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A N -solutions and N -trees

In this section we show that in the subclonal deconvolution problem the evolutionarity and parsimony
constraint can always be satisfied by a näıve model in which each aberration event occurs exactly once
during evolution (i.e. M = N). We call any solution with M = N an N -solution and its evolutionary
tree an N -tree.

The N -solution optimally satisfies the evolutionary and parsimony constraints. Since all detected
aberrations need to occur at least once in the evolutionary tree, the number of subclones must be greater
than or equal to the the number of aberration events considered, i.e. M ≥ N . We note that it is always
possible to construct a valid solution for Equation (1) of exactly M = N subclones for every aggregate
frequency vector y. Specifically, for a cascade-like evolutionary process with no branching, where the
wildtype subclone C1 is the root of the tree and every other subclone Ci is a direct descendant of the
subclone Ci−1, the solution of Equation (1) is given by:

1
y2
y3
...
yN

 =


1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1




1− y2
y2 − y3
y3 − y4

...
yN

 (S1)

While this cascade-like solution satisfies both evolutionarity and parsimony constraints, this solution is
not necessarily optimal with respect to the sparsity constraint and is the least optimal in terms of the
shallowness constraint. Furthermore, the existence of this solution guarantees that there is always at
least one solution to the subclonal deconvolution problem.

Since we required that the four constraints to the subclonal deconvolution problem must be satisfied
sequentially, any solution with M > N subclones will always be less optimal than the solution given in
Equation (S1), regardless of its sparseness and shallowness. We can thus limit the search space of the
TrAp algorithm to N -solutions. For this subset of solutions, the vector x is of size N and C is a square
matrix of size N ×N . Importantly, the index of each subclone Ci indicates the subclone for which the i-th
aberration occurs for the first time. Hence, for any TrAp solution there is a one-to-one correspondence
between the i-th aberration and the subclone Ci whose index indicates that it evolved from its parent
subclone by acquiring the i-th aberration. Moreover, each aberration event of an N -tree occurs exactly
once and cannot be reverted during evolution. Each aberration i is thus present only in subclone Ci and
its subclonal descendants:

yi =
N∑
j=1

cijxj = xi +
N∑
j=1

αijxj , (S2)

where αij is the ancestor indicator variable that is equal to 1 if subclone Ci is an ancestor of subclone
Cj and 0 otherwise. We note that ∀j > 1, α1j = 1, which means that the wildtype clone C1 is always the
root of the evolutionary tree, as required by the evolutionarity constraint.
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B A brute-force algorithm for solving the subclonal deconvolu-
tion problem

We now observe that the relationship between two subclones Ci and Cj such that i < j (which also implies
yi ≥ yj as the vector y is sorted), must be one of the following: i) Ci is an ancestor of Cj , i.e. αij = 1,
αji = 0 and yi ≥ yj ; or ii) Ci and Cj are on separate branches, i.e. αij = 0, αji = 0 and yi + yj ≤ 1. This
property implies that all evolutionary trees can be generated iteratively by starting with the wildtype
clone C1 and adding the clone Ci at step i to all trees generated at step i − 1. In detail, for any tree
that can be generated using subclones C1, . . . , Ci−1 we generate a new tree by adding the subclone Ci as
direct descendant of subclone Cj for all j < i for which the resulting xj (calculated using Equation (2))
remains nonnegative after adding Ci.

For completeness, if yi = yj the subclones Ci and Cj can be either on separate branches or on the same
branch. When they are on the same branch, there is an ambiguity regarding the order in which the two
aberrations occur (Figure S1). However, in the case that these two subclones are on the same branch, the
aberration profile of the ancestor subclone (shown in green in Figure S1) is not informative because this
subclone is not populated (xa = 0) and aberrations i and j are both present in the descendant subclone
regardless of the order in which they occur. Since these two aberrations cannot be observed separately
(i.e. the coefficient xa associated with the ancestor aberration is zero, whereas the xd associated with

Figure S1: Deconvolution of a mixture where two aggregate signal frequencies are equal. In
this example, five aberrations (A2, A3, A4, A5 and A6) were measured from an aggregate sample and their
frequencies were y2 = 0.8, y3 = 0.5, y4 = 0.5, y5 = 0.4 and y6 = 0.2, respectively. The dummy measure-
ment y1 = 1 was also added to generate the aggregate signal frequency vector y = [1, 0.8, 0.5, 0.5, 0.4, 0.2].
In this example, there are two optimal TrAp solutions (left and right), each shown both as an evolution-
ary tree (top) and in matrix form according to Equation (1) (bottom). Both solutions have 4 common
populated subclones, namely C2 with aberration {A2}, C5 with aberrations {A2, A3, A4, A5}, C6 with
aberration {A6} and a subclone with aberrations {A2, A3, A4}. In both cases, the ancestors of the clone
with aberrations {A2, A3, A4} (C3 of the left tree and C4 of the right tree) are not populated. We remark
that these two solutions are practically indistinguishable and that the TrAp algorithm outputs only the
solution where the subclonal indices along each branch are arranged in an increasing order (as shown in
the left tree solution).
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Figure S2: Brute-force search approach to deconvolve a mixture of four subclones. In this
example, five aberrations (A2, A3, A4, A5 and A6) were measured from an aggregate sample and their
frequencies were y2 = 0.8, y3 = 0.5, y4 = 0.5, y5 = 0.4 and y6 = 0.2, respectively. The dummy measure-
ment y1 = 1 was also added to generate the aggregate signal frequency vector y = [1, 0.8, 0.5, 0.5, 0.4, 0.2].
In the first step, the wild type clone C1 (representing the wildtype subpopulation) is positioned at the
root of the tree. In the second step, a tree reconstruction begins and C2 is added to the only possible
ancestor clone C1. In the third step, C3 must be added as direct descendant of C2. C3 cannot be added
to the tree on a different branch as a direct descendant of C1 because based on Equation (2) this would
imply a negative frequency x1 = y1 − y2 − y3 = −0.3. Likewise, the subclones C4 and C5 can only be
added as direct descendants of C3 and C4, respectively. Finally, C6 can be added as a direct descendant
of subclones C1, C2 or C5 generating solutions S1, S2 or S3, respectively. However, S1 is the only TrAp-
solution as its number of populated subclones is minimal and corresponds the solution shown in the left
side of Figure S1. Solution S3 is the cascade-like solution described in Equation (S1).

both aberrations could be nonzero), we only output the solution for which Cmin{i,j} is an ancestor of
Cmax{i,j} (left solution in Figure S1). This choice ensures that for every pair of aberrations i < j, Cj

cannot be an ancestor of Ci. A step-by-step example of the TrAp solution obtained using the brute-force
algorithm is given in Figure S2.

4



C Expressing the subclonal deconvolution problem as a function
of the direct descendants

In Equation (S2), we expressed the aggregate frequency yi as the sum of the frequencies of all subclones
descending from Ci. We now express the aggregate frequency yi as a function of the direct descendants
of Ci. We define the parent indicator variable φij , which is 1 if Ci is the parent of Cj (i.e. if subclone
Cj is the result of a single aberration event in subclone Ci) and 0 otherwise. Finally, using the parent
indicator variables we express yi in terms of the aggregate frequencies of the direct descendants of Ci

yi = xi +
N∑
j=1

αijxj = xi +
N∑
j=1

φij

(
xj +

N∑
k=1

αjkxk

)

= xi +
N∑
j=1

φijyj , (S3)

Equation (S3) can be rearranged to express the vector x in terms of y and the parent indicator matrix
Φ (Equation (2) in the main text):

x = y −Φy,

where Φ is the N ×N matrix whose elements are given by the parent indicator variables φi,j . Be-
cause of the evolutionary constraint, the matrix Φ has only N − 1 nonzero elements, reflecting the
fact that each subclone except the wildtype has exactly one parent subclone, i.e.

∑N
i=1 φi1 = 0 and

∀j > 1,
∑N

i=1 φij = 1. Furthermore, an important corollary of Equation (S3) is that the subclone Ci is
not populated if and only if (Equation (3) in the main text)

yi −
N∑
j=1

φijyj = 0.

In other words, the clone Ci is not populated when the aggregate frequency yi of aberration i is equal
to the sum of the aggregate frequencies of all the direct descendants of the subclone Ci. Therefore, the
number of non-populated subclones of the N -tree encoded by Φ is given by the number of aberrations i
that satisfy Equation (3).

Finally, we summarize the relationships between C and the indicator variables α and φ. Using
Equation (S2), we can express the subclonal deconvolution problem as y = Cx = (I + A)x, where I
is the N ×N identity matrix and A is the N ×N matrix of whose elements are given by the ancestor
indicator variable αi,j . Furthermore, Equation (2) allows us to write the subclonal deconvolution problem
as x = (I−Φ)y. We can therefore express the relationships between the matrices C, A and Φ as:

C = (I + A) = (I−Φ)−1. (S4)

We note that the parent indicator matrix Φ and C are upper triangular and that both C and I−Φ
are of rank N and invertible, which guarantees that Equation (S4) can always be used to switch between
the representation with the parent indicator variable Φ (Equation (2)) and the representation with the
subclone matrix C (Equation (1)). We also note that, given a matrix Φ (or C = (I−Φ)−1), the vector
x is uniquely determined. In particular, if the C matrix is known, the vector x can be efficiently found
by solving the linear system Cx = y using back-substitution (i.e. by solving Equation (S2) first for xN ,
then using xN to solve for xN−1 and repeating through x1).
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D Generalization of TrAp to non-binary aberrations

In the previous sections we represented the genome of each subclone by a vector of binary values whose
entries represent if a genomic position is in a normal state (0) or in an aberrant state (1). In general
the number of states in a given genomic position could be larger than two and hence subclones cannot
be represented by vectors of binary values without loss of information. For example, a nucleotide found
in the reference genome or in the germline at a specific position may undergo multiple distinct point
mutation events into more than one specific nucleotide. In this subsection, we describe an extension of
the TrAp algorithm to deal with such cases.

We consider the generalized subclonal deconvolution problem in which the genome consists of
N positions each of which can have S different states. We also assume that the genome of the wildtype
subclone is known. The only information that we utilize as input is the aggregate frequency matrix
Z whose elements zk,s correspond to the observed frequency of the aberrant state s at position k. We

note that, by construction, 0 ≤ zk,s ≤ 1 and that
∑S

s=1 zks = 1. To utilize our framework for solving
the subclonal deconvolution problem, we convert the information encoded in Z as a vector y whose
elements represent frequencies of binary events. We perform this transformation in several steps. First,
we vectorize the matrix Z by concatenating its rows to construct the vector z, which has KS elements.
Then, we remove from the vector z the entries for which zks = 0 as they are not informative. As a result,
for each position k there are Sk entries, where Sk ranges from 1 (only the unmutated state is observed)
to S (all aberrant states are observed). For illustration of these first steps, we consider a toy example of
a genome of length three whose wildtype sequence is ”CAT” and we analyze an aggregate sample made
of three subclones with sequences ”TCT”, ”TAC” and ”CGT” mixed with frequencies 0.1, 0.3 and 0.6,
respectively (Figure S3). In this example the z vector consists of the elements z1C = 0.6, z1T = 0.4,
z2A = 0.3, z2C = 0.1, z2G = 0.6, z3C = 0.3 and z3T = 0.7 (Figure S3).

Next, we wish to design a binarization matrix B to encode the information contained in z as a vector
y = Bz whose elements represent the frequency of binary aberrations and can thus be used as input
to the subclonal deconvolution problem for the whole genome (Equation (1)). For every position k, we
assume that each state s (1 ≤ s ≤ Sk) is reached by a sequence of aberration events. We denote by Aks

an aberration event to state s at position k. In the example above, there are two states at position 1.
The unmutated state C is reached by a dummy aberration A1C (in analogy to the dummy aberration of
the wildtype clone in the subclonal deconvolution problem) and the aberrant state T is reached by the
sequence of the dummy aberration A1C followed by the aberration A1T . Since the dummy aberration
A1C is present when we observe states C or T at position 1, the frequency of the unmutated aberration is
y1C = z1C +z1T = 1. However, the aberration A1T is present only when we observe the state T , therefore
the frequency of the aberration A1T is y1T = z1T = 0.4 (Figure S3). Since measurements at different
genomic positions do not affect one another, we construct B as a block-diagonal matrix:

y1

y2

...
yK

 =


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · BK




z1
z2
...

zK

 , (S5)

where yk = [yk1, . . . , ykSk
] and zk = [zk1, . . . , zkSk

]. Combining Equation (1) and Equation (S5) gives

Bz = Cx. (S6)

It is important to note that for any pair of different states s1 and s2 at position k where 1 ≤ s1 ≤ Sk and
1 ≤ s2 ≤ Sk, the value of bks1,ks2 defines the ancestral relationship between the aberration events Aks1

and Aks2 . Using the ancestor indicator variable α we can express this relationship as αks1,ks2 = bks1,ks2 .
To preserve these ancestral relationships in both sides of Equation (S6) (we recall that C = I + A), the
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Figure S3: Application of the TrAp algorithm to deconvolve a mixture of three sequences in
presence of poly-allelic mutations. We analyzed an aggregate sample composed of three subclones
with sequences ”TCT”, ”TAC” and ”CGT” mixed with frequencies 0.1, 0.3 and 0.6, respectively. In
this particular example, the wildtype sequence ”CAT” is absent in the mixture. Nonzero elements of
the aggregate frequency matrix Z (top right) are then concatenated in the z vector, which consists of
the elements z1C = 0.6, z1T = 0.4, z2A = 0.3, z2C = 0.1, z2G = 0.6, z3C = 0.3 and z3T = 0.7 (middle
left). In the center of the middle panel we show the binarization matrix B(1,1,1) and the matrix-vector
product B(1,1,1)z associated with it, which are consistent with Equation (S5) and lead to the optimal
TrAp solution. Next, rows and columns corresponding to unmutated states (i.e. 1C, 2A and 3T , shown
in green) are substituted with a dummy aberrant state corresponding to the wildtype (shown in blue).
In the bottom row, the TrAp solution is shown both as an evolutionary tree (left) and in matrix form
according to Equation (S6) (right).

element cks1,ks2 of C must be equal to the element bks1,ks2 of B for every pair of states s1 and s2 at
position k, where 1 ≤ k ≤ K, 1 ≤ s1 ≤ Sk and 1 ≤ s1 ≤ Sk.

In order to find the solutions to Equation (S5), we solve independently each subproblem yk =
Bkzk and we require that the Bk matrix encodes a tree which satisfies the evolutionary and parsimony
constraints and whose root is the dummy unmutated aberration at position k. The number of solutions
for each subproblem is equal to the number of trees with Sk labeled vertices and, as discussed earlier,

this number is equal to SSk−2
k . We then denote by B

(tk)
k the tk-th solution (1 ≤ tk ≤ SSk−2

k ) and by

y
(tk)
k the aggregate frequency vector associated to it. The solutions to the problem for Sk ≤ 3 are:

Sk = 1. There is only one solution. Since the input consists only of the unmutated state, it follows that

zk = [1]. The solution is B
(1)
k = [1] and the corresponding aggregate frequency vector is y

(1)
k = [1].

Sk = 2. There is only one solution. Assuming the input is zk = [zk1, zk2] and the unmutated state is k1,

the solution is B
(1)
k =

[
1 1
0 1

]
and the corresponding aggregate frequency vector is y

(1)
k = [1, zk2].

Sk = 3. There are 3 solutions. Assuming the input is zk = [zk1, zk2, zk3
] and unmutated state is k1,

the solutions are B
(1)
k =

 1 1 1
0 1 0
0 0 1

, B
(2)
k =

 1 1 1
0 1 1
0 0 1

 and B
(3)
k =

 1 1 1
0 1 0
0 1 1

and their
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corresponding yk vectors are given by y
(1)
k = [1, zk2, zk3], y

(2)
k = [1, zk2 + zk3, zk3] and y

(3)
k =

[1, zk2, zk2 + zk3]. The values bk2,k3 and bk3,k2 define the ancestral relationship between aberrations
Ak2 and Ak3. In the first solution Ak2 and Ak3 must be on separate branches, in the second solution
Ak2 must be an ancestor of Ak3, and in the third solution Ak3 must be an ancestor of Ak2.

The number of solutions grows dramatically with Sk (16 solutions for Sk = 4, 125 solutions for Sk = 5,
1296 solutions for Sk = 6). Therefore, herein we explicitly show the solutions for Sk < 4 and implement
the method to adress practical scenarios, such as nucleotide point mutations (Sk ≤ 4).

The set of all possible solutions to Equation (S5) is given by the Cartesian product of the solution

sets of each subproblem. This implies that the number of solutions of Equation (S5) is
∏K

k=1 S
Sk−2
k . We

denote by B(t1,...,tK) the block matrix solution associated with the blocks Bt1
1 , . . . ,B

tK
K representing the

solutions of each subproblem. Similarly, we denote by y(t1,...,tK) the aggregate signal vector given by
y(t1,...,tK) = B(t1,...,tK)z. It is possible to reduce the number of rows and columns in Equation (S6) by
substituting all the K rows corresponding to the unmutated states (shown in green in Figure S3) with
a single dummy wildtype aberration (shown in blue in Figure S3). In our toy example, one aberrant
state is observed at positions 1 and 3 (S1 = S3 = 2), while two aberrant states (C and G) are observed
at position 2 (S2 = 3). Therefore, there are three solutions to Equation (S5): B(1,1,1), B(1,2,1) and
B(1,3,1). Figure S4 illustrates the best solution for each of these binarization matrices in a graphical and
matrix form. The solution associated with B(1,1,1) is the only TrAp-solution of the generalized subclonal
deconvolution problem since it has the minimum number of populated subclones (sparsity constraint).

In summary the generalized subclonal deconvolution problem can be solved as follows:

1. Vectorize the aggregate frequency matrix Z and identify all binarization matrices B(t1,...,tK) (Equa-
tion (S5)) compatible with the vector z.

2. For each binarization matrix B(t1,...,tK), identify all first generation trees from the aggregate signal
vector y(t1,...,tK) = B(t1,...,tK)z and combine the first generation trees to generate all partial trees
compatible with B(t1,...,tK).

3. Discard partial trees that do not have the minimum number of populated subclones.

4. Generate all evolutionary trees consistent with the partial trees comprising a maximum number of
first generation trees. This step is performed as described above, but with the additional constraint
that cks1,ks2 = bks1,ks2 for any pair of states s1 and s2 at position k, where 1 ≤ k ≤ K, 1 ≤ s1 ≤ Sk

and 1 ≤ s2 ≤ Sk.

5. Optimize the shallowness constraint by sorting the generated solutions by the depth of the generated
tree.
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Figure S4: Three solutions of the generalized subclonal deconvolution problem for a mixture
of three sequences in presence of poly-allelic mutations. We analyzed an aggregate sample
composed of three subclones with sequences ”TCT”, ”TAC” and ”CGT” mixed with frequencies 0.1, 0.3
and 0.6, respectively. In this example, the wildtype sequence ”CAT” is absent in the mixture. Nonzero
elements of the aggregate frequency matrix Z are concatenated in the z vector, which consists of the
elements z1C = 0.6, z1T = 0.4, z2A = 0.3, z2C = 0.1, z2G = 0.6, z3C = 0.3 and z3T = 0.7. There are
three binarization matrices (B(1,1,1), B(1,2,1) and B(1,3,1)) to Equation (S5) and one solution for each
binarization matrix is shown. Mutations are shown using the notation ”position : reference→mutated”,
e.g. the notation 2:A→G indicates that nucleotide at position 2 was mutated from Adenine to Guanine.
The notation 2 :A→G→C indicates that nucleotide at position 2 was first mutated from Adenine to
Guanine and then from Guanine to Cytosine. Top: solution based on the binarization matrix B(1,1,1),
in which the subclones C3 and C4 associated with the aberration events A2C and A2G are on separate
branches; Middle: solution based on the binarization matrix B(1,2,1), in which the aberration event A2G

(subclone C4) happens before of A2C (subclone C3; bottom: solution based on the binarization matrix
B(1,3,1), in which the aberration event A2C (subclone C3) happens before A2G (clone C4). The solutions
are shown both as evolutionary trees (left) and in matrix form according to Equation (S6).
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Supplementary Figures

Figure S5: Applicability of the TrAp algorithm for different number of aberrations events
and different kind of tumors. Each entry in the heat map shows the number of biopsies, which
contained a given number of aberrations. Each cell is colored by the fraction of biopsies for which TrAp
could reconstruct the correct composition of the subclones, from red (all biopsies could be reconstructed)
to blue (no biopsies could be reconstructed). The constraints required by the TrAp algorithm are satisfied
in most cancer types, with the exception of astrocytoma of grades III and IV.
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Normal Before Treatment After Treatment 

Figure S6: Inference of the clonal evolution of the AML patient UPN933124. The data shows
that after treatment, only the subclone C4 survived and acquired new mutations to form C5. We note
that the normal sample is contaminated with tumor tissue (∼29%), the sample before treatment is not
significantly contamined with normal tissue and that the sample after treatment is contaminated with
normal tissue (∼15%). The data and the clusters of mutations were obtained from Ding et al. [18] and
analyzed using the TrAp algorithm.
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Normal Before Treatment After Treatment  
(TrAp-solution) 

After Treatment 
(non-sparse) 

Figure S7: Inference of the clonal evolution of AML patient UPN758168. The data shows that
after treatment, the founding subclone C1 aquired new mutations to form a new relapse sublclone C3

and that the relative size of subclone C2 was significantly reduced. The TrAp software also returned a
suboptimal non-sparse solution for the sample after treatment (on the right), where the relapse subclone
C3 originated from subclone C2 instead of C1. The data and the clusters of mutations were obtained
from Ding et al. [18] and analyzed using the TrAp algorithm.

Normal Before Treatment After Treatment 

Figure S8: Inference of the clonal evolution of AML patient UPN400220. The data shows
that, after treatment, the founding subclone C1 aquired new mutations to form a new relapse sublclone
C2.The data and the clusters of mutations were obtained from Ding et al. [18] and analyzed using the
TrAp algorithm.
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Before Treatment After Treatment  

Figure S9: Inference of the clonal evolution of AML patient UPN426980. The data shows that
after treatment, the founding subclone C1 aquired new mutations to form a new relapse sublclone C5

and that the primary specific subclones C3 and C4 were eradicated. The sample from the normal tissue
is not shown as this sample is not significantly contaminated by the tumor. The data and the clusters of
mutations were obtained from Ding et al. [18] and analyzed using the TrAp algorithm.
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Normal Before Treatment 
(TrAp-solution) 

After Treatment  Before Treatment 
(non-sparse) 

Figure S10: Inference of the clonal evolution of AML patient UPN452198. The data shows
that after treatment, the founding subclone C1 aquired new mutations to form a new relapse sublclone
C4 and that the primary specific subclones C2 and C3 were eradicated. We also show a suboptimal
non-sparse solution for the sample before treatment, where the primary specific subclone C3 originated
from subclone C2 instead of C1. The data and the clusters of mutations were obtained from Ding et
al. [18] and analyzed using the TrAp algorithm.

Normal Before Treatment After Treatment  

Figure S11: Inference of the clonal evolution of AML patient UPN573988. The data shows
that, after treatment, the founding subclone C1 aquired new mutations to form a new relapse sublclone
C2. The data and the clusters of mutations were obtained from Ding et al. [18] and analyzed using the
TrAp algorithm.
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Before Treatment After Treatment  

Figure S12: Inference of the clonal evolution of AML patient UPN804168. The data shows
that, after treatment, the founding subclone C1 aquired new mutations to form a new relapse sublclone
C2. The sample from the normal tissue is not shown as this sample is not significantly contaminated
by the tumor. The data and the clusters of mutations were obtained from Ding et al. [18] and analyzed
using the TrAp algorithm.

Before Treatment After Treatment  

Figure S13: Inference of the clonal evolution of AML patient UPN869586. The data shows
that, after treatment, the subclone C3 aquired new mutations to form a new relapse sublclone C4, while
the subclone C2 was eradicated. The sample from the normal tissue is not shown as this sample is not
significantly contaminated by the tumor. The sample from the normal tissue is not shown as this sample
is not significantly contaminated by the tumor. The data and the clusters of mutations were obtained
from Ding et al. [18] and analyzed using the TrAp algorithm.
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