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Figure S1: Extrema of the infected classes for fully symmetric serotype parameters (in log base

10 scale). The system in eq. (1) of the supplementary text has a Hopf bifurcation at φ ≈ 1.85

and asymptotically tends to oscillate periodically when 1.85 . φ . 1.93. For higher values of

the ADE factor,the dynamics are mostly chaotic with the exception of narrow windows where

stable orbits exist, such as the one in the interval 2.45 . φ . 2.55.
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Figure S2: Plot of the ADE factor vs. proportion of runs that have minima of the infected

classes below a threshold of 10−7 (a). Plot of the AEE (see text) at each value of the ADE

factor; the errorbars indicate one standard deviation over the 400 runs (b). The black markers

indicate the strictly serotype-symmetric situation. For each run, the transmission rates are

distributed as βi = β0 + σβ · N (0, 1) with σβ = 75. Here, β0 = 300. The values of the

birth/death rates, duration of the incubation period and recovery rate are as in Table A.1.
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Figure S3: Panel (a): time series of the four dengue serotypes in Bangkok, 1973-2010. Panel

(b): magnitude of the Fourier components of the time series in (a). Panel (c): histogram of

the number of consecutive months without extinctions accumulated for the four serotypes.

Data is from Nisalak, A., Endy, T., Nimmannitya, S., et al., 2003. Am. J.Trop.Med.Hyg. 68

and from Nisalak, personal communication, 2010.
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Figure S4: Panel (a): Contour plot of the magnitudes of the Fourier components of the

infecteds Ii(t), as a function of the ADE factor φ, averaged over 400 runs and over the 4

strains (time series of strains that go extinct over the whole interval 1.7 ≤ φ ≤ 3.0 are

removed). Panel (b): histogram of the dominant Fourier component (with the exception of

the zero frequency component) of the same runs as in (a). Panel (c): same as in (a) except

that only the symmetric case βi = 500 is considered. The single dominant component for each

serotype is shown with the continuous lines. In these studies, seasonality is included by taking

βi → βi(1 + 0.05 cos(2πt)). The values of the birth/death rates, duration of the incubation

period and recovery rate are as in Table A.1.
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Figure S5: Panel (a): Contour plot of the magnitudes of the Fourier components of the

infecteds Ii(t), as a function of the ADE factor φ, averaged over 400 runs and over the 4

strains (time series of strains that go extinct over the whole interval 1.7 ≤ φ ≤ 3.0 are

removed). Panel (b): histogram of the dominant Fourier component (with the exception of

the zero frequency component) of the same runs as in (a). Panel (c): same as in (a) except

that only the symmetric case βi = 300 is considered. The single dominant component for each

serotype is shown with the continuous lines. In these studies, seasonality is included by taking

βi → βi(1 + 0.05 cos(2πt)). The values of the birth/death rates, duration of the incubation

period and recovery rate are as in Table A.1.
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Figure S6: Proportion of runs that have minima of the infected classes below a threshold of

10−7 (a) and Average Expansion Exponent (b) vs. the transmission rate factor. For each

run, the ADE factors are distributed as φi = φ0 + σφ · N (0, 1) with φ0 = 1.8 and σφ = 0.4.
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Figure S7: Time average of the primary (a and d) and secondary (b and e) incidences over

the time periods indicated in each panel; and mean number of serotypes co-circulating after

the time period indicated (c and f), for different values of the serotype-independent vaccine

efficacy. The results in each column were obtained with 200 stochastic simulations at each

value of the vaccine efficacy. The left column corresponds to symmetric transmission rates,

while the column on the right corresponds to asymmetric ones. The histogram above panel

(d) shows the distribution of the coefficient of variation of the four transmission rates over the

200 runs. Here, φ = 1.0.
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Text S2. Quantifying the Strength of the Chaotic Dynamics547

One quantitative method for identifying chaotic dynamics in a system of ordi-548

nary differential equations (ODEs) is by measuring its Lyapunov exponents. The549

Lyapunov exponents of a dynamical system statistically quantify how rapidly550

neighboring points in phase space diverge or converge as time tends to infinity551

(see Guckenheimer, J. and Holmes, P., 1986). A positive Lyapunov exponent552

means that neighboring initial conditions diverge exponentially and implies the553

presence of chaos. In numerical computations, one calculates instead the Finite554

Time Lyapunov Exponents (FTLEs). As their name suggests, the FTLEs quan-555

tify the exponential separation of neighboring phase space points during finite556

times into the future. Computing the FTLEs relies on measuring the exponen-557

tial rates of expansion and contraction produced by the ODE flow along a set of558

orthonormal basis vectors. It requires solving the so-called variational equations559

in addition to the original ODE system. An ODE system of n equations has n2
560

variational equations; hence, one must solve n(n + 1) differential equations in561

total.562

In contrast to the rigorous methodology described above, for this work we563

used a simplified algorithm to decide whether the behavior of the system is564

chaotic or not. This simplified approach will not give the exact same results565

as the method described above; however, it is computationally much more effi-566

cient and gives satisfactory results given our objectives. It relies on calculating567

what we call the Averaged Expansion Exponent (AEE). Given a system of n568

ODEs ẏ = F (y), we obtain the AEE as follows. First we numerically simulate569
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the system for a statistically long time Ttrans to allow transient dynamics to570

decay. Then, from the state of the system at this time y(Ttrans) we generate a571

perturbed initial condition ypert(Ttrans) in a random direction that has compo-572

nents y
pert
i (Ttrans) = (1+ǫN (0, 1))·yi(Ttrans), for i = 1, 2, . . . n. Here, ǫ ≪ 1 and573

N (0, 1) is a Gaussian random variable with mean of zero and variance equal to574

one. We then numerically simulate the two copies of the system for a period of575

time TAEE, using the initial conditions y(Ttrans) and ypert(Ttrans), respectively.576

A first expansion exponent is obtained by measuring the rate of exponential577

separation of extrema between the two copies of the system: λ1 = log(dfirst/dlast)
TAEE

,578

where dfirst is the Euclidian distance between the first extrema of the original579

system and the first extrema of the perturbed system. To be clear, dfirst =580

|y(t∗)−ypert(t∗∗)| where t∗ is the time of the first extrema of the original system581

encountered after Ttrans and t∗∗ is the time of the first extrema of the perturbed582

system (| · | is the Euclidian norm in R
n). Analogously, dlast is the distance583

between the last extrema of the two copies of the system. By considering the584

separation between the extrema of the two systems instead of arbitrary points,585

we ensure that the rate of exponential separation is negative when the two586

system copies are on the same periodic orbit but are simply out of phase. We587

repeat the process 10 times by generating perturbed initial conditions as above588

at the succeeding times Ttrans + j ·TAEE, j = 1, 2, . . . 9, and obtain another nine589

expansion exponents λ2, . . . λ10. The AEE is finally obtained by averaging the590

ten rates of exponential expansion: AEE = 1
10

∑10
i=1 λi.591

The times Ttrans, TAEE and the parameter ǫ must be chosen appropriately592
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from the dynamical time-scales of the system. After numerous tests, we selected593

Ttrans = 1000, TAEE = 100 and ǫ = 10−5.594

Text S3. Persistence Studies and Vaccination595

Here, we discuss the results shown in Figs. A.4 in the main text and S7 in the596

supplement in light of our previous serotype persistence discussions. We note597

that the extinction of serotypes at φ = 1.0 is faster in the asymmetric case than598

in the symmetric one (Figs. S7c and S7f). The results at veff = 0 are consistent599

with the probabilities of persistence shown in Figs. A.1 and A.2. Comparing600

Figs. S7c and S7f with A.4c and A.4f, it is clear that at low vaccine efficacies,601

an increase of the ADE factor from 1.0 to 1.7 is detrimental to the persistence602

of symmetric serotypes but beneficial to the persistence of asymmetric ones.603

This agrees with our conclusions from Figs. A.1 and A.2, where a value around604

φ = 1.7 was seen to be optimal for the persistence of asymmetric serotypes.605
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