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"Febrim laudamus medici instrumentum
felicissimum . ." (H. Boerhaave, Leyden, 1731).

INTRODUCTION

The most common procedure in searching for
active sites in biological macromolecules is partial
hydrolysis. In a few cases, acidic, alkaline, or

enzymatic breakdown of the macromolecule
results in the removal of the inert sites of the
complex, reducing the size of the remainder to
the active core structure. Similar treatments
frequently serve as steps of purification by re-
moving noncovalently bound contaminants.

Isolation of the active materials in a ho-
mogeneous state often decreases biological ac-
tivity by separating either the solubilizing factor
or a carrier constituent, or by removing a co-
factor the presence of which is essential for full
biological potency. Several examples are also
known wherein dissociation of the macromolecu-
lar complex with mild methods, such as the use of
surfactants, depolymerizes the structure without
introducing hydrolytic cleavage of covalent
bonds. These depolymerized structures were

shown to have altered biological effectiveness,
indicating that these activities require a certain
organization of subunits.

Blocking some parts of the molecule has been
successfully used in enzymology. The existence of
functional groups and their specific steric ar-
rangement in the structure is the molecular ex-
planation of their activity. The same statement
can be applied to a very large number of other
biologically active substances. Interference with
this steric arrangement by alteration of the func-
tional groups achieved by their blockage or
removal, or by substitution, leads to changes in
activity. Similarly, modification between the
distances of the important functional groups by
distortion of the structure also results in changes
in biological properties.
Most of these approaches have been applied

in the investigation of gram-negative endotoxins.
The present review of the achievements will not
include a discussion in detail of the chemical
aspects of endotoxin research, because several
extensive surveys were recently published on this
subject. The most impressive array of different
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biological effects elicited by endotoxins will be
merely outlined, because a full discussion of this
aspect alone would require a separate mono-
graph. The relationship of structure to biological
effects in endotoxins is the subject of this review.
Although no final answer has been found in this
research, it seems timely to review this field and
to evaluate the achievements critically.

CHEMICAL PROPERTIES
AND CONSTITUENTS

Endotoxins (frequent synonyms: "lipopoly-
saccharides," "pyrogens," "Boivin antigens")
are constituents of the walls of gram-negative
bacteria, forming the outer layer of the cell body.
They were detected in cell-free filtrates of auto-
lyzed gram-negative cultures more than 100 years
ago, indicating that some cells release these sub-
stances spontaneously into the medium (33, 245).
Some cells release endotoxin readily under the
effect of mild treatments or due to specific
nutritional environments (375). In the majority
of gram-negative families, the endotoxin-con-
taining outer layers are so closely associated
with the other constituents of the cell wall that
their separation requires strong chemical treat-
ment.

Endotoxic substances are not extracted in the
form of dissolved monomers. They form aggre-
gates easily and also complex with a number of
other natural products. This indicates difficulties
in obtaining the endotoxin in a purified, homoge-
neous state, free from other constituents of the
cell walls. It also explains the very high molecular
weight of endotoxic materials, measured either
by sedimentation in analytical ultracentrifuge
or by light-scattering photometry. The values
obtained vary from 1 to 20 million, depending
mainly upon the method of isolation used and
the steps of purification and further treatments
involved.
The two major constituents of endotoxins were

discovered by Boivin, Mesrobeanu, and Mesro-
beanu (41, 42), who described these materials as
glycolipids. Mild acidic hydrolysis precipitated a
lipid and left a degraded polysaccharide in the
supernatant fluid. Almost all authors claimed the
absence of proteins in their preparations, but
more careful analysis usually revealed the pres-
ence of a low percentage of bound peptides which
form the third characteristic component of such
preparations. Phosphorus was also found in all
endotoxins hitherto described, and several authors
also reported other inorganic constituents, such
as calcium, magnesium, or sodium.
The polysaccharide consists in most cases of a

large number of different carbohydrates, the most
common being glucose, galactose, and mannose.

In addition, pentoses, hexosamines, heptoses,
octonic acid derivatives, and different deoxy
sugars are frequently present in similar endotoxin
preparations. The carboxylic acids of the lipid
moiety are the usual even-numbered, saturated
and unsaturated fatty acids. Odd-numbered
acids were observed in only a few cases, but
hydroxy-acids are probably the most char-
acteristic constituents of all endotoxins.
No unusual amino acids have been found

thus far. The most commonly occurring amino
acids in the few preparations which have been
analyzed are aspartic acid, glutamic acid, cysteine,
valine, leucines, alanine, serine, arginine, and
lysine, and a few other amino acids found in
much smaller amounts.

Detailed reviews of the chemistry of lipo-
polysaccharides have been published by Davies
(74), Luderitz, Staub, and Westphal, (194), and
by Luderitz, Jann, and Wheat (192). Therefore,
no further discussion of this aspect needs to be
included in this chapter.

BIOLOGICAL PROPERTIES
Characteristic Endotoxic Reactions

Inflammation is the summation of actions
taken by the defense system of the host after
infection. Besides the indications of the activated
natural resistance, symptoms of damage initi-
ated by the invading microorganisms are also
characteristic of inflammation. Enhanced phago-
cytosis, fibrin formation, and activation of some
metabolic enzymes are units of the mobilized
defense. Enhanced capillary permeability facili-
tates the exit of phagocytic cells and plasma
constituents from the vessels and makes it pos-
sible for them to reach the site of invasion.
Additional symptoms are numerous; their listing
would be superfluous. It is of interest that the
most characteristic inflammatory reactions can
be elicited by injecting crude or purified endo-
toxic lipopolysaccharide preparations obtained
from gram-negative bacterial cell walls. There is
little doubt that some pathological effects of
gram-negative bacterial infections are caused
by the endotoxin content of the bacteria, but it is
equally important to note that stimulation of the
host resistance can be initiated by isolated endo-
toxins.

In addition to those endotoxic reactions which
are identical with some signs of inflammation,
there are many others not obviously related to it.
These are the profound effects of endotoxins
on the production of antibodies against many
different antigens, the "flushing out" of inter-
feron, or clearing of experimental lipemia, and
several others. There are very few biological
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TABLE 1. Review of characteristic endotoxic reactions

Endotoxic reaction Type of study References

Pyrogenicity

Release of endogenous pyrogen

Immunogenicity

Adjuvant effect and inhibition
of antibody production

Effect on "properdin" or nat-
ural antibody levels

Leukopenia and leukocytosis

Protection against irradiation

Effect on RES

Development of tolerance

Enhancement of nonspecific
resistance

Mobilization of interferon

Changes in blood clotting

Description or review
Pathogenesis
Measurement
Therapeutic application

Description or review
Comparison with endotoxin
Isolation from leukocytes
Role in tolerance
Role in pathogenesis of fever

Description or review
Role of endotoxicity

Description or review
Other effects on antibody production
Inhibition of antibody formation

Description
Relation to resistance
Bactericidal antibodies
Role in endotoxicity

Description
Determination
Leukotaxis
Other effects on white blood cells
Effects on platelets
Effects on macrophages
Cytotoxic effects
Effect on leukopoiesis

Description
Relation to phagocytosis
Possible mechanism

Description
Cytologica investigation
Determination in different species
Relation of RES to nonspecific re-

sistance

Description
Mechanism
Reviews

Description or review
Comparison with other natural prod-

ucts
Estimation

Description
Characterization of induced interferon
Mechanism

Description
Cellular mechanism
Role in shock

8, 21, 80
25, 109, 315
73, 167, 359, 371
24, 91, 138, 357

10, 11, 373
9
22, 113, 155, 158
247
8

42, 66, 181, 235
183, 320, 321, 323

151, 153
50, 96, 97, 112, 203
44, 226, 367, 368

180, 272, 358
81
211
183

75-77, 159
13, 101, 377
52, 76, 288
130, 175, 218, 363, 372
78, 79
95, 127
369
314

5, 204, 311
246
310, 312-314

19, 35, 36
123-126
7, 57, 188
38

18, 216, 217
16, 17, 359
23, 111, 247

1, 48, 81, 144, 268-270, 298
221

154

136, 324
137, 252
287

86, 142, 164
78, 79
116, 117
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TABLE 1.-Continued

Endotoxic reaction Type of study References

Metabolic changes

Endocrinological changes

Release of and sensitization
to histamine

Vascular effects

Sanarelli-Shwartzman phe-
nomenon

Cytotoxicity

Abortion

Tumor-necrotizing effect

Interaction with complement

Shock and lethality

Carbohydrate mechanism
Lipaemia clearing
Effect on enzyme levels
Effect on serum iron content

Description and morphology
Relation to endotoxin susceptibility
Effect and role of cortisone
Endotoxin shock therapy by cortisone

Description and review
Histamine sensitization

Reviews
Mechanism
Role of epinephrine
Histological changes

Description or review
Local Shwartzman assay
Mechanism
Clinical observations
Relationship to hypersensitivity
Estimation

Description

Description
Mode of action

Description
Mode of action
Review of clinical applications
Estimation

Description
Role in endotoxicity

Description and mechanism
In pregnancy
Role of blood coagulation
Therapy
Species sensitivity

55, 115
189, 289, 290
4, 29, 31, 32, 82-84, 129, 199, 248
12, 156, 157

370
58
114, 162, 205, 341, 342
361

110, 133, 325
249, 352

104, 322
134, 135, 148, 302, 381
382
325, 338, 340, 349, 350

284, 299, 300
301
108, 186, 338, 339, 341, 342
307
320, 323
185, 253

28, 49, 123, 124, 126, 207, 208,
369

262
58, 94, 202, 347, 348

63-65, 147, 293
62, 69, 119, 294, 296
220, 379
295

37, 177, 219
103, 176, 206, 227

51, 134, 191, 285, 343, 355
94
116, 117
308, 361
27, 133, 309

systems which would not be affected by endo-
toxins.

Bennett and Beeson (22), Burrows (54), Zahl
and Hutner (380), Todd (344), Hoff (138), and
Raskova and Vanacek (254) have surveyed the
biological effects of endotoxins. The most
valuable reference source for the biological
activities of endotoxins at the present time is
the book Bacterial Endotoxins, edited by M.
Landy and W. Braun, which is the compilation
of the lectures and discussions of the International

Endotoxin Conference held at Rutgers Univer-
sity in 1963.

In the present review, the most characteristic
endotoxic reactions will be merely listed in Table
1 and, therefore, only a few of the relevant
publications can be quoted.

Sensitization and Desensitization Against
Endotoxic Effects

The effect of environmental temperature was
studied by Berry (30). It was observed that the
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mice showed remarkable sensitivity to Serratia
marcescens endotoxin at the extreme tempera-
tures of +5 or 37 C, while showing relative re-
sistance at +25 C. When the animals were
acclimatized to the extreme temperatures, the
LDso of the endotoxin preparation increased and
approached normal values. This seems to indi-
cate that endotoxin sensitizes the animals to heat
or cold. Rubenstein and Worcester reported
similar results (274).
The lethal effect of endotoxin in mice could

be enhanced by different chemicals and also by
different biological and immunological prepa-
rations. Triiodothyronine was found effective by
Melby and Spink (205). Selye, Tuchweber, and
Bertok (292) found that sublethal intravenous
(IV) injection of lead acetate increases the sensi-
tivity of rats to endotoxins of different origin
about 100,000 times above normal. The same
treatment in mice proved to be less effective.
Suter and associates reported the enhanced
sensitivity of mice to endotoxin by several
thousandfold after vaccination with BCG (327-
330). A review covering the hyperreactivity to
endotoxin injection was published by Suter (326).
The sensitivity of pertussis-inoculated mice to
endotoxin was reported by Kind (174). Aber-
nathy, Bradley, and Spink (2) reported the effect
of brucellosis on the sensitivity of mice. Barlow
(14) described hyperreactivity in mice infected
with choriomeningitis virus. The effect of BCG
infection in the resistance of mice to endotoxin
and bacterial infection was studied by Howard
et al. (143). Rutenberg and Michael (281)
described the reduced endotoxin-detoxifying
capacity of the reticuloendothelial system after
treatment with pertussis.
Reduced lethality to endotoxin in mice was

reported by Freedman and Sultzer (98) after
zymosan application. Benacerraf, Thorbecke,
and Jacoby (20) studied the effect of zymosan
on endotoxin sensitivity of mice. Several authors
investigated the effect of antibiotics on endotoxin
toxicity. Rifkind and Palmer (264) described
the neutralization of endotoxin toxicity in chick
embryos by three cationic polypeptide antibiotics.
Rifkind (263) reported that the mouse lethality
of endotoxins could be reduced by polymyxin B.
The action of sulfanilamide compounds on
mouse lethality was investigated by Hutner and
Zahl (146), and protective action was observed.
Spink and Su (316) found a protective action of
unsaturated fatty acids in similar systems. Condie,
Staab, and Good (67) observed that endotoxin
enhances susceptibility to snake venom. Tol-
erance to bacterial endotoxins induced increasing
resistance to snake venom. Further studies on
the biological relationship of endotoxins and

other toxic proteins were published by Staab,
Good, and Condie (317, 318).

Relationships Among Endotoxic Reactions
If all endotoxic reactions are elicited by one

single structural part or property of the endo-
toxin complex molecule, all these reactions should
run parallel in different endotoxic preparations.
In other words, an endotoxin which demonstrates
low reactivity in the Shwartzman assay should be
similarly less active in serological reactivity,
pyrogenicity, or chick embryo lethality determi-
nations. The fact that serological reactivity and
immunogenicity or toxicity are not related has
been demonstrated by the earlier experiments of
Boivin, Mesrobeanu, and Mesrobeanu (41),
as well as by several other authors who isolated
alkali-degraded or acid-degraded polysaccharides
which still precipitated with antisera but elicited
none of the characteristic endotoxic reactions.
The experiments of Thomas and Good (341, 342)
in dissociating lethality from Shwartzman re-
action by the use of cortisone gave the first
indication that these endotoxic reactions do not
show an all-out parallelism. Cortisone pretreat-
ment prevents lethality in mice or in chick em-
bryos but does not have any effect on the local
Shwartzman reaction. In some experiments, the
generalized Shwartzman reaction could be en-
hanced through prior application of cortisone.
This observation does not necessarily indicate
that the two biological reactions are elicited by
two chemically different structural entities of the
endotoxin macromolecule. It is also possible
that cortisone may affect the development of
one reaction in the host but does not interfere
with the other.

Chemical detoxification of endotoxin prepa-
rations indicated that the different biological
effects elicited may be selectively eliminated
while others maintain their original activity.
The most striking difference could be observed
between the toxic and the protective effects of
partially or completely detoxified endotoxin
preparations. Toxic properties could be di-
minished or completely abolished, whereas the
stimulation of the host defense demonstrable
in the nonspecific resistance reaction or the ad-
juvant effect of the preparations was preserved
(Noll and Braude, 228; Nowotny, 230 and 232;
Johnson and Nowotny, 154). The mechanisms of
chemical detoxification will be discussed in a
later chapter.

Milner and Finkelstein (213) compared py-
rogenicity for rabbits and lethality for chick
embryos, applying the samples intravenously.
Analyzing 182 different preparations containing
endotoxin, they found that the two tests could be
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employed interchangeably. Cundy and Nowotny
(73) followed the alkaline detoxification of
endotoxin preparations by using five different
toxicity measurements. It was found that during
mild alkaline inactivation, chick embryo lethality
is rapidly diminished and completely destroyed
in 30 min. During the same period, pyrogenicity is
enhanced and is followed by a gradual decrease
of activity. The activity is still demonstrable
after 24 hr of treatment. Mouse lethality showed
a somewhat parallel course, with the difference
of complete inactivation in 24 hr. Shwartzman
reactivity showed a steady increase up to 6 hr
of NaOH treatment. During the same period,
the chick embryo lethality was completely
abolished, pyrogenicity was reduced to approxi-
mately 20% of the original value, and mouse
lethality was almost completely abolished. These
results gave further support to the lack of re-
lationships among certain endotoxic reactions.

Fate of Injected Endotoxins

It is obvious that for the studies of the mode of
endotoxic action, the first step is to investigate
the fate of endotoxin in the host. Different meth-
ods were used to label the endotoxins. Shear's
tumor-necrotizing preparations were marked by
radioactive iodine (291). The preparation and
use of 32P-labeled endotoxins was first described
by Homma et al. (139). Similar preparations
were used later by Rowley, Howard, and Jenkin
(271), by Howard, Rowley and Wardlaw (145),
and by Ravin et al. (255). Braude and associates
(46) used 51Cr-labeled endotoxin and followed
the accumulation of 51Cr in different organs.
According to Braude (45), the complex between
the hexavalent chromium and the negatively
charged endotoxin is firm enough to assume that
detection of the labels in the organs indicates
the presence of undissociated 51Cr-endotoxin
complex. Similar labeling methods were used by
Skarnes and Chedid (305), and they reported
that liberation of 51Cr from its complex indicated
inactivation of toxicity. Naturally occurring or
chemically treated nontoxic derivatives of endo-
toxin do not have the capacity to complex with
51Cr to the same degree as toxic preparations.
According to the numerous investigators

in this field, endotoxin seems to accumulate
rapidly after iv injection in the reticulum cell-
rich organs. The spleen and especially the liver
appear to be primarily involved (85, 190). Other
organs where accumulation could be observed
were the endothelium of blood vessels (273), the
lung alveoli (15), and the spleen (47, 72). The
appearance of endotoxin in the liver is rapid;
the accumulation in the Kupffer cells can be

seen within a few minutes. The reaction of labeled
endotoxin with white blood cells seems to be even
more rapid. Immediately after the injection of
isotopically labeled endotoxin, heavy radio-
activity could be seen in the buffy coat of blood
samples (57). Herring et al. (130) found that
platelets absorb endotoxin. Erythrocytes do not
fix in vivo-labeled endotoxin. The effect of endo-
toxin on the macrophage migration as well as
its cytotoxic effects were studied (127). Detailed
studies of bacterial endotoxins on rabbit platelets
were carried out (78, 79). Cytotoxic effects of
bacterial lipopolysaccharides on mouse peritoneal
leukocytes were reported by Wiener, Beck, and
Shilo (369). Rubenstein, Fine and Coons (273)
found polymorphonuclear leukocytes to be
tagged with endotoxin 10 min after injection.
Detection of endotoxin in the brain after iv
administration was unsuccessful. The absorption,
distribution, and elimination of endotoxins was
thoroughly reviewed by Braude (45), whose re-
search team made the greatest contribution to
our knowledge in this field.
The reticuloendothelial system (RES) uptake

of toxic and chemically detoxified endotoxin
was investigated by Golub, Groschel, and
Nowotny (106, 107), using the method of Cremer
and Watson (72). Fluorescein-labeled antibodies
were used to detect the two preparations in
BRVR mouse organs, and it was found that
toxic endotoxin will start accumulating in the
spleen and liver, as reported earlier by several
investigators. In sharp contrast, detoxified
endotoxin was not taken up in measurable
amounts by these organs but remained in the
circulation for a relatively long time. Since de-
toxified endotoxin retains the first peak of the
pyrogenicity curve, this gave a biological assay
for following the fate of detoxified endotoxin as
well as of toxic parent material in the same ani-
mal. It was found that, whereas toxic endotoxin
is eliminated from the circulation relatively
rapidly by the RES, the detoxified material
remains in the circulation. In mice which were
either actively or passively immunized to endo-
toxin, the uptake of detoxified endotoxin by the
RES occurred at the same rate as the uptake of
toxic material. It was found that passively trans-
ferred immunoglobulin G is capable of facilitat-
ing the RES uptake of endotoxoids.
Whether these organs or cells are the direct

or indirect targets of endotoxic action is still
not known. Virchow (356) was the first to sup-
pose, in 1854, that a paralysis of the central
nervous system must be responsible for the
fever-inducing effect of certain agents. Since then,
investigators have claimed that endotoxin acts
on the central nervous system (92, 93, 163, 251,
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297, 303). While it is possible that the central
nervous system is involved in some of the endo-
toxic reactions, it is probably not the primary
target. Certain evidence shows that the primary
targets of endotoxin may be the platelets or the
leukocytes and that damage caused by endotoxin
releases certain materials (such as endogenous
pyrogen, blood clotting factors, and others)
which elicit a chain reaction, possibly acting
on the central nervous system as well as on the
vascular system.

RELATION OF STRUCTURAL PARTS TO
BIOLOGICAL FUNCTIONS

The problem may be summarized as follows.
Are polysaccharides or lipids or protein residues
responsible for the biological activities? Are
the biological activities all due to the existence
of one structural moiety, or are the diverse
biological properties elicited by different parts
or properties of the structure? There are sig-
nificant achievements as well as sharp disputes
resulting from the research related to these
questions.

Role of Polysaccharides
It has been established by the thorough and

elegant work of several scientific groups that the
polysaccharide moiety of endotoxin is the carrier
of 0-antigenic specificity. Major contributions
have been made through cooperative efforts
among the teams of Luderitz and Westphal in
Germany, Kauffmann in Denmark, and Anne
Marie Staub in France. Publications of these
results are numerous, the latest and most de-
tailed review having been published by Luderitz,
Staub, and Westphal (194).

Role of the Polypeptides
It has been known since the work of Panum

(245) that the pyrogenic materials are relatively
heat-resistant, a finding which has been con-
firmed by practically every later publication.
This rules out exotoxin-like proteins as carriers of
toxicity but does not entirely eliminate the possi-
bility that small peptides, resistant to 100 C
or to usual sterilization procedures, may be
involved either in toxic manifestations or in
other biological effects.
Homma and associates showed in a number of

publications that protein residues in Pseudomonas
aeruginosa endotoxins obtained from the autol-
ysis of cell culture or from mechanically dis-
integrated and washed cell walls were identical
both chemically and biologically. Pyocinic ac-
tivities were attributed to the proteins. This
activity could be demonstrated only after their

separation from lipopolysaccharide. These protein
moieties did not show resemblance to the muco-
peptide layer of the same cells. A review of the
work of Homma and Suzuki has been published
(141).
Jenkin and Rowley (150) isolated a toxic

protein from the gram-negative Vibrio cholerae.
This protein accounted for a major portion of
the toxicity of the whole cell. It was suggested,
based on chemical and immunological data,
that this toxic protein is identical with the pro-
tein moiety of the endotoxic trichloroacetic
acid-extracted antigen obtained from the same
strain by Boivin and Mesrobeanu (39). Dissoci-
ation of the Boivin type antigen isolated from
V. cholera was achieved by Jenkin and Rowley
by using urea and by precipitation with am-
monium sulfate.

L. Mesrobeanu, I. Mesrobeanu, and N. Mitrica
(209) reported the isolation of heat-labile neuro-
toxic endotoxins from the autolysate of gram-
negative bacteria. These preparations have a
high nitrogen content and represent the peptide
fraction of the Boivin-type antigen. Biological,
immunological, and some chemical properties
of these neurotoxic proteins were reviewed by
the same authors (210). Other protein toxins
were described as present in gram-negative
bacteria, such as "L toxin" in Salmonella enteri-
tidis (165) and several others.
The readiness of bacterial endotoxins to form

complexes with other biological macromolecules
is one of the most characteristic features of these
preparations. In relation to the above-mentioned
publications, one may not overlook the possi-
bility that the toxic proteins observed are not
covalently bound moieties of the endotoxic
lipopolysaccharide, but merely adsorbed to it
or extracted together with the endotoxins, thus
occurring as a contaminant in these preparations.

Lipid Moiety

The supposition regarding the governing role
of lipids of endotoxin in the various biological
activities can be traced back to the work of
Boivin, Mesrobeanu, and Mesrobeanu (41),
who obtained a phosphorus-containing lipid
precipitate during mild acidic hydrolysis. This
preparation was called "fraction A." A degraded
polysaccharide, "fraction B," was found in the
supernatant fraction of the acidic hydrolysate.
Whereas the latter fraction was nontoxic and
nonimmunogenic but reacted with 0-antiserum,
the lipid "fraction A" showed residual toxicity
in rabbits, without being antigenic or serologically
reactive.

Several other authors, listed earlier (231), re-
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ported the isolation and analysis of similar
lipids from endotoxins by using acidic hydrolysis.
The biological activity of this lipid precipitate was
also investigated, and the findings corresponded
to the observations of Boivin, Mesrobeanu, and
Mesrobeanu. *-

Binkley, Goebel, and Perlman (34) used acidic
and alkaline hydrolysis to obtain large break-
down products of endotoxin. By investigating
the chemical nature and toxicity of the prepara-
tions obtained, they concluded that a toxic
factor T must exist, which is neither protein nor
polysaccharide (335).

Intensive investigation of the lipids precipi-
tated by acidic hydrolysis was initiated by the
detailed work of Westphal and Luderitz (365).
This precipitate, called "lipid A," was isolated
and its constituents were analyzed. The biological
properties of "lipid A" were investigated by
Westphal and associates as well as by a number
of different laboratories. The results demon-
strated a 5 to 10% residual activity in the "lipid
A" (144, 160, 212, 222).

Westphal, Luderitz, and co-workers assumed
that the toxic T factor is "lipid A" (364-366).
The lipid is kept in solution in the lipopolysac-
charide by the lyophilic polysaccharide. The
removal of polysaccharide by acidic hydrolysis
reduces the solubility, thus resulting in the pre-
cipitation of the lipids. It was assumed that
reduced solubility of the isolated "lipid A" is
responsible for the reduced biological activity.
Analysis of the biological properties revealed
that a slight enhancement of pyrogenicity can be
achieved if the material is brought into a stable
colloidal form.

Ribi and associates disagreed with this as-
sumption. They obtained a highly toxic endotoxin
from S. enteritidis by using a mild extraction
procedure (259, 261). This preparation has been
claimed to be very low in fatty acid content,
a claim which was used by these authors to prove
a lack of relationship between lipid content and
endotoxic activity. A completely fatty acid-free
endotoxin with full biological activity could not
be obtained, however. In another series of ex-
periments, Ribi and associates isolated lipids
from endotoxins by using partial acidic hydrolysis
(257, 258, 260). With the chloroform-soluble
fraction of this precipitated "lipid A," biological
activities were measured. The results showed
that not 5 to 10%, but 0.1% or less, of the origi-
nal endotoxic activity can be demonstrated in
this preparation. The discrepancy is probably
due to the different preparations investigated.
Whereas Westphal and associates measured and
reported the biological activity of the entire
"lipid A" mixture, Ribi et al. used only the chloro-

form-soluble fraction which is especially rich in
free fatty acids and lacks the more polar con-
stituents of the "lipid A" precipitate (231).
A proper understanding of the heterogeneity

as well as the origin of the components in the
"lipid A" preparation should facilitate the ex-
planation of the residual biological activities in
these preparations. Westphal and Luderitz
consider "lipid A" as one molecular species
built into the complete endotoxin structure.
Attempts to fractionate "lipid A" soon revealed
a great degree of heterogeneity; at least 16 differ-
ent components could be detected. The precipi-
tate obtained by acidic hydrolysis consists of free
fatty acids, "phosphomucolipids" (the occurrence
of which was reported for the first time in this
precipitate), and amino acid-rich as well as
10 to 15% carbohydrate-containing phospho-
mucolipid fractions (53, 229, 231, 239). This is
understandable if one considers that "lipid A"
was obtained by partial acidic hydrolysis, which
yields completely liberated building stones,
barely altered acid-resistant cores, incompletely
degraded lipopolysaccharides, and all inter-
mediates. All split products which are insoluble in
hot acid will be precipitated by this treatment.
This means that the "lipid A" precipitate does
not consist of one chemically well-defined mo-
lecular species, but is a mixture of diverse chemi-
cal entities.
Whether all these constituents of the "lipid A"

precipitate are part of one or more lipid moieties
in the lipopolysaccharide fraction is not known.
It is difficult, although not entirely impossible,
to visualize them as breakdown products of only
one structural part, as Westphal and Luderitz
assumed. It seems more likely that the constituents
of the "lipid A" precipitate derive from different
subunits of the very complex endotoxin structure.
Whether these subunits are chemically identical
and occur as repeating units, or the different
lipid-rich zones represent related but not identical
structures, is the subject of current research in
the author's laboratories.
The biological activity of some of the isolated

fractions was investigated by Johnson and
Nowotny (unpublished). It was found that puri-
fied fractions showed a very low biological
potency in Shwartzman reactivity or in mouse
LD5o. The crude mixture, "lipid A," showed
significantly higher activity. Chemical analysis
revealed that the crude mixture may contain
incompletely degraded residual endotoxin. The
components of the "lipid A" precipitate are not
as toxic as they should be if they are the toxic
constituents of endotoxin. This has been es-
tablished by several authors. However, the possi-
bility that these fragments were parts of a toxic
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moiety in the intact endotoxin structure is not
excluded. The present method used for their
isolation is acidic hydrolysis, which not only
degrades the polysaccharide part but also par-
tially destroys or at least alters the structure of
these constituents.
The term "lipid A" should be used only as a

common name for all parts which become
insoluble after acidic hydrolysis. We recommend
the use of the term "lipid moiety" to designate
the long-chain carboxylic acid-containing areas
or zones in the endotoxin structure. These two
may be similar but are obviously not identical.

Polysaccharide-free Endotoxic Glycolipids

Laboratory procedures which could isolate
the lipid moieties in their intact native form are
not available, but nature provides bacterial
strains which lack the usual polysaccharide
part of their endotoxins. Luderitz et al. (193)
reviewed their investigation on the immuno-
chemistry or biochemistry of the S -- R con-
version and described a number of Salmonella
minnesota strains which differ in the size of the
O-antigenic polysaccharide part in the endotoxin
structure. One of these, S. minnesota R595, did
not contain pentoses, hexoses, or heptoses in the
phenol-water-extracted preparation. The con-
stituents present were hexosamines, 2-keto-
3-deoxy-octonate, fatty acids, and phosphorus.
Recent investigations on this preparation have
shown that "lipid A" obtained from this prepa-
ration contains a structural unit of phos-
phorylated glucosaminyl-3-1 ,6-glucosamine. In
the glycolipid, 2-keto-3-deoxy octonic acid-tri-
saccharide is linked to this unit, which carries the
long-chain fatty acids (105).

Luderitz et al. (193) as well as Tripodi and
Nowotny (346) showed that the different R
mutants, which lack some of the polysaccharide
side chains, are still potent endotoxins. Kasai
and Nowotny (161) isolated and purified a
glycolipid from rough S. minnesota R595 strain
and studied its chemical and biological proper-
ties. The glycolipids showed qualitative and
quantitative similarities in chemical constituents
to some fractions obtained from "lipid A"
mixtures. On the other hand, in contrast to the
biological activity of the "lipid A" preparations,
it has been found that the glycolipid showed full
endotoxic potencies in chick embryo lethality,
Shwartzman reactivity, and pyrogenicity as-
says (see also 237). Interestingly, these poly-
saccharide-free glycolipids were also active in
the consumption of complement as were smooth
lipopolysaccharides (206). This glycolipid prepa-
ration showed a strong enhancement of non-

specific resistance in mice. The mouse lethality
of the preparation was lower than that of the
corresponding smooth lipopolysaccharide. Simi-
lar results were obtained by Kim and Watson
(172). These results indicate that the polysac-
charide part is probably not essential for the
toxicity of endotoxins, and it is attractive to
consider these results as support for the signifi-
cant role of the lipid moieties in endotoxic
reactions.

SEARCH FOR THE TOXIC PRINCIPLE
Besides the "T factor" of Goebel and associ-

ates and the assumed identification of the "lipid
A" precipitate with the "T factor" by Westphal
and associates, there are several other theories
which claim to explain the biological activities of
endotoxins. These theories have been substanti-
ated by a few observations and experiments.

Role of Hypersensitivity
The most significant of these experiments is

unquestionably the study by Stetson, who re-
vealed similarities between the Arthus-type
hypersensitivity reaction and the local Shwartz-
man phenomenon (320, 321). Histological studies
of the skin area and of the surrounding tissues
after intradermal endotoxin injection revealed
changes resembling mild allergic reactions. Lee
and Stetson (187) found that enhancement of the
level of the so-called "natural antibodies" in
rabbits leads to increased skin sensitivity. Farr
(87) and Farr et al. (88) found that hypersensi-
tivity to protein antigens results in a biphasic
fever curve similar to that elicited by endotoxins
(see also 149). Kovdts (178) described a local
endotoxin hypersensitivity and related this
phenomenon to the Shwartzman reaction. Netzer
and Vogt (227) reported anaphylatoxin forma-
tion induced by endotoxin. Malkiel and Hargis
(195) described the observation of anaphylactic
reactions in mice which could be induced by
Bordetella pertussis endotoxin. Landy and as-
sociates (184) as well as Abernathy and Landy
(3) reported decreased sensitivity in germ-free
guinea pigs. In summary, it was stated by Stet-
son (322, 323) that all major endotoxic effects,
such as fever, shock, and the local Shwartzman,
as well as the generalized Sanarelli-Shwartzman
phenomenon, may be reproduced experimentally
by interaction of nontoxic antigens with the
corresponding antibodies. It was assumed that
normal animals are hypersensitized against
gram-negative bacteria, and the existence of this
hypersensitized state in all experimental labora-
tory animals as well as in man is responsible for
endotoxic reactions. Recent publications of
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Bonilla-Soto (43), Kovaits and Vegh (179), and
of Pitkin (250) show further relationships be-
tween hypersensitivity reactions and endotoxic
action.

Others found a number of differences between
hypersensitivity reactions and endotoxic effects
(123, 124). The results of Kim and Watson (171)
are in disagreement with Stetson's postulate.
These authors found that immunologically
virgin piglets, obtained by Caesarian section and
kept under strictly germ- and antigen-free con-
ditions, were just as sensitive to endotoxin as
fully grown animals. Watson and Kim (360)
supposed that hypersensitivity may play a role in
febrile response and that this is expressed in the
second peak of the fever curve, but that a pri-
mary toxicity of the endotoxic preparation also
exists which is responsible for the toxic mani-
festations in the immunologically virgin piglets.

Chemically detoxified endotoxins, obtained by
potassium methylate treatment, resulted in
enhanced reactivity with 0-antiserum. The im-
munogenicity of this preparation if injected 8
to 10 times during a month resulted in an anti-
body titer, measured by passive hemagglutina-
tion, identical to toxic endotoxins (154, 230).
More recent results demonstrated that, although
no difference could be found in the quantity of
the immunoglobulins produced, there are quali-
tative differences in the immune response (235).

Relation of Particle Size to Endotoxicity
Numerous publications describe the inactiva-

tion of biological macromolecules by simple
dissociation using detergents or other dissoci-
ating agents. Most of these reactions are re-
versible. Rivkine used anionic surface-active
agents in studying gram-positive bacterial anti-
gens (265). Young, Harrington, and Kielley
dissociated and reassociated myosin (378).
Hersh used sodium lauryl sulfate for the re-
versible dissociation of alcohol dehydrogenase
(131). Stellwagen and Schachman dissociated
and reconstituted aldolase (319). Roberson et al.
(266) demonstrated that a certain degree of
polymerization is necessary for optimal activity
in toxicity of staphylococcal cell wall prepara-
tions. Similar observations were reported by
these same authors in measuring the potency of
endotoxin preparations (267).
The same explanation for toxicity was ad-

vanced by Ribi and associates who, in a series of
papers, elaborated the claim that a certain
particle size of endotoxins is required for the
toxic manifestations. Degradation by mild
acidic hydrolysis was used for these studies and
it was found that, below a certain particle size,

the preparation is no longer toxic (118, 214, 257,
260). They hypothesized, therefore, that a
causal relationship exists between the reduction
of size and loss of toxicity.
The same group also isolated a biologically

inert hapten from the protoplasm of Escherichia
coli cells (257). According to their chemical data,
this material had a composition identical to
that of a fully active endotoxin, but its molecular
weight was much lower. This material was first
called "native hapten," which term was later
modified to "native protoplasmic polysaccharide"
(276). The first chemical analysis revealed no
difference in the percentage of fatty acid or in
other constituents present in these preparations.
The hypothesis was that formation of active
endotoxin from these inactive native haptens
occurs through polymerization of the subunits
into an active complex which now has the re-
quired size to elicit toxic reactions. This was
offered as additional proof of the determining
role of a certain particle size in endotoxic ac-
tivities. The claim that the protoplasmic hapten
is a precursor of endotoxin was later deempha-
sized by the same authors (276). Similarly, the
application of improved chemical analytical
procedures revealed that the major chemical
difference between the protoplasmic hapten and
toxic endotoxin is the lack of long-chain car-
boxylic acid in the former substance (6).

Oroszlan and Mora (243) initiated the use of
the detergent SLS (sodium lauryl sulfate) for
the dissociation of subunits of S. marcescens
endotoxin. A strong reduction in the sedimenta-
tion rate was observed in an analytical ultra-
centrifuge, which was paralleled by inactivation
of the tumor-necrotizing effect. If the detergent
was removed by alcohol extraction, the activity
was restored. Ribi and associates (256) and Rud-
bach et al. (275) reported the results of studies
with applied sodium desoxycholate (NaD).
Ribi, Rudbach, and associates observed that
endotoxin treated with NaD shows degradation
and simultaneous loss of pyrogenicity. Dilution
or dialysis leads to recombination of endotoxin,
achieving a molecular weight of 500,000, and the
recovery of pyrogenicity. The presence of serum
proteins inhibits the recombination of the sub-
units. The authors conclude that a certain mi-
cellar organization of inert subunits results in an
active endotoxin macromolecule. Rudbach,
Milner, and Ribi (279) reported that dissociated
and inert subunits of different endotoxins can
be combined into hybrid macromolecules. Such
subunits will form a complex if the NaD is
removed from the mixture, and the complex will
carry both the serological specificity and the

81VOL. 33



BAcrERIOL. REV.

characteristic biological activity. It is important
to stress one of the findings of this team; i.e.,
the so-called "native protoplasmic polysac-
charides" which lack long-chain fatty acids can-
not be combined into hybrid endotoxin mole-
cules. It seems to us that the constituents which
take an active part in the reaggregation of the
subunits may be identical with those responsible
for the complex formation between endotoxin
and its cellular targets.
The results of Oroszlan and Mora as well as

of Ribi and associates appear to indicate that a
certain organization of subunits into fringe
micelles is the structural requirement of biologi-
cal activity of endotoxin. One consideration may
not be overlooked, and that is the possibility that
the small subunits are inactive not because they
are small or disorganized, but because they are
complexed with the dissociating agents SLS or
NaD or with proteins. These agents may mask
or inhibit the reactivity of the subunits, pre-
venting reaggregation as well as action on the
targets. The problem could be answered only if
subunits could be isolated without the presence
of detergents or serum proteins. Such a prepara-
tion has not yet been obtained.
Recent results from our laboratory (unpub-

lished) showed that mouse lethality and local
Shwartzman skin reactivity of endotoxins in
rabbits are enhanced or unchanged by the addi-
tion ofNaD in a final concentration of 0.2%. This
has been observed with E. coli 08, Salmonella
typhi 0901, or Serratia marcescens, and with
endotoxins extracted with phenol-water as well
as with trichloroacetic acid-soluble endotoxins
from these strains. No explanation for the differ-
ent effects of NaD on pyrogenicity and on
Shwartzman reactivity or mouse LD50 can be
offered at the present time.

Toxic Constituents or Toxic Conformation?
In the search for a chemical explanation of

toxicity, two working hypotheses can be ad-
vanced: (i) that the material contains subunits
which are toxic even if cleaved from the macro-
molecule, or (ii) that the macromolecule does
not contain such toxic groups but is built up of
nontoxic functional groups in such an arrange-
ment that the whole entity will have toxic ef-
fects on the subcellular targets of endotoxic
action. Similar examples for the first as well as
for the second possibility can be found among
plant akaloids, enzymes, animal poisons, bac-
terial exotoxins, and in a number of other
natural products.
That the first assumption would apply to

bacterial endotoxins could not be substantiated

by hitherto-described experimental results. The
possibility that such toxic constituents exist,
attached to the endotoxic molecule, still cannot
be eliminated, but their isolation, free from the
rest of the endotoxin, cannot be achieved by
present procedures without the destruction of this
constituent.

It seems most likely that toxic endotoxin is
built of otherwise harmless constituents, such as
naturally occurring carbohydrates, fatty acids,
phosphoric acid, and amino acids. The incorpora-
tion of these constituents into a macromolecular
structure may be such that they provide a "toxic
conformation" (241, 346). Earlier as well as
more recent results which will be discussed later
indicate that the presence of long-chain carboxylic
acids, ester- or amide-bound to a polysaccharide
backbone, play a dominant role in the creation
of the "toxic conformation" (230, 232, 233).
It must be strongly emphasized that other func-
tional groups may also be involved in endo-
toxicity.

DETOXIFICATION AS AN APPROACH
Several methods are known by which the toxic

manifestations of endotoxic preparations can be
eliminated. These range from biological observa-
tions through chemical and physicochemical
changes in the endotoxin molecule. A review of
the phenomena and a discussion of their mecha-
nisms may aid in approaching a better under-
standing of the problem.

Biological and Biochemical Detoxification
Hegemann (120, 121) and Hegemann and

Lessmann (122) described and studied the
endotoxin pyrogenicity-inactivating effect of
fresh human serum. Hegemann observed that
incubation of endotoxin with serum or with
plasma inactivates the pyrogenicity of the endo-
toxin within a few hours. Landy et al. (182)
and Skarnes et al. (306) investigated this phe-
nomenon in more detail. The enzymatic nature
of the detoxifying effect was emphasized (166).
Cluff and associates (59-61) observed that short
incubation of endotoxin with serum has an en-
hancing effect on pyrogenicity. Kimball and
Wolff (173) reinvestigated the experiments of
Cluff and co-workers and were unable to
observe enhanced pyrogenicity due to incubation
with serum. Yoshioka and Johnson (376) as
well as Rudbach and Johnson (277) fractionated
serum and found that the Cohn fraction IV-1
contains the substance which decreases endo-
toxin pyrogenicity. They attempted, unsuccess-
fully, to isolate breakdown products after in-
cubation of endotoxin with the Cohn fraction
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IV-1. These authors found later that the de-
toxification of pyrogenicity by the serum proteins
is due not to an enzymatic effect but to complexing
proteins. Strong proteolytic enzymes, such as
Pronase, removed the protein from the complex
and restored the toxicity of the liberated endo-
toxin (278).

Skarnes and Chedid (305) reported the deg-
radation and inactivation of endotoxin by
serum. Skarnes' more recent results (304) showed
that two serum enzymes are responsible for the
detoxification. One of the enzymes can degrade
the endotoxin into smaller particles without
destroying its biological potency. Another en-
zyme also present in the serum detoxifies the
already degraded endotoxin. Both enzymes
were isolated from serum by column chroma-
tographic procedures. The second enzyme showed
esterase activities.

Other enzymes, although not isolated, were
thought to be actively involved in the in vivo
detoxification. One of these enzyme systems was
studied by Corwin and Farrar (68, 89, 90).
The detoxifying properties of the liver were
studied by these authors who found that, if the
liver has been damaged by carbon tetrachloride,
it loses its capacity to destroy endotoxins. At
the same time, the authors found that the lipo-
peroxidase activity of the liver is also diminished.
These results indicate that lipoperoxidases may
be involved in detoxification. Rutenburg and
associates (281-283) studied the similar effect of
the spleen in vivo. They observed that endotoxin
mouse toxicity is diminished during perfusion
through the dog spleen in vivo. The results in-
dicate that the detoxifying process is rapid and
the reaction rate has a different order of magni-
tude than was obtained with normal serum.
Attempts to isolate these enzymes from tissue
homogenates were unsuccessful. Oroszlan, Mora,
and Shear (244) succeeded in neutralizing endo-
toxicity by incubating endotoxin with liver
homogenates. This reaction, as well as the serum-
neutralizing effect on endotoxin investigated by
Oroszlan and associates (242), could be reversed
by a strong polyanion, polyglucose sulfate,
which dissociated the endotoxin from its com-
plexing liver proteins or serum proteins.
Kim and Watson attempted to remove the

peptide residues from their endotoxin by using
papain (169). According to the already-men-
tioned hypothesis of Watson and Kim, these
peptides may be responsible for the hypersensi-
tivity-like reactions of endotoxin. Removal of
the peptides by papain resulted in the loss of the
second peak of the pyrogenicity curve. Rudbach,
Ribi, and Milner (280) reported that inactivation
of pyrogenicity with papain is due not to en-

zymatic action, but to complexing of papain
with the endotoxin. The use of Pronase removed
the complexing papain and restored the pyro-
genicity.

Detoxification by Complexing
Several examples in the preceding chapter

clearly indicated that some detoxifications re-
ported may involve complex formation of endo-
toxin with other nontoxic substances. Additional
experimental data will be reviewed here, showing
that the formation of complexes is one of the
most characteristic features of endotoxins. It
was shown by Sarvas, Luderitz, and Westphal
(286) that phenol extraction of a mixture of two
different gram-negative bacterial cells will re-
sult in a hybrid endotoxin which will carry both
serological characteristics. Rudbach, Milner,
and Ribi (279) observed a similar phenomenon.
Endotoxin forms aggregates but it also forms
complexes with other materials. Takeda et al.
(333) were the first to complex endotoxin with
casein under alkaline conditions. This endotoxin-
casein complex showed unchanged biological
activity. Neter et al. (224) investigated the com-
plex formation between basic proteins, such as
histone and protamine, and endotoxins. Wood-
side and Fishel (374) reported that gelatin forms
complexes with endotoxin and neutralizes its
biological properties.
Complex formation may result in loss of tox-

icity if the nontoxic substance blocks the active
site of the endotoxin and thus mechanically in-
hibits contact with the target. It is also feasible
that complex formation results in distortion of
the toxic structure. Neutralizing of endotoxicity
by antibodies, which is discussed in the next
chapter, is an example of these possibilities.

Immunochemical Detoxification

Passive immunization with antiendotoxin
serum injected into experimental animals before
or simultaneously with endotoxin did not achieve
significant protection (40, 69-71, 215, 362).
Kim and Watson (170) showed that endotoxin
tolerance can be passively transferred by injec-
tion of isolated 19S immunoglobulins of a tol-
erant rabbit serum, but the same authors claimed
that no relationship exists between this pro-
tection and the 0-antibody titer of the sera.
Tate and associates (336) described a sub-
cutaneous injection of rabbit 0-antiserum re-
ducing the lethality of endotoxin in mice. No-
wotny, Radvany, and Neale (238) and Radvany,
Neale, and Nowotny (253) reported that O-anti-
serum can neutralize toxic reactions of endotoxic
O-antigen preparations if it is incubated in vitro
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with the endotoxin. If the endotoxin was mixed
with the corresponding hyperimmune O-anti-
serum, an optimal 1:6 antigen/antibody ratio
was established. This precipitate showed no
signs of pyrogenicity, Shwartzman reactivity, or
mouse lethality when injected ip (intraperi-
toneally) or iv. If less than optimal amounts of
antibody were mixed with endotoxin and incu-
bated, such as 3% of the optimal amount, abolish-
ment of the second fever peak could be readily
observed. This shows the presence of antibodies
with high affinity for endotoxin, or it may in-
dicate that those parts of the endotoxin molecule
which elicit this hypersensitivity-like reaction
are already blocked by the first few antibody
molecules. If antiendotoxoid (endotoxoid =
chemically detoxified endotoxin) serum was used
for the neutralization of toxic endotoxins, no
similar protection could be achieved. If rabbit
hyperimmune serum was absorbed by endotoxoid
(which does not contain the hypothetical toxic
site or toxic conformation but still reacts with
O-antibodies), the hyperimmune serum super-
natant fluid retained its capacity to neutralize
Shwartzman skin reactivity or pyrogenicity.
Detoxification with antiserum may be due to
simple coating of the endotoxin molecule with a
sixfold amount of antibody proteins. On the
other hand, the use of antiendotoxoid serum as
well as adsorption of hyperimmune rabbit
O-antiserum with endotoxoid indicates that
probably two different structural parts of the
lipopolysaccharide are responsible for O-anti-
genicity and for toxicity.
Although Kim and Watson were able to pas-

sively immunize animals with 19S immunoglobu-
lins against pyrogenic and lethal effects of endo-
toxin, they could not neutralize the same effects
by using hyperimmune rabbit serum (171).
Berczi (26) reported that antiendotoxin serum
prepared in rabbits neutralized the chick embryo
lethality of endotoxin if incubated for 1 hr at
37 C. A 0.005-mi dose of the serum neutralized
100 LD100 for chick embryos. Normal rabbit
serum had no neutralizing effect. These latter
results support the observations of Radvany et
al. (253).

Chemical Detoxification
In the past, numerous attempts have been

made to destroy the pyrogenic materials present
in certain pharmacological preparations and
solutions. Campbell and Cherkin (56) destroyed
pyrogens by hydrogen peroxide. Suzuki (331,
332) used other oxidizing agents and successfully
eliminated pyrogenicity in different solutions.
Treffers (345) detoxified whole bacteria by
acetylating the entire cell. The preparation ob-

tained was able to elicit antibody production
but showed no toxic manifestations. Freedman,
Sultzer, and Kleinberg (100) used basically the
same procedure to inactivate endotoxins. These
authors showed that, while acetylation of bac-
terial endotoxin leads to detoxification, the
preparation retains its ability to stimulate non-
specific resistance. More detailed studies and
comparisons of other different endotoxic prop-
erties were also published by Freedman and
Sultzer (99). Noll and Braude (228) used lithium
aluminum hydride to destroy pyrogenicity of a
trichloroacetic acid-extracted endotoxin of E.
coli. These authors showed by infrared spec-
troscopy that this procedure resulted in the elimi-
nation of some ester-bound fatty acids. The
material, while nontoxic and nonpyrogenic,
maintained full immunizing potency. Fukushi
and co-workers (102) were unable to reproduce
these results. Various other chemical procedures
were used to obtain similar preparations (230).
Transesterification with boron trifluoride, 0-acyl
cleavage with potassium methylate, and dissoci-
ation with an equimolar mixture of pyridine and
formic acid were found to destroy mouse le-
thality in these preparations while maintaining
serological reactivity. Further analysis of the
most characteristic endotoxic reactions elicited
by these chemically detoxified preparations was
reported by Johnson and Nowotny (154). The
chemical changes elicited by detoxification
showed that these three detoxifying procedures
have a common feature, the cleavage of ester-
bound carboxylic acids (232). Martin and
Marcus (197, 198) detoxified crude endotoxin
from Salmonella typhimurium by acetylation and
periodate oxidation, in addition to the above
three procedures. Similar results were obtained,
yielding a nontoxic but immunogenic preparation
which they suggested for use as an enteric vac-
cine.

Alkaline Detoxification

Martin (196) observed that both alkaline and
acidic hydrolysis destroy mouse LD50 of S.
typhimurium endotoxin. Neter and co-workers
(225) studied the effect of heat and chemicals
on the erythrocyte-modifying, antigenic, toxic,
and pyrogenic properties of lipopolysaccharides.
Among the methods used was alkaline partial
hydrolysis. It was observed that pyrogenicity is
not completely lost during this treatment. The
red cell-modifying capacity of endotoxin and
its reactivity with homologous 0-antiserum was
maintained. Tauber, Russell, and Guest (337)
used alkaline hydroxylamine to remove lipids
from an endotoxic lipopolysaccharide. The
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result was a highly soluble preparation which
did not show endotoxic properties. Tripodi and
Nowotny used alkaline hydrolysis by dilute
NaOH and studied the kinetics of the loss of
toxicity observed (346). Measurements with
light-scattering photometry showed that the
particle size of the endotoxin decreases rapidly
after the addition of 0.1 N NaOH at 25 C (room
temperature). This rapid fall in particle size
levels off in approximately 2 to 3 hr, and there-
after no significant further decrease in particle
size can be observed. After measuring the
changes in mouse lethality during the same time,
it was reported that mouse LDso is not decreased
in the first 3 hr, thus showing that there is no
parallelism between a certain particle size and
mouse lethality. The mouse lethality of this
alkali-hydrolyzed endotoxin started to decrease
after 3 hr and reached practically a nontoxic
state in 6 to 8 hr of the above treatment. During
this time, barely measurable further changes
could be observed in the particle size measured
by light-scattering photometry. On the other
hand, measurement of the molecular dissym-
metry by light-scattering photometry revealed
that, whereas the dissymmetry of the particles
seems to show no change in the first 3 hr, it starts
to increase gradually between the 3rd and 8th
hr, thus showing a time relationship between
loss of toxicity and changes in molecular sym-
metry. It was postulated that unfolding or swell-
ing of the molecule takes place and induces
distortion of the original toxic structure. By
analyzing the split products liberated during
alkaline detoxification, fatty acids were found,
the major percentage of these being palmitic
acid.
Whether the distortion of the "toxic conforma-

tion" is due to the cleavage of weak forces or to
the split of covalent linkages was also investigated
(240). By investigating the kinetics of the alkaline
inactivation, the activation energy of the reaction
was measured. It was found that the magnitude
of this reaction is 11 kcal, which is much higher
than the energy requirements of simple dissocia-
tion.

McIntire and co-workers (201) studied endo-
toxic lipopolysaccharides from E. coli K cells
and obtained similar results. The measurements
included aggregation, lipid content, and molecu-
lar charge. These properties were related to
toxicity, pyrogenicity, and serological reactivity.
It was observed that disaggregation by sodium
lauryl sulfate did not decrease pyrogenicity.
Succinylation has little effect on the same param-
eter. A high degree of molecular assymmetry was
indicated by the observed very low sedimentation

values in an analytical centrifuge in relation to
light-scattering figures.
Marx and associates (200) studied the relation-

ship between particle size measured by sedimenta-
tion in an ultracentrifuge and mouse lethality
determined in adrenalectomized animals. It was
observed that alkaline hydrolysis degrades endo-
toxin but decrease in particle size is not followed
by detoxification. These findings are in agreement
with earlier reports (346).

Chemical and Biological Changes Induced
by Detoxiflcation

The principal aim of detoxification was to
introduce limited chemical changes in the struc-
ture, followed by determination of the changes in
biological potency. If the chemical change is
restricted to a certain group in the structure, the
role of this group in one or several biological
properties may be estimated.

There are two shortcomings to this approach.
(i) The chemical changes induced in the structure
are usually not restricted to a limited part or to
one type of functional group in the structure.
Acidic hydrolysis acts in a random manner,
causing not only cleavage of acid-sensitive link-
ages but also transformations in the structure,
many of them being irreversible. Alkaline hy-
drolysis is somewhat more selective but, in
addition to fat saponification, distortions of the
structure also occur. More specific chemical at-
tacks were sought, but it is obvious that their
action is not directed entirely against selected
functional groups or linkages. It is especially
difficult to trace all reactions in a structure as
complex as endotoxin. (ii) The other difficulty is
equally important. To follow the effect of chemi-
cal alterations on biological potencies, it is
essential to apply at least semiquantitative bio-
logical measurements. Most of the assays either
do not give a linear dose/response relationship,
or do so in a narrow interval. Application of im-
proper doses may give erratic information. These
facts are well known to the pharmacologist and
physiologist but are remarkably infrequently
applied in other fields. Bearing these two pitfalls
in mind, let us sum up and evaluate the results of
the detoxification of endotoxins.

Regarding the changes in chemical structure,
one cannot overlook the fact that fatty acids are
involved in a large number of detoxifying pro-
cedures. Oxidation, acidic hydrolysis, acetylation,
and especially deacylation alter the number of
short- or long-chain carboxylic acids surrounding
some regions of the endotoxin molecule with a
nonpolar layer. Detoxification with LiAlH4, al-
kaline hydroxylamine, boron trifluoride, or
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potassium methylate cleaves ester linkages. The
detoxifying effect of saponification with dilute
alkali such as sodium hydroxide, potassium hy-
droxide, lithium hydroxide, or with concentrated
-ammonia fits into this picture. Nonionic deter-
gents do not saponify, but they may act by disso-
ciating nonpolar interactions between long ali-
phatic chains.
The results of structural changes during some

chemical detoxifications have been investigated,
but their chemical mechanisms are still far from
completely clarified. These can be studied only
on homogeneous endotoxin preparations.

Alterations in biological potency were also ex-
amined. In addition to those already discussed, a
number of recent results will be summarized here.
In these experiments, potassium methylate (endo-
toxoid-2)- or sodium hydroxide-detoxified prep-
arations were used for the most part.

Investigating the lethality of the preparations,
Chedid (unpublished data) used adrenalectomized
mice. In these experiments it was shown that an
approximately 100-fold decrease in lethality
could be achieved by potassium methylate detoxi-
fication. The hemodynamic properties of the
endotoxoids were investigated by Johnson and
Anderson-Imbert (152). It was found that endo-
toxoid-2 has no effect on the blood pressure
measured in the femoral artery of rabbits. Pre-
treatment of rabbits with detoxified endotoxin for
24 hr or up to 7 days before challenge with toxic
endotoxin prevented the development of the
typical hemodynamic changes elicited by endo-
toxins or by virulent gram-negative bacteria. The
results of Urbaschek and Nowotny (350, 351)
showed that endotoxoid-2 is able to elicit an endo-
toxin tolerance-like state. A single injection of 1
,gg of endotoxoid-2 into guinea pigs 24 hr before
they were challenged with a lethal dose of
serologically unrelated toxic endotoxin prevented
50% mortality. Higher endotoxoid doses resulted
in complete prevention of endotoxic shock. Burn-
shock of guinea pigs was prevented by applying
a 100 A.g/100 g (body weight)-dose at 24 hr before
the burn. Alterations were observed microscopi-
cally in the microcirculation of hamster cheek
pouch shortly after administration of the endo-
toxins. This characteristic effect was eliminated
by pretreatment of the animals with a single
100 g/i100 g (body weight)-dose of endotoxoid-2.
Pyrogenicity tolerance in monkeys was achieved
only after twice-repeated iv injections of endo-
toxoid-2, 24 hr apart. Tolerance of Shwartzman
local skin reactivity in rabbits could not be in-
duced even after five-times repeated endotoxiod-2
injections given iv (350).
The nonspecific resistance-enhancing effect of

these preparations was investigated in several as-

says. The results in mice challenged with virulent
Salmonella typhosa 0901 cells 24 hr after pre-
treatment with detoxified endotoxin showed that
the detoxified material has activity comparable to
that of toxic preparations. Wiener, Beck, and
Shilo (unpublished data) found that detoxified
endotoxins at higher levels showed protection in
levanized rabbits comparable to that of toxic
endotoxin. At lower dose ranges, the toxic material
gave higher protection. The effect of detoxified
preparations on the phagocytic index enhance-
ment was similarly lower than that of the toxic
materials.

Differences in the uptake of endotoxin and
endotoxoid by the RES were investigated by
Golub, Gr6schel, and Nowotny (107), as dis-
cussed earlier. The results show that 2-mercapto-
ethanol-resistant immunoglobulins facilitate the
entry of endotoxoid into the RES.

These results are in correlation with recent ob-
servations (235) on the immunogenicity of toxic
and detoxified materials. By injecting toxic or
nontoxic endotoxins several times in increasing
doses, approximately the same antibody titer was
achieved in 4 weeks. One significant difference
was observed during the immunization. While
toxic endotoxin produced 2-mercaptoethanol-
sensitive and -resistant antibodies simultaneously,
endotoxoid-2 produced mostly 2-mercaptoetha-
nol-sensitive antibodies in the first 10 days. At
this time, detectable amounts of resistant anti-
bodies occurred in the peripheral blood, and from
this time on, a rapid production of resistant
antibodies was the response.
Gewurz et al. (103), who studied the consump-

tion of complement by endotoxin without the
addition of antibodies, observed that detoxified
preparations lack this capacity. The degree of
detoxification, measured by other biological
parameters, showed parallelism with the dimin-
ished ability to fix complement. The gradual de-
crease of complement-fixing capacity of a sodium
hydroxide-detoxified preparation showed an ap-
parent parallelism with the pyrogenicity or mouse
lethality measurements. These findings support
the hypothesis that some endotoxic reactions may
be mediated through complement.
The evaluation of these experiments with

detoxified preparations is difficult at the present
time. What seems to be an important achieve-
ment is the detection of a lack of relationships
among certain biological properties, such as
lethality and the development of endotoxin toler-
ance or adjuvant effect. Serological reactivity
seems to be unrelated to toxicity. Endotoxoids
seem to be able to stimulate the defenses of the
host just as well as toxic endotoxins. A lack of
relationship even among different toxic param-
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eters was shown by using partial detoxification
with NaOH.
On the other hand, the use of endotoxoids as

well as partially detoxified preparations gave in-
sight into relationships hitherto not recognized.
Examples of this are the lethality and comple-
ment-fixing capacity, as well as pyrogenicity,
RES uptake and toxicity, toxicity and immuno-
globulin G production, and some others.
Summing up the studies of detoxification, the

assumption is that not merely a certain particle
size or shape, but the existence of functional
groups in the endotoxin structure are essential
for toxic manifestations. The distances between
the essential functional groups and their arrange-
ment seem to be important also to create a toxic
conformation. If this is destroyed, by cleaving off
some of the essential functional groups or by
changing the distance between them through
hydrolysis or through distortion or by masking
these groups through complex formation, the re-
sult is detoxification.

THEORETICAL CONSIDERATIONS OF THE
POSSIBLE ROLE OF FATTY ACIDS IN

ENDOTOXICITY

The chemical structure of the lipid moiety of
endotoxins is unique, and no other natural
products of similar structure have been reported
to date. The biological effects are also unique,
especially with regard to the great variety of re-
actions elicited by endotoxins. The singular
structural features of endotoxins are the fatty
acid-carbohydrate linkages, which so far have not
been found in any other natural products (229,
231, 239). Numerous data show that the presence
of fatty acids and their derivatives is essential for
the elicitation of endotoxic reactions (230, 232,
233, 346).
How these long-chain carboxylic acids can

endow the lipopolysaccharide molecule with toxic
properties has been discussed in the past (346).
These theoretical considerations included facili-
tated passage of the endotoxin through the lipo-
philic membranes owing to its fatty acid content,
and the possibility that the presence of long-chain
acids in the lipopolysaccharide molecule will
slow down enzymatic breakdown by enzymes
present in normal hosts. Some other theoretical
considerations were based on the possibility that
the long aliphatic chains of the fatty acids form
nonpolar binding forces. These may serve as
intramolecular forces holding the endotoxin in a
certain toxic conformation and may participate
in aggregation, in polymer formation of endotoxin
molecules.
Some results seem to indicate that the role of

fatty acids may be even more important in the
complex formation between endotoxin and its
subcellular targets. Adhesion of endotoxin to red
blood cell membranes was the basis of passive
hemagglutination developed by Neter and associ-
ates (223). Unusual firmness of the antigen-anti-
body complex was observed if endotoxin was pre-
cipitated with 0-antibodies (253). Great affinity
of endotoxin to certain ion-exchange polymers
has been reported (140, 236). Removal of fatty
acids from endotoxins by alkaline hydrolysis re-
sults in complete loss or great decrease in the
firmness of such complexes in the above systems.
Partial or complete removal of the fatty acids
from endotoxin results in detoxification also.
How complex formation between endotoxin

and its subcellular targets may result in harmful
effects to the host may be visualized by inhibition
of the normal function of the subcellular target
or interference with its normal metabolism.

It seems important to emphasize that the pres-
ence of all the long-chain carboxylic acids found
in an endotoxin are not necessary to elicit endo-
toxic manifestations. In fact, potassium methylate
treatment carried out at 20 C indicated that al-
most 50% of the total fatty acids can be removed
from a partially purified endotoxin without alter-
ing toxicity. If, however, potassium methylate
treatment is continued at 56 C, an additional 24
to 26% of the total fatty acids will be cleaved,
resulting in loss of toxicity. The identity and loca-
tion of these apparently essential fatty acids are
the subject of present investigations in our labora-
tories. The requirement for chromatographically
homogeneous endotoxins in this type of study
cannot be overemphasized.

SOME OF THE UNANSWERED PROBLEMS
Only a few of the most intriguing but little

understood problems can be mentioned here. The
first is the lack of a clear understanding of the
target of endotoxic action. It is known that cer-
tain bacterial exotoxins find their receptors in the
sialic acid of the brain gangliosides (354). The
mechanism of many poisons is less clearly under-
stood but quite well described in modem phar-
macology. In the action of endotoxin, not even
the cell types which may serve as the targets of
endotoxin action are unequivocally identified. A
proper knowledge of the endotoxic targets, cellu-
lar or subcellular, is essential for the clarification
of the mechanism of endotoxic action, and it
would also facilitate the identification of the
active sites on the endotoxin structure.
The heterogeneity of endotoxic preparations

(234, 236), demonstrable not only in polydisper-
sity but in the chemical composition of the frac-
tions. is unquestionably the most disturbing fea-
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ture of this research. Results indicate that no one
type of endotoxin molecule exists, but that several
active and chemically different molecular com-
plexes are present in some endotoxin prepara-
tions. Whether they act similarly or there is a
difference in their mode of action is not known.
The question of whether the isolated fractions
have an active site identical in all molecular
species of endotoxin or whether different active
sites exist which carry out different roles in endo-
toxic action is similarly unanswered.

Recent observations from our laboratories
showed that reduction in lethality (LD5o in chick
embryos) occurs in endotoxin preparations during
purification by column chromatography. Iso-
lated components, showing a higher degree of
homogeneity, were less active than the crude
starting material. Recombination of the isolated
fractions enhanced their lethality, although the
original activity could not be restored. Whether
this phenomenon is a simple loss of activity due
to the procedure applied, or whether it indicates
that synergistic effects of the several fractions are
required for high toxicity, is under current in-
vestigation.

SUMMARY
No other natural product is known which

would elicit such a great variety of reactions as
do endotoxins when injected into the proper host.
These characteristic endotoxic effects show a
certain degree of interrelationship, but not all
activities are present in all endotoxin or endo-
toxoid preparations to an equal degree. Selective
elimination of certain activities became possible
by using chemical alterations of the molecular
structure.
The chemical structure of bacterial endotoxins

is similarly unique. The chemical constituents of
endotoxins are carbohydrates, short- and long-
chain carboxylic acids, some amines, amino acids,
and phosphorus. These are arranged in three
major zones in the macromolecular structure,
forming the polysaccharide, the lipid-rich, and
the amino acid-rich moieties. The backbone of
the structure is probably polysaccharide, which
consists of a variety of different carbohydrates
such as hexoses, heptoses, octonic acids, amino
sugars, and their derivatives. Attached to this
backbone are amino acids, probably through
amino sugars, as well as carboxylic acids which
are ester-bound to OH groups or amide-bound to
NH2 groups of carbohydrates, favoring glucosa-
mine. The exact location of phosphoric acid
residues is not known; the lipid-rich zones and
the polysaccharide moiety both contain phos-
phoric acid linked to carbohydrates. The presence
or absence of these different substituents on the

polysaccharide chain endows certain parts of this
backbone with lipidic or peptidic, highly polar or
nonpolar, charged or neutral characteristics.

It is assumed that the entire lipopolysaccharide
macromolecule is not involved in the elicitation
of the diverse endotoxic reactions but that these
are localized in certain active sites. These active
sites are formed through specific steric arrange-
ments of certain functional groups of the struc-
ture. The biological role of the above three major
moieties has been investigated and it was found
that the major role of the polysaccharide moiety
lies in the determination of the serological speci-
ficity of the bacteria as well as of the lipopolysac-
charide. The peptide-forming amino acids en-
hance the immunogenicity of the preparations
and probably also serve as immunodeterminants.
No convincing experimental evidence has shown
that these parts play a role in the toxic manifesta-
tions of endotoxins, although their role in as-
sumed "endotoxin-hypersensitivity" cannot be
ruled out. Rough mutants, lacking the usual
polysaccharide moiety, yielded a glycolipid which
demonstrated full endotoxic potency. Similarly,
almost complete removal of peptides by chemical
means enhanced the endotoxicity. These results
seem to indicate that the active sites may be
within the lipid moiety.
The relationship between the lipid moiety and

the so-called "lipid A" preparation is unquestion-
ably close, although they are not identical. The
so-called "lipid A" preparation is an extremely
heterogeneous mixture which consists of different
sizes of breakdown products, from free building
stones to incompletely degraded residual endo-
toxins. It is obvious, therefore, that the whole
mixture still shows residual endotoxic properties.
In "lipid A," everything is present which be-
came insoluble owing to acidic hydrolysis which
destroyed the lyophilic polysaccharide carrier.
Most of these originate from the lipid-rich moiety
of the endotoxin but are obviously not identical
with it. On the other hand, structural study of the
different split products present in the "lipid A"
mixture is one of the reasonable approaches to
gain insight into the structure of the lipid moiety
in the intact endotoxin.
The formation of complexes is one of the most

characteristic physicochemical properties of endo-
toxin molecules. Endotoxin consists of associated
subunits. According to our observation, these
subunits are active even if they are dissociated
from each other. The increase in some activities
after short alkaline treatment seems to support
this assumption. If the dissociation is carried out
by or in the presence of substances which form
complexes with the subunits, their biological
activity may suffer. It is suggested herewith that
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the sites involved in subunit aggregation are the
same sites through which complexes with the
targets of endotoxic action are formed, thus
eliciting toxic manifestations.
The results covering the identification of the

essential functional groups within the active sites
are still incomplete. Some of the O-acyl-bound
fatty acids may be incriminated as participants
in endotoxic reactions. Experimental data indi-
cate that the presence of fatty acids provides a
structure which seems to be harmful to the cellular
or subcellular targets. The role of fatty acids may
be important in the formation of complexes be-
tween endotoxin and its targets, but the role of
other functional groups such as phosphoric acid
radicals or unusual carbohydrates may not be
disregarded. These may also be involved in inter-
actions with the targets.

It has been demonstrated by many authors that
the essential functional groups are acid-labile.
They can be split more selectively with other
chemical procedures. Detoxification may be
achieved either by cleaving some of the functional
groups or by the distortion of the structure which
changes the optimal steric arrangement of the
functional groups, or both. Obviously, blockage
of the essential functional groups through com-
plex formation with antibodies, other proteins,
detergents, or other chemicals will also lead to
detoxification.

In the investigation of the mode of endotoxic
action, the fate of injected endotoxin was fol-
lowed and it was found that it accumulates in the
reticulum cells. Whether this accumulation of
endotoxin in the reticuloendothelial system means
that these cells are the primary targets of endo-
toxin or represent only stations in usual clearing
processes is uncertain. Our present knowledge of
the primary, subcellular targets of endotoxic
action is highly inadequate.
The recently discovered heterogeneity of all

investigated endotoxic preparations makes the
study of the mode of action even more difficult.
It appears that the higher the heterogeneity, the
greater the endotoxicity of the preparation. It is
possible that the presence of several components
is necessary for the elicitation of a full array of
characteristic endotoxic reactions. At the present
time, a picture of quite formidable complexity
emerges from the published data with regard to
the mode of endotoxic action. It is possible that
several targets of endotoxic action may exist,
some being hit directly, some indirectly. It seems
reasonable to suppose that not only one molecular
type of endotoxin exists, which makes it possible
that several endotoxic components act simultane-
ously or in sequence on different targets, thus
eliciting not one but a number of chain reactions

in the organisms. The use of chemically homo-
geneous endotoxin preparations is indispensable
not only for chemical structural studies but also
for a better understanding of their mode of
action.
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