

**Figure S1** Retinal cell differentiation appears largely normal in *snw* embryos. (A-D) *snw* embryos at 5 dpf show typical expression of various retinal cell markers (blue) throughout the retina; images are counterstained with the nuclear stain, Sytox (green). (A) Ganglion cells were stained with the Zn8 antibody, (B) rod cells were stained with anti-Zpr3, (C) bipolar cells were stained with anti-PKC, and (D) cone cells were stained with anti-Zpr1.

| А                          |                        |              |        |      |            |            |                           |                           |      |
|----------------------------|------------------------|--------------|--------|------|------------|------------|---------------------------|---------------------------|------|
| MIPVVPVESC                 | THVLAEFDCL             | DPLLSALRLD   | SGRIKC | TCLS | VSRKWLALGT | SAGGLHLIQR | DGWKQKLILT                | HKEGS <mark>I</mark> TQVS | 80   |
| CCPHDEDFIA                 | VATSQGLVVV             | WELHLERRGR   | PERASV | SWEH | RGVTVTSLCW | DTVALRVFAG | DVGGKVSCVR                | AGSSKLGKGS                | 160  |
| AFVIFPVQT <mark>V</mark>   | TTVDSRVVQL             | GYTDGHLVIS   | SLSRCY | LCDT | EREKFWRVGN | KERDGEFGAC | FLTQGLAGQR                | GQLVGCPAPL                | 240  |
| LFCARPGSRI                 | WEASFSGEVL             | STHQFKQLLA   | VPPLPL | VSCK | NEPHFNPTQT | NPQSLAFPRL | LQFGDQNLLT                | WTDSAIYIFT                | 320  |
| PHSGQVLLWT                 | EVKDVLEISV             | FRNDLFCLHG   | DGRLSH | MSLV | SPDRCVERLM | KRENWTIAAT | VCCMFQHAIT                | TSKARKSLSI                | 400  |
| DRLEHLKAQL                 | NSTSHQQLIG             | QLEEVISKLE   | PLDSAC | SSRR | SSISSHESFN | VLDCGIYRVI | SRRGSQSDDD                | ASSLANQSML                | 480  |
| EDERLKEFSF                 | TEEEQVDNDS             | ASVRGEGDRS   | DLGLQF | LPLP | FRSKPPRVAL | QAVRDSVSSF | MKKTTEKINT                | LQMN <mark>A</mark> DLWPR | 560  |
| PDLREGVQGE                 | VASTASPISE             | ESEQELNTEH   | SGSESE | LLEL | RAATKKAISQ | IQDPMVLLDP | LCLSDVLQEW                | APVLERALGP                | 640  |
| EDQILPVETT                 | NPEEKTLEEE             | ELVSSMSCCV   | VVQPEI | STSP | AADPDESATH | TEEEDFREST | PCSIAPVRAQ                | FPPLANHVEL                | 720  |
| IQLFSPKPLP                 | PDLQADLSLL             | ACLYLEMGCP   | GRGGME | SVCV | FLRRFFFLLD | QERVRRMCML | RYRENREVLK                | AYIAGMLEFT                | 800  |
| QASKVVEVIQ                 | KGDLLKSLRS             | LRELQPWNAP   | LLLSHL | YRLY | EKHGEVAVRA | YPQFYPTILP | SDIMAMALPS                | HFLPYLDNLV                | 880  |
| QSRAEQQRLS                 | FLGSLLQPET             | LRQDWLELAL   | SHDAPQ | REDT | LTHDGQPRWH | SHFFSWGYGR | LLSLLIRLPA                | DLASKQKMLD                | 960  |
| MCKAHGYWMG                 | YLYLCRELQR             | RAEAFSAICR   | LDDMTL | LEGD | DGIVPQSLDE | WVLLLQLSQQ | ISAS <mark>D</mark> ESSLT | STKNSNGSCL                | 1040 |
| VDANSNGDCS                 | SGLSNGSTDW             | SIQVSPENII   | LRLVRV | FGPD | RALTALQEHG | IPVDHSSRST | LVCDLLRMAE                | KRQRALIQSM                | 1120 |
| LERCDRFLWS                 | QHA*                   |              |        |      |            |            |                           |                           | 1133 |
|                            |                        |              |        |      |            |            |                           |                           |      |
| B Amino                    | acid change            | Residue cha  | nge    |      |            |            |                           |                           |      |
| 76                         | , I->N                 | 227, ATC ->  | AAC    |      |            |            |                           |                           |      |
| 107, R->H 320, CGC -       |                        | 320, CGC ->  | CAC    |      |            |            |                           |                           |      |
| 133, V->A 398, GTG -> GCG  |                        | GCG          |        |      |            |            |                           |                           |      |
| 170, V->I 508, GTC -> ATC  |                        | ATC          |        |      |            |            |                           |                           |      |
| 182, Y->N 544, TAC -> AAC  |                        | AAC          |        |      |            |            |                           |                           |      |
| 555, A->S 1663, GCT -> TCT |                        | > TCT        |        |      |            |            |                           |                           |      |
| 10                         | 25, D->G               | 3074, GAT -> | > GGT  |      |            |            |                           |                           |      |
| 10                         | 34, <mark>N-</mark> >S | 3101, AAC -> | > AGC  |      |            |            |                           |                           |      |

**Figure S2** Danio rerio hps5 sequence. (A) hps5 was cloned from both wild-type and *snw* embryos and aligned for comparison. Eleven single nucleotide polymorphisms (SNPs) were detected in the *snw* sequence when compared to the predicted Hps5 Zv9 sequence, highlighted by pink squares. Ten of these SNPs were eliminated as being the causative *snw* mutation as they were detected in wild-type AB strain adult zebrafish. (B) The amino acid sequence changes and corresponding nucleotide sequence changes are given, along with position numbers for reference.

1035, S->T 1062, I->L 1063, Q->R

3104, AGC -> ACC 3184, ATT -> CTT 3188, CAG -> CGG



**Figure S3 Bloc2 complex members are expressed in the developing zebrafish eye.** *in situ* hybridization in 26hpf wild-type zebrafish embryos demonstrates that (A) *hps5*, (B) *hps3*, and (C) *hps6* are all expressed in the developing zebrafish embryo. The retinal pigmented epithelial (RPE) cell layer is identified by white arrows. Sense controls showed non-specific, background stain.



**Figure S4 Both Hps5<sup>WT</sup> and Hps5<sup>I76N</sup> bind to Hps6 and Hps3** *in vitro*. (A) COS7 cells were transiently co-transfected with Hps5<sup>WT</sup>/empty vector, Hps5<sup>I76N</sup>/Hps6, or Hps5<sup>WT</sup>/Hps6 (lanes 1, 2, 3). Whole cell lysates were subjected to co-immunoprecipitation with flag antisera (IP:anti-flag, lanes 4, 5, 6). Western blots were detected with the antibodies indicated to the left (WB). Hps6 co-precipitates both Hps5<sup>WT</sup> and Hps5<sup>I76N</sup> individually (lanes 5, 6). (B) COS7 cells were transiently co-transfected with Hps5<sup>WT</sup>/Hps3, Hps5<sup>I76N</sup>/Hps3, or Hps5<sup>WT</sup>/empty vector (lanes 1, 2, 3). Whole cell lysates were subjected to co-immunoprecipitation with anti-myc antisera (IP:anti-flag, loss 4, 5, 6). Western blots were detected to the left (WB). Both Hps5<sup>WT</sup>/Hps3, Hps5<sup>I76N</sup>/Hps3, Indicated 4, 5, 6). Western blots were detected to the left (WB). Both Hps5<sup>WT</sup> and Hps5<sup>I76N</sup> co-precipitate Hps3 (lanes 4, 5, 6). Western blots were detected to the left (WB). Both Hps5<sup>WT</sup> and Hps5<sup>I76N</sup> co-precipitate Hps3 (lanes 4, 5, 6).

Table S1 Hps5<sup>WT</sup> protein modeling parameters from SwissModel of entire protein (residues #1-1133)

| Residues | Sequence identity | E-score | Q-MEAN4 raw<br>score | Q-MEAN4 Z-<br>score | ANOLEA score at<br>#76 | GROMOS score at<br>#76 |
|----------|-------------------|---------|----------------------|---------------------|------------------------|------------------------|
| 31-152   | 22.0%             | 2.0E-7  | 0.480                | -3.34               | ~+1                    | ~ +20                  |
| 73-189   | 17.4%             | 2.7E-6  | 0.407                | -3.89               | ~ +4                   | ~ +10                  |
| 31-358   | 12.6%             | 1.4E-6  | 0.208                | -8.99               | ~ +130                 | ~ +10                  |

## Table S2 Hps5WT protein modeling parameters from SwissModel of N-terminus (residues #1-370).

| Residues | Sequence identity | E-score | Q-MEAN4 raw | Q-MEAN4 Z- | ANOLEA score at | GROMOS score at |
|----------|-------------------|---------|-------------|------------|-----------------|-----------------|
|          |                   |         | score       | score      | #76             | #76             |
| 30-103   | 21.6%             | 4.6E-19 | 0.667       | -0.736     | -5              | +10             |

| Table S3 | Hps5I76N | protein model | ing parameters | from SwissModel o | f entire protein | (residues #1-1133) |
|----------|----------|---------------|----------------|-------------------|------------------|--------------------|
|----------|----------|---------------|----------------|-------------------|------------------|--------------------|

| Residues | Sequence identity | E-score | Q-MEAN4 raw | Q-MEAN4 Z- | ANOLEA score at | GROMOS score at |
|----------|-------------------|---------|-------------|------------|-----------------|-----------------|
|          |                   |         | score       | score      | #76             | #76             |
| 31-152   | 22.0%             | 1.9E-7  | 0.478       | -3.36      | ~ -3            | ~ -180          |
| 73-189   | 17.4%             | 2.6E-6  | 0.418       | -3.78      | ~ +2            | ~ -150          |
| 30-358   | 14.5%             | 3.2E-6  | 0.284       | -7.82      | ~ +4            | ~ -40           |

## Table S4 Hps5I76N protein modeling parameters from SwissModel of N-terminus (residues #1-370).

| Residues  | Sequence identity | E-score | Q-MEAN4 raw | Q-MEAN4 Z- | ANOLEA score at #76 | GROMOS score at<br>#76 |
|-----------|-------------------|---------|-------------|------------|---------------------|------------------------|
| 30 to 104 | 19.5%             | 3.2E-24 | 0.584       | -1.27      | ~ -2.5              | ~ -160                 |