (see also Fig. 4).
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Fig. S6. Power to detect a true correlation between speciation and the rate of evolution of reproductive isolation for each dataset. The x-axis shows the true
(Pearson) correlation between the speciation rate and clade-specific values of ψ in simulated datasets with the same error structure. (A, left column) The y-axis
shows estimated minimum P value (Pearson or Spearman) for the correlation after numerically finding MAP estimates for clade-specific ψ values for each
simulated dataset. (B, right column) One-tailed probability of the observed correlation coefficients between ψ and speciation for all three datasets, assuming
a true positive relationship. Black and white circles denote results for Pearson and Spearman correlation coefficients, respectively. For postzygotic isolation in
Drosophila and birds, the observed correlation coefficients (e.g., Table 1) are generally inconsistent with the possibility that ψ and speciation are substantially
correlated. Power to detect an effect is low for the Drosophila premating dataset, where no significant difference in ψ values among clades was observed.
However, power is considerably greater for both postzygotic datasets. The estimated power curve (A) suggests that for moderate-to-high correlations between
speciation and ψ , statistical analyses should have trended toward significance. Our empirical analyses show no such trend and the estimated correlation co-
efficients are not consistent with a true positive relationship (B). For Drosophila postzygotic isolation, the minimum observed (two-tailed) P value for the
Pearson correlation between ψ and any metric of speciation rate was 0.41, and the corresponding minimum Spearman P value was 0.39; moreover, the es-
timated correlation coefficient was actually negative for all speciation metrics and models (Table 1 and Table S3), despite the fact that we should have had
greatest power to detect a true effect for this dataset. For birds, the minimum observed Pearson P value across 18 statistical tests was 0.5 (mean P value 0.82),
and the minimum Spearman correlation was 0.23 (mean P value across 18 tests 0.55).

Rabosky and Matute www.pnas.org/cgi/content/short/1305529110 9 of 11

www.pnas.org/cgi/content/short/1305529110


Table S1. Relative fit of nine models for the accumulation of RI through time for three datasets

Group Model Type NP* AICM ΔAICM

Birds Asymptotic Clade 33 374 0
Birds Linear Clade 33 386 12
Birds Linear Full 247 404.9 30.9
Birds Asymptotic Full 247 405.4 31.4
Birds Quadratic Full 247 408.3 34.3
Birds Quadratic Clade 33 431 57
Birds Asymptotic ψ = 0 3 435.9 61.9
Birds Quadratic ψ = 0 3 475.1 101.1
Birds Linear ψ = 0 3 477.8 103.8
Drosophila (post) Linear Clade 14 203.9 0
Drosophila (post) Quadratic Clade 14 228.9 25
Drosophila (post) Asymptotic Clade 14 253.3 49.4
Drosophila (post) Quadratic Full 131 269.4 65.5
Drosophila (post) Quadratic ψ = 0 5 291.1 87.2
Drosophila (post) Linear ψ = 0 5 292.7 88.8
Drosophila (post) Asymptotic ψ = 0 5 295.1 91.2
Drosophila (post) Linear Full 131 310.3 106.4
Drosophila (post) Asymptotic Full 131 367.3 163.4
Drosophila (pre) Asymptotic Clade 14 69.4 0
Drosophila (pre) Asymptotic ψ = 0 5 70.4 1
Drosophila (pre) Linear ψ = 0 5 98.1 28.7
Drosophila (pre) Linear Clade 14 105.7 36.3
Drosophila (pre) Asymptotic Full 136 135.3 65.9
Drosophila (pre) Linear Full 136 171.1 101.7
Drosophila (pre) Quadratic ψ = 0 5 193.7 124.3
Drosophila (pre) Quadratic Clade 14 196.6 127.2
Drosophila (pre) Quadratic Full 136 250.1 180.7

The three datasets are birds, postzygotic; Drosophila, postzgotic; and Drosophila, premating. Each functional
model for the relationship between RI and genetic distance (asymptotic, linear, quadratic) was parameterized
with species-specific ψ values, clade-specific ψ values, and ψ = 0, for a total of nine fitted models per dataset. NP* is
the maximum number of parameters in each model. Because models were fitted in a hierarchical modeling
framework with prior distributions on parameters, the effective number of parameters in the model need not
correspond to this value. AICM values can be interpreted as approximate AIC scores. ΔAICM values indicate the
difference in ΔAICM scores between each model and the overall best-fit model for each dataset. Fig. S1 shows
posterior log-likelihood distributions.

Table S2. ANOVA analyses of clade-specific differences in ψ, using species-specific ψ estimates
from each functional model for the accumulation of RI

Group Model df F P Group variance fraction

Drosophila (pre) Asymptotic 8, 122 1.87 0.07 0.11
Drosophila (pre) Linear 8, 122 0.61 0.77 0.04
Drosophila (pre) Quadratic 8, 122 1.76 0.09 0.1
Drosophila (post) Asymptotic 8, 117 4.48 <0.001 0.23
Drosophila (post) Linear 8, 117 7.43 <0.001 0.34
Drosophila (post) Quadratic 8, 117 7.37 <0.001 0.33
Birds (post) Asymptotic 29, 214 4.03 <0.001 0.35
Birds (post) Linear 29, 214 2.67 <0.001 0.27
Birds (post) Quadratic 29, 214 2.48 <0.001 0.25

Group variance fraction is the percentage of total variance in species-specific ψ values explained by clade (9
Drosophila clades or 30 avian family-level clades). Species-specific ψ values were computed as the mean of the
marginal posterior density for each species simulated using MCMC. Pre, premating; post, postzygotic.
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Table S3. Correlations between estimates of clade-specific rates of reproductive isolation (prezygotic or postzygotic) and metrics of
macroevolutionary dynamics in birds and flies

Dataset Model Metric rp p (rs) rs p (rp) Slope t-statistic (PGLS) PGLS P value N

Drosophila (post) Asymptotic λ0 −0.3 0.43 −0.33 0.39 −0.82 −1.29 0.24 9
Drosophila (post) Linear λ0 −0.31 0.42 −0.08 0.84 −1.22 −1.38 0.21 9
Drosophila (post) Quadratic λ0 −0.21 0.58 −0.12 0.78 −0.77 −1.09 0.31 9
Drosophila (post) Asymptotic λ95 −0.27 0.48 −0.32 0.41 −0.42 −0.87 0.42 9
Drosophila (post) Linear λ95 −0.31 0.41 −0.1 0.81 −0.71 −1.05 0.33 9
Drosophila (post) Quadratic λ95 −0.2 0.61 −0.05 0.91 −0.39 −0.72 0.49 9
Drosophila (pre) Asymptotic λ0 0.3 0.43 0.23 0.55 1.03 0.8 0.45 9
Drosophila (pre) Linear λ0 0.36 0.34 0.17 0.68 25.64 1.38 0.21 9
Drosophila (pre) Quadratic λ0 0.45 0.22 0.57 0.12 2.42 0.58 0.58 9
Drosophila (pre) Asymptotic λ95 0.24 0.53 0.58 0.11 0.86 0.94 0.38 9
Drosophila (pre) Linear λ95 0.28 0.46 0.47 0.21 19.59 1.46 0.19 9
Drosophila (pre) Quadratic λ95 0.4 0.29 0.37 0.34 1.77 0.58 0.58 9
Birds (H) Asymptotic λ 0.04 0.83 0.05 0.79 −0.01 −0.43 0.67 30
Birds (H) Linear λ −0.01 0.95 0 0.98 −0.01 −0.25 0.81 30
Birds (H) Quadratic λ 0 0.99 0.07 0.71 0 −0.21 0.84 30
Birds (E) Asymptotic λ 0.06 0.75 0.13 0.49 0.01 0.31 0.76 30
Birds (E) Linear λ 0.06 0.74 0.14 0.45 0.02 0.56 0.58 30
Birds (E) Quadratic λ 0.12 0.54 0.22 0.24 0.02 0.68 0.5 30
Birds (H) Asymptotic λMAX −0.01 0.96 0.12 0.54 −0.04 −0.39 0.7 30
Birds (H) Linear λMAX −0.03 0.88 0.05 0.77 −0.03 −0.25 0.81 30
Birds (H) Quadratic λMAX 0.04 0.84 0.13 0.49 −0.04 −0.39 0.7 30
Birds (E) Asymptotic λMAX 0.03 0.87 0.13 0.48 0.01 0.09 0.93 30
Birds (E) Linear λMAX 0.1 0.61 0.14 0.45 0.05 0.61 0.55 30
Birds (E) Quadratic λMAX 0.13 0.5 0.22 0.24 0.02 0.29 0.77 30
Birds (H) Asymptotic λq80 −0.01 0.98 0.08 0.66 −0.01 −0.34 0.73 30
Birds (H) Linear λq80 −0.03 0.87 0.04 0.82 −0.01 −0.3 0.77 30
Birds (H) Quadratic λq80 0.02 0.91 0.12 0.51 −0.01 −0.14 0.89 30
Birds (E) Asymptotic λq80 0.01 0.97 0.12 0.52 0.01 0.22 0.83 30
Birds (E) Linear λq80 0.03 0.87 0.13 0.48 0.03 0.46 0.65 30
Birds (E) Quadratic λq80 0.09 0.62 0.23 0.23 0.03 0.54 0.59 30

λ denotes speciation rate; λ0 and λ95 denote estimates of speciation for Drosophila clades assuming relative extinction rates of 0 and 0.95, respectively. For
birds, λ is the mean estimated rate for each family; λMAX is the maximum estimated rate; λq80 is the estimated 0.80 quantile of the distribution of rates for each
family. This latter value was chosen to reduce sensitivity to outlying estimates for the maximum rate. Analyses are conducted at the family level for birds (n =
30) and level of major clade for Drosophila (n = 9). rp and rs denote Pearson and Spearman correlations, respectively; p (r) is the corresponding two-tailed
P value. Slope is the estimated slope from PGLS regression using estimated phylogeny shown in Fig. S3. N is the number of clades considered in each analysis.
Birds (H) and birds (E) refer to analyses of the avian dataset conducted using Hackett (H) and Ericson (E) backbone phylogenies, respectively.
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