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Supplementary Methods

Raw data

Brawand and coworkers deposited the RNA-Seq reads of
their study in NCBI’s Gene Expression Omnibus (GEO)
database under accession number GSE30352. We used
the data from brain, cerebellum, kidney, heart and liver
samples from primates. An overview of the samples used
and their statistics is provided in Table S1.

RNA-seq data processing

Since some samples were sequenced in single-end and
others in paired-end mode, and since different read
lengths were used, we standardised the data from all
samples to avoid potential biases that could be intro-
duced by these differences, e. g. via alignment speci-
ficity and sensitivity. We discarded all second mates
in paired-end runs and trimmed all remaining reads to
76 nucleotides, resulting in the same single read length
throughout. We mapped the trimmed read sequences to
their respective reference genomes from Ensembl [Supp1]
release 64 using GSNAP 2012-11-01 [Supp2], allowing for
novel junctions and uniquely mapped reads (see Table S1
for details).

Definition of one-to-one orthology be-
tween exons

To generate a table of one-to-one orthologous exons, we
retrieved from Ensembl 64 the genomic sequence of all
human genes with one-to-one orthologues in all the pri-
mate species in our study. For these genes, we retrieved
all exons from all annotated transcripts [Supp3]. We
aligned each of these individual human exons against the
genomes of the other five primate species using GMAP
2012-11-01 [Supp4]. We also aligned them against the
human reference genome to discard exons present in mul-
tiple copies. We allowed only unique matches with at
least 90% sequence identity over the whole length of the
exon, allowing at most 5% length difference due to inser-
tions and deletions (indels). The exons that contained in-
dels in protein coding exons modifying the reading frame
were discarded. We took the intersection of exons that
passed the above criteria in all the six species analysed.
In addition, we discarded genes that contained only a
single sequence-conserved exon. If an exon was anno-
tated to have alternative start and/or end sites, we split
the exon into multiple counting bins, which for the pur-
pose of the differential expression analysis were treated
as if they were separate exons, in the same manner as in
DEXSeq (see Figure 1 in [Supp3]).

Parameter sensitivity analysis. SI Figure S5 and SI
Table S2 present the results of a sensitivity analysis, in
which we successively increased the stringency of the se-
quence similarity threshold of the considered exons. This
analysis confirmed that our observations on inter-species
variability of exon usage are not driven by technical bi-
ases caused by sequence differences between the genomes
of the different species.

Inference

For each exon in each species-tissue combination, we cal-
culated a relative exon usage coefficient (REUC), which
we defined as the logarithm (base 2) of the ratio of the
exon’s usage in the species-tissue combination relative
to the average over all species-tissue combinations. This
approach is based on our DEXSeq method, described
in [Supp3], and is described in detail below. For read-
ers familiar with DEXSeq, we note that the approach
deviated in three main aspects from [Supp3]:

1. The generalized linear model (GLM) that we fit for
each exon incorporates as response two count values
per sample, namely the number of reads mapped to
the exon under consideration and the sum from all
the other exons of the same gene. In [Supp3], each of
the other exons was counted separately; the modifi-
cation used here speeds up computation and simpli-
fies interpretation. In newer versions of the DEXSeq
package, this functionality is available via the TRT
functions.

2. We employ an empirical Bayes shrinkage method to
the fitted coefficients to suppress the high variance
that fitted coefficients would otherwise have. A gen-
eral treatment of this new feature will be subject of
a forthcoming publication.

3. As discussed below, the likelihood ratio test usually
employed for inference with GLMs was unsuitable
for the specific application of inferring conservation
of exon usage. Instead, we devised a custom test
based on a covariance statistic.

Modelling with generalized linear models

We denote by kij1 the number of uniquely mapping reads
found to overlap with exon counting bin i in sample j
and by kij0 the sum of the read counts for all other exon
counting bins in the same gene. We consider these quan-
tities as realization of a random variable, Kijl, which is
determined by a generalized linear model (GLM) of the
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negative binomial (NB) family with logarithmic link, i. e.

Kijl ∼ NB(mean = sjµijl; dispersion = αil) (1)

logµijl =
∑
r

x2j+l, r βir. (2)

Here, sj is a size factor, accounting for the library se-
quencing depth for sample j (j = 1, . . . ,m) and esti-
mated as described in [Supp3]. The GLM’s model matrix
x has 2m rows, as each of the m samples appears twice,
once for the exon under consideration (l = 0) and once
for the sum of all other exons (l = 1). Its columns are in-
dexed by r and correspond to the regression coefficients,
of which we have four different types, namely
• for each sample j, a sample coefficient βS

ij that cap-
tures the overall expression of the gene in the given
sample,

• an exon coefficient βE
i capturing the average usage of

the exon under consideration, i.e., the average con-
tribution of the exon to the gene’s read counts; this
coefficient takes into account exon length and other,
sequence-dependent exon properties,

• a sex coefficient βsex
i to account for sex-dependence

of the former, and finally
• for each species-tissue combination, the REUC βI

iut,
which estimates the ratio of the exon’s usage in the
combination of species u and tissue t relative to the
average.

Hence, we can write out, equivalently but more explic-
itly, the product of the model matrix x and the model
coefficients β in Equation (2) as follows.

logµijl = (3)

βS
ij + (1− l)βE

i + (1− l)xsexj βsex
i + (1− l)βI

i,u(j),t(j),

where xsexj = −1/2 if sample j is derived from a female
individual and xsexj = +1/2 in case of a male. u(j) is
the species and t(j) the tissue from which sample j is
taken, and l again indicates whether the count is mod-
elled for exon i (l = 0) or for the sum of the other exons
in the gene (l = 1). The design matrix x in Equation (2)
contains zeroes and ones (expect for the column for the
sex coefficient which contains ±1/2), and the structure
of x can be read off from comparing Equation (3) with
Equation (2).

Note that, while we performed the GLM fit using the
natural logarithm as link function, all values for coeff-
cients given in this paper or shown in figures are on a
log2 scale, to facilitate interpretation.

Fitting of GLM coefficients with shrinkage

When considered as estimators, GLM coefficients have a
large sampling variance for exons with low read counts,
and hence, the REUCs will tend to have larger absolute
values for weakly used exons than for strongly expressed
ones. This is disadvantageous as it hinders visualization
and comparison in downstream analysis. Therefore, we
devised a shrinkage approach that renders the REUCs
approximately homoscedastic. Specifically, we imposed
a common normal prior with mean zero and standard de-
viation σP on the coefficients βES

i and βI
ius. The Bayesian

posterior probablity can hence be written

log pi = (4)∑
j,l

`

(
si exp

∑
r

x2j+l, rβir, αil; kijl

)
− 1

σ2
P

∑
r∈R

β2
ir,

where `(µ, α; k) is the log-likelihood of the NB distribu-
tion with mean µ (and dispersion α, as discussed be-
low), given the observed count k, and the sum over r in
the ridge penality term runs over the set R of all those
columns of the design matrix that correspond to a co-
efficient that is supposed to undergo shrinkage, i. e., all
REUCs βI

iut and the sex coefficient βsex
i .

Instead of using the iterated reweighted least square
(IRLS) method, we used the L-BFGS-B optimization al-
gorithm to find maximum a posteriori estimates for the
coefficients. For σP → ∞, this approach and the or-
dinary IRLS procedure are expected to give the same
result. We determined a suitable value for the prior
width σP in an empirical Bayes fashion, as described in
the following. We first ran the fit with a large value,
σP = 1000, then calculated for each exon the average
normalized counts and the sample standard deviation of
the REUCs, stdevu,t

(
βI
iut

)
, as a measure for the REUC’s

typical spread of values. See the left panel of Figure S1
for a scatter plot of the result: the spread of the coef-
ficients was stronger for low-count exons, while above a
certain threshold, roughly at 28, this dependence levelled
out. Our aim was to shrink the coefficients of the low-
count exons such that they did not scatter more than the
high-count exons. Therefore, we computed the mean of
the standard deviations of the exons with an average nor-
malized count above 28 as a value for the prior σP and
reran the fit to get final coefficient estimates. As the
right panel of Figure S1 shows, this procedure succeeded
in establishing approximate homoscedasticity.

The shrinkage approach has another advantage. Note
that the design matrix of our GLM does not have full
rank, because we fit coefficients for all species-tissue com-
binations. The conventional approach of leaving out one
level from the tissue-species factor and let it be absorbed
by the intercept, to give full rank to the design matrix,
would have complicated the down-stream analysis, as the
absorbed tissue-species combination would have become
special. Hence, we took advantage of the fact that the
ridge penality term causes the penalized likelihood to
have a unique maximum, and so makes the model fully
identifiable, despite the rank deficiency of the design ma-
trix.

Estimation of dispersions

After the inital fit with the weak prior, we estimated
dispersions. It turned out to be helpful to assume two
different dispersion values αil for each exon i, namely one
for the response variables concerning the exon’s counts
(l = 0) and one for those with the sums of the other ex-
ons (l = 1). We fitted these dispersions by maximizing
the Cox-Reid adjusted conditional likelihood found by
keeping the coefficients βir from the initial fit fixed and
maximizing with respect to (αi0, αi1). For the Cox-Reid
adjustment [Supp5], we used the approach of [Supp6], as
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in DEXSeq. We then reran the fit using the prior width
σP (see above) and the dispersions αil obtained from the
first-pass fit to obtain final coefficient estimates βir.

TDU strength

The quantity termed TDU strength was calculated as

Tiu = max
t

(
βI
iut − βI

iu·
)

(5)

with β
I

iu· = 1
5

∑5
t=1 β

I
iut.

ANOVA analysis of the REUCs

For the ANOVA analysis shown in Figure 2B, we fitted,
for each exon, a linear model to its REUCs

βI
iut = βI0

i + βsp
iu + βti

it + εiut, (6)

(with βsp
i,1 = βti

i,1 = 0) using ordinary least square regres-

sion to mimimize
∑

ut ε
2
iut.

The axes in Figure 2B refer to the variance explained
by species and by tissue in the sense of a usual ANOVA

table, i.e., the quantities
∑

s (βsp
is )

2
and

∑
t

(
βti
it

)2
. The

axes tick marks indicate the variance values on the log2

scale, i.e., after division by (ln 2)2. Note that the axes
in the figure have been “warped” using an asinh trans-
formation, which provides a good compromise between
a linear and a logarithmic axis scale, as both of these
seemed unsuitable.

Testing for conservation

To assess conservation of the pattern of tissue-dependent
usage of exon i between a pair of species u and u′, we con-
sidered the sample covariance of the respective REUCs,

Ciuu′ = covt

(
βI
iut, β

I
iu′t

)
. (7)

To construct an empirical null distribution for this quan-
tity, we used the mirror method: we assumed that the
null distribution is symmetric around zero, and that
the mass of the alternative distribution at negative val-
ues was negligible (because an evolutionary process re-
sulting in anti-correlation seems implausible), so that
the empirical distribution of negative values could be
used to estimate the empirical null by mirroring around
zero [Supp7]. For the threshold Cth = 0.048 (on the nat-
ural log scale; corresponding to 0.048/(ln 2)2 = 0.1 on
the log2 scale), we found that

|{i : Ciuu′ < −Cth}|
|{i : Ciuu′ > Cth}|

< 0.1 (8)

for all species pairs u, u′. Hence, for each species pair
u, u′, the exons with Ciuu′ > Cth were called conserved
between u and u′ with a false discovery rate (FDR) of
< 10%.

Background sets

To avoid biases due to differences in inferential power,
we compared in all enrichment analyses the set of strictly

CTDU exons not to the set of all 1:1 othologous exons
but instead to a set of “background” exons, taken from
the whole set but chosen to match the strictly CTDU ex-
ons’ empirical distribution of expression strength, exon
length and variance across replicates. We used the R
package MatchIt [Supp8] to construct these background
sets.

Features

We extracted the coding exons from the human an-
notation file from Ensembl release 64, translated them
into protein sequences and mapped them to the UniProt
canonical protein database. The protein disordered re-
gion predictions were done using IUPRED [Supp9]. The
UTR region coordinates were downloaded from Ensembl
using the Ensembl API. The classification of exons into
first, middle and last exons was also done using the En-
sembl annotation. For the SI Tables S3 and S4 and SI
Figures S7, S8, S9 and S10 only exons belonging to single
categories were used. For example, we discarded exons
that were first exons of a transcript but the middle exon
of another transcripts.

Cis-regulatory region characterisation

We used SFmap [Supp10] to characterise the cis-
regulatory regions of our set of conserved exons. In or-
der to increase the confidence of their calls, SFmap takes
into account (1) the propensity of splicing factor binding
motifs of being clustered in the genome and (2) DNA se-
quence conservation. Hypothesis testing was done using
the Wilcoxon test, and the 95% confidence intervals of
Figure 3D were calculated by bootstrapping.

Stratification by exon function and posi-
tion

To assess potential biases, or to detect additional trends,
we repeated the analyses under both of the following two
stratification schemes:

1. by translation: 5’ untranslated, 3’ untranslated,
translated;

2. by position: first, middle, last.

Both of these stratifications were made based on En-
sembl release 64 transcript models for human. Within
each stratification scheme, exons which would be as-
signed into more than one category based on evidence
from different transcripts were set aside (e. g. for the
stratification by translation, this was the case for exons
that are in an UTR in one transcript and in a coding re-
gion in another; for the stratification by position, exons
were set aside that are the first in one transcript but a
middle one in another, i. e. involve alternative transcrip-
tion start sites). SI Figures S7–S10 and SI Tables S3
and S4 demonstrate that the conclusions drawn in the
main text are not driven by a single category of exons,
and that the effects that we describe are evident in all of
the above exon categories.
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Reprodicibility

We added a document with the reproducible code that
was used to generate and analyse the REUCs as well as
the the code used to generate the plots from the main
text. Please see SI Appendix, Dataset 1. In this docu-
ment, we also added plots for each gene that contained
exons with strictly CTDU.
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Supplementary Figures
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Figure S1: Standard deviation of REUCs versus average normalised count. The left panel shows the heteroskedasticity
of the unshrunken coefficients, the right panel the approximate homoskedasticity of the shrunken coefficients.

Figure S2: Comparison of REUC variance explained by tissue and by species, respectively. This plot provides an
alternative visualization of the same data as in Fig. 2B.
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Figure S3: The central panel shows the histogram of the variance explained by tissue minus the variance explained by
species. The panels at the left and right provide zoom-in views of the lower and upper distribution tails. The histogram
shows that the centre of the distribution is located below 0, but that its upper tail is heavier than the lower one.
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Figure S6: Sequence conservation in introns that flank strictly CTDU exons. For each position relative to the exon
start or end, we calculated the fraction of strictly CDTU exons which show at this position in their flanking introns’
sequences the same nucleotide in all species (red). The black line shows the same quantity for the set of background
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(p = 1.9 · 10−15 and p = 5.7 · 10−9, Wilcoxon rank sum test with continuity correction). This result is consistent with
the notion that the need to maintain splicing-related cis-regulatory elements involved in tissue-dependent exon usage
results in purifying selection of sequences within these introns.
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Figure S7: Principal component analyses, as in Figure 2A, but stratified by translational status (translated, 3’-
untranslated, 5’-untranslated).
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Figure S8: Principal component analyses, as in Figure 2A, but stratified by exon position in transcripts (first, middle,
last).
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Figure S10: Tissue specificity and conservation of the regulation of differential usage of exons across tissues, as in
Figure 2D, but stratified by exon position in transcripts (first, middle, last).
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Supplementary Tables

Table S1: Summary of samples used, number of fragments and fraction of uniquely aligned fragments.

run accession species tissue sex # of reads fraction of unique alignments
1 SRR306838 human brain female 24,513,415 0.8
2 SRR306839 human brain male 18,850,030 0.65
3 SRR306840 human brain male 22,576,705 0.69
4 SRR306841 human brain male 24,325,223 0.66
5 SRR306842 human brain male 17,422,994 0.76
6 SRR306843 human brain male 7,913,181 0.52
7 SRR306844 human cerebellum female 32,698,558 0.75
8 SRR306845 human cerebellum male 46,755,221 0.66
9 SRR306845 human cerebellum male 46,755,221 0.66

10 SRR306847 human heart female 24,128,204 0.71
11 SRR306848 human heart male 30,896,351 0.66
12 SRR306848 human heart male 30,896,351 0.66
13 SRR306850 human heart male 25,197,713 0.69
14 SRR306851 human kidney female 22,493,518 0.77
15 SRR306852 human kidney male 20,684,752 0.73
16 SRR306853 human kidney male 31,386,619 0.66
17 SRR306854 human liver male 43,147,061 0.66
18 SRR306854 human liver male 43,147,061 0.66
19 SRR306856 human liver male 23,866,499 0.76
20 SRR306811 chimpanzee brain female 20,083,064 0.68
21 SRR306812 chimpanzee brain male 13,947,644 0.74
22 SRR306813 chimpanzee brain male 20,408,261 0.62
23 SRR306814 chimpanzee brain male 17,394,854 0.64
24 SRR306815 chimpanzee brain male 22,234,086 0.65
25 SRR306816 chimpanzee brain male 23,317,655 0.63
26 SRR306817 chimpanzee cerebellum female 32,043,112 0.72
27 SRR306818 chimpanzee cerebellum male 19,384,434 0.71
28 SRR306819 chimpanzee heart female 31,468,011 0.62
29 SRR306820 chimpanzee heart male 43,064,259 0.51
30 SRR306821 chimpanzee kidney female 25,454,775 0.71
31 SRR306822 chimpanzee kidney male 34,169,060 0.72
32 SRR306823 chimpanzee liver female 29,737,439 0.73
33 SRR306824 chimpanzee liver male 17,876,248 0.66
34 SRR306826 bonobo brain female 17,166,270 0.74
35 SRR306827 bonobo brain female 24,777,783 0.65
36 SRR306828 bonobo brain male 38,196,822 0.66
37 SRR306829 bonobo cerebellum female 30,345,120 0.69
38 SRR306830 bonobo cerebellum male 34,467,310 0.66
39 SRR306831 bonobo heart female 29,650,645 0.62
40 SRR306832 bonobo heart male 26,025,889 0.55
41 SRR306833 bonobo kidney female 30,139,364 0.65
42 SRR306834 bonobo kidney male 25,901,079 0.63
43 SRR306835 bonobo liver female 28,491,592 0.72
44 SRR306836 bonobo liver male 20,161,205 0.62
45 SRR306800 gorilla brain female 35,257,547 0.72
46 SRR306801 gorilla brain male 16,254,814 0.78
47 SRR306802 gorilla cerebellum female 28,305,051 0.74
48 SRR306803 gorilla cerebellum male 20,661,901 0.7
49 SRR306804 gorilla heart female 28,286,878 0.7
50 SRR306805 gorilla heart male 30,588,563 0.64
51 SRR306806 gorilla kidney female 19,804,877 0.73
52 SRR306807 gorilla kidney male 29,684,063 0.73
53 SRR306808 gorilla liver female 32,830,718 0.71
54 SRR306809 gorilla liver male 34,982,548 0.72
55 SRR306777 rhesus monkey brain female 19,068,947 0.68
56 SRR306778 rhesus monkey brain male 22,554,234 0.59
57 SRR306779 rhesus monkey brain male 21,461,283 0.76
58 SRR306780 rhesus monkey cerebellum female 25,528,147 0.6
59 SRR306781 rhesus monkey cerebellum male 21,141,815 0.67
60 SRR306782 rhesus monkey heart female 28,636,572 0.55
61 SRR306783 rhesus monkey heart male 20,815,484 0.58
62 SRR306784 rhesus monkey kidney female 17,581,272 0.59
63 SRR306785 rhesus monkey kidney male 24,115,366 0.44
64 SRR306786 rhesus monkey liver female 21,711,196 0.65
65 SRR306787 rhesus monkey liver male 32,224,651 0.69
66 SRR306787 rhesus monkey liver male 32,224,651 0.69
67 SRR306791 orangutan brain female 36,457,958 0.69
68 SRR306792 orangutan brain male 17,675,725 0.73
69 SRR306793 orangutan cerebellum female 20,807,820 0.71
70 SRR306794 orangutan heart female 36,798,263 0.63
71 SRR306795 orangutan heart male 31,482,282 0.64
72 SRR306796 orangutan kidney female 30,547,227 0.65
73 SRR306797 orangutan kidney male 30,043,284 0.68
74 SRR306798 orangutan liver female 21,355,541 0.74
75 SRR306799 orangutan liver male 35,683,453 0.71
76 total 2,018,132,789 0.67
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Table S2: Decomposition of variance explained by species or tissues, using different choices of sequence similarity
thresholds. This analysis demonstrates that our inter-species variability estimates are not mainly driven by sequence
divergence effects. We considered exons with no insertions or deletions, and varied the threshold for sequency similarity
from 90% (main text) in steps of 1% to 99% (this table). The first column lists the threshold value, the second column
indicates the number of exons that passed the threshold, the third column indicates for what percentage of the exons
the between-species variance was higher than the between-tissue variance. The fourth column indicates the number of
exons that showed strong variance with respect to one or both of the contrasts (between-species, between-tissues). The
fifth column shows the fraction of those exons in column 4 for which the between-species variance was larger than the
between-tissue variance. These results indicate that irrespective of the similarity threshold, for the majority of exons,
more of the variance is explained by species than by tissues, while for the exons with high variance, between-species
differences are smaller than between-tissue effects.

% sim-
ilarity
threshold

# of ex-
ons with
enough
read
counts
for test-
ing

% of exons where
Var(species)>Var(tissues)

# of exons where
Var(species)>0.75 or
Var(tissues)>0.75

% of exons where
Var(species)>0.75 or
Var(tissues)>0.75 and
Var(species)>Var(tissues)

91 91596 59.91 1442 19.00
92 88885 59.98 1396 19.20
93 84875 59.96 1330 19.10
94 79222 60.00 1258 19.08
95 71186 59.92 1137 18.56
96 59766 60.03 970 19.07
97 44706 60.02 718 18.38
98 25895 60.19 420 19.29
99 6260 60.40 105 15.24

Table S3: Columns 2 to 5 of this table are as in Table S2. Using the same sequence similarity threshold as in the main
text (90%), the table shows a breakdown of the results for different categories of exons: translated or 3’, 5’ untranslated;
or by position within transcripts.

exon type # of exons with
enough read counts for
testing

% of exons where
Var(species)>Var(tissues)

# of exons where
Var(species)>0.75 or
Var(tissues)>0.75

% of exons where
Var(species)>0.75 or
Var(tissues)>0.75 and
Var(species)>Var(tissues)

translated 44903 60.34 493 14.40
5’ untranslated 7503 57.55 272 22.43
3’untranslated 10799 60.15 311 25.40
middle exon 41631 59.47 479 16.08
first exon 4714 57.55 203 13.79
last exon 8739 62.92 224 28.57
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Table S4: Breakdown of conserved tissue-dependent usage (CTDU) by categorisation of the exons by translation (5’
untranslated, 3’ untranslated, translated) and by position within transcripts (first, middle or last). The second column
states the number of exons that resulted from this classification in the human genome, the third column shows the
numbers of exons that also fulfilled our orthology criteria accross the six species. The fourth to eight columns indicate
the fraction of exons among the sequence conserved exons that showed CTDU in comparisons between human and each
of the other species; the ninth column states the fraction of exons that showed CTDU across all the species, refered to
as “strictly conserved” in the main text.

% of sequence conserved CTDU exons with regulation
conservation between human and ...

exon type total in
human
annota-
tion

# se-
quence
conserved
exons

bonobo chimpan-
zee

gorilla orangutan rhesus
monkey

strictly
conserved

coding 173041 59582 2.92 2.53 2.36 2.09 2.08 0.81
5’ untranslated 72287 14764 6.27 6.18 5.89 4.75 4.88 1.42
3’ untranslated 64943 14441 9.04 6.60 7.05 5.27 4.94 1.75
middle exon 157897 52699 3.42 3.03 2.73 2.42 2.57 0.90
first exon 74506 10550 6.28 5.95 6.03 4.73 4.95 1.59
last exon 67428 11204 7.87 4.97 5.85 3.95 3.45 1.51
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