
1

Embedding and publishing interactive, 3-dimensional, scientific
figures in Portable Document Format (PDF) files
David G. Barnes1∗,2,3, Michail Vidiassov4, Bernhard Ruthensteiner5, Christopher J. Fluke6, Michelle R.
Quayle7, Colin R. McHenry7

1 Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
2 Monash e-Research Centre, Monash University, Clayton, Victoria, Australia
3 Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
4 Institute of Asian and African Studies, Moscow State University, Moscow, Russia
5 Section Evertebrata varia, Zoologische Staatssammlung München, München, Bavaria,
Germany
6 Centre for Astrophysics & Supercomputing, Swinburne University of Technology,
Hawthorn, Victoria, Australia
7 Department of Anatomy and Developmental Biology, School of Biomedical Sciences,
Monash University, Clayton, Victoria, Australia
∗ E-mail: david.g.barnes@monash.edu

Abstract

With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific
figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without
commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles.
We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product
Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using
the movie15 LATEX package. We present new examples of 3-d PDF figures, explain how they have been
made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures.
With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more
useful, flexible and faithful representations of their study outcomes.

Introduction

The visualisation of scientific data is important. Visualisation is used throughout the scientific
workflow: in experiment design, data acquisition, data comprehension and analysis, and importantly,
in the communication of outcomes. In the era when scientific data is increasingly multi-dimensional
in nature, 3-dimensional (3-d) data rendering and display tools are mainstream, and indeed in some
application areas (e.g. geology) are now considered essential. In addition to the simple 3-d extensions
of standard 2-dimensional (2-d) plots (e.g. scatter plots, histograms, bar graphs), specific 3-d renderings
such as isosurfaces (an analog of 2-d contours) [1], streamlines (an analog of 2-d vector / flow plots),
and volume rendering [2] exist. However, due to the static, 2-d nature of the two major contemporary
publishing media (paper and screen), the communication and publication of research outcomes still
depends routinely on the standard 2-d plots, and less frequently, 2-d projections of 3-d renderings.

Static projections of 3-d data to a flat medium are useful though. The human visual
system can convincingly and accurately interpret appropriately-drawn static figures on 2-d paper or
screen as 3-dimensional. Notwithstanding the classic Necker wireframe cube illusion [3], the cognitive
system can make sophisticated assumptions about 3-d scenes projected as flat 2-d illustrations. One-
point perspective rendering can provide a very strong depth cue (although distorting object proportions),
while providing more than one projection of the same 3-d figure (onto non-parallel projection planes)
gives the observer the opportunity to manually assemble or improve the model of the scene in their
mind. For most people, simple stereoscopic rendering approaches such as using a red-cyan anaglyph can

2

further improve 3-d perception, to the extent that highly-accurate depth-ordering can be interpreted by
the brain, and even quantitative estimates of depth can be made with reasonable certainty. However,
anaglyphs and other stereoscopic techniques such as ChromaDepth (American Paper Optics, Inc.—http:

//www.chromatek.com/) are rarely used in formal publishing due to the need for viewing accessories (e.g.
red-cyan glasses, stereoscope) and their restrictive impact on the use of colour.

Dynamic projections of 3-d data to the screen are vastly more useful. Most contemporary
visualisation software provides three crucial features for examining 3-d renderings:

1. motion parallax (via auto-rotation of the camera or small-angle changes in the viewing position);

2. interactive, unconstrained camera control; and

3. toggling of components of the visualisation.

Motion parallax is a dominant depth cue (e.g. [4] and references therein), and together with interactive
control of the camera position and viewing direction, can substantially enhance the natural comprehension
of spatial relationships in the data. Freestyle camera control can also enable the observation of features
that might otherwise be concealed in certain fixed views of the data, and switching components in and out
of the visualisation can reveal features that are concealed within other features (e.g. high value isosurfaces
within opaque, low value isosurfaces). None of these interactive (i.e. viewer-controlled) features can be
replicated in static (still) images on paper or the screen.

Researchers can already share dynamic 3-d visualisations, albeit on an ad hoc basis.
However, there is a substantial impediment to doing this, and it remains difficult to accomplish within
the confines of the present-day professional communication and publication process. The data owner
must: (a) publish their data (either raw or processed) usually in a disconnected fashion with respect to
the destination of their formal research article; (b) recommend and/or make available computer programs
(preferably Free Software; in this paper, we use the term Free Software as defined by the Free Software
Foundation: http://www.fsf.org/) for reading and displaying the data; and (c) explicitly document
the steps to producing the exact visualisation shown in the paper, possibly from a large pool of raw
data. The community member who wishes to reconstruct the dynamic visualisation needs to (d) retrieve
a potentially large data set; (e) install all requisite software on a compatible system; and (f) follow
potentially myriad lengthy steps to reproduce the graphic. An explicit example of the effort involved
in sharing visualisations of 3-d protein structures is given by [5]. Certainly some community members
will already have the requisite software, but others working in the same discipline but with different
software tools may not, and others beyond the particular discipline may simply be unable to reproduce
the dynamic visualisation due to lack of domain-specific knowledge, appropriate software and experience.

Standardised, 3-d geometry languages can be used to improve sharing. An obvious alterna-
tive to the above is to publish an intermediate dataset that is effectively “geometerised” data. A transfer
function from data space to 3-dimensional space is applied to the data, yielding a set of geometry that
may comprise points (vertices), lines and facets that connect vertices, and surfaces made up of multiple
interconnected facets. The geometry is stored in a standard format file and can be displayed by one or
more software tools. Many standardised languages exist, and numerous authors (including one of us)
have deployed 3-d data in this manner (e.g. [6, 7]). Yet even the most well-known of these languages—
Virtual Reality Markup Language (VRML97)—remains a somewhat unreliable solution, with dozens of
incomplete implementations in mainstream use all but guaranteeing differing results on different viewing
systems. Even if identical, complete implementations of a viewer existed for every operating system in
common use, the fact remains that publishing 3-d data in this way leaves it significantly disconnected
from the literature, relegated to surviving as “supplementary material”, a second-class illustration not
strictly necessary for complete comprehension of the article.

A few authors have recognised the need to publish a single file containing text, tables, graphs and 3-d
interactive figures. Notably, the iSee approach [8] unifies descriptive text, static images, and interactive 3-
d visualisation(s) [5] in a single file. Although driven by the needs of the structural biology community and

http://www.chromatek.com/
http://www.chromatek.com/
http://www.fsf.org/

3

the authors’ stated desire to enable the “communication of complex structural biology and related data to
a wide audience of non-structural biologists”, the iSee strategy is clearly translatable to other disciplines
such as the physical sciences. However, as a solution built on a custom, specialised, non-archival data
format and a custom browser, the authors have perpetuated the need for new users to download, install
and learn how to use non-standard software. They have also implicitly taken on the task of maintaining
a cross-platform document browser that works in and out of the traditional web-browser environment.

Three-dimensional data should be published in interactive, 3-d form, without requiring
any special viewing software or even plugin: specifically, 3-d figures should be published in
situ. Custom data formats and software plug-ins for the reader should be eschewed. The CAD
industry has much the same needs. To serve them, Adobe Systems Inc (hereafter, Adobe) extended its
well-established Portable Document Format (PDF) with built-in support for standard-based 3-d models
(as opposed to third-party plug-ins, visualizing data in proprietary formats), so as to offer a universal
solution for publishing engineering documentation. In Acrobat 3D, Adobe provided a relatively simple
environment for importing 3-d geometry from a great number of standard 3-d formats, for configuring
lighting and shading properties, and for predefining specific views. Acrobat Reader — the standard
application for reading PDF documents on the major contemporary computer platforms (the Microsoft
Windows family, Linux and Mac OS X) — could immediately display the 3-d rendering to the user
and provided free-style interactive camera control. The model tree could be navigated and different
components of the 3-d scene toggled in and out of the display.

Even though Adobe’s work appeared to be principally motivated to support the sharing of 3-d en-
gineering and design drawings, several authors (including us) have used the technology to embed and
publish (in the scientific literature) interactive, 3-d figures of scientific data in PDF files. Like others, our
first successes [9–11] made use of (commercial) Adobe software (Adobe Acrobat 3D version 8) to read
VRML97 scenes, in our case written by our own software library S2PLOT [12]. Other authors (e.g. [13])
used 3rd-party commercial software such as Right Hemisphere’s “Deep Exploration” visualisation pack-
age. (Adobe Acrobat 3D has been superceded by Adobe Acrobat X Pro, and in-built support for adding
3-d figures was dropped — see the Supporting Information. A third-party plug-in from Tetra 4D is
required to create 3-d PDF figures using the approach previously described ([9–11]).) The created 3-d
figures can then be embedded in existing PDF documents made by other applications. In the context of
writing a scientific article, the result can be a single, compact file comprising text, graphs, figures, tables
and 3-d interactive figures, readable by the de facto standard PDF reader application — Adobe Reader.

In this paper we announce the release of our S2PLOT graphics library as Free Software,
and describe the open-source pathway that this enables for embedding 3-d figures in PDF
documents. To improve uptake by the scholarly community, we have developed a process for generating
3-d PDF figures using Free Software, integrated directly with the widely-used LATEX typesetting system.
Our complete workflow is not implemented as a pretty graphical “swiss army knife” visualisation program,
rather it is an addition to the S2PLOT library that enables, for program codes using the S2PLOT
library for visualisation: (i) output of S2PLOT visualisations as PRC-format files for inclusion in LATEX-
generated PDF files, and (ii) direct output of PDF files. It is more flexible than the commercial path,
includes support for common scientific visualisation techniques (e.g. volume rendering) that are difficult
to produce using the commercial tools, and integrates well into the scientific publishing workflow. PDF
files created with our method can be viewed with any PDF viewer, but embedded 3-d figures are shown
only when viewed with Adobe Reader or Adobe Acrobat on a desktop platform.

4

Methods

Tools and technologies

The Adobe Product Representation Compact (PRC) format. The Adobe PRC format (http://
livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_

Specification/) stores hierarchically-structured 3-d data, whose constituent parts are 3-d vector en-
tities such as vertices, lines and facets. Extensive description of part colours, material properties and
texture maps is possible. PRC is one of only two native 3-d scene description file formats that can
be embedded in PDF files and subsequently displayed by Adobe Reader. While the PRC format is
documented, and an ISO process is being followed for standardization of PRC (ISO standardization:
ISO/DIS 14739-1 “Document management – 3D use of Product Representation Compact (PRC) format
– Part 1: PRC 10001”; ISO/DIS 14739-1.2: http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=54948), no reference implementations of a library to read and write
PRC files exists to our knowledge. See the Supplementary Information for a concise history of the
Adobe-3d PDF and the two formats PRC and U3D.

Adobe 3D JavaScript. Adobe Reader includes a JavaScript interpreter that is traditionally used to
support PDF forms and user-interaction in PDF documents. For 3-d figures, the JavaScript interpreter
has been enhanced to provide access to the scene model tree, the scene rendering settings, and to respond
to user actions on the 3-d figure. For example, changes to the camera position can be captured and acted
upon. JavaScript for Acrobat 3D is well-documented (http://www.adobe.com/devnet/acrobat/pdfs/
js_3d_api_reference.pdf).

Asymptote: the Vector Graphics Language. Asymptote, the Vector Graphics Language (http:
//asymptote.sourceforge.net/), is a sophisticated vector language for describing 2-d and 3-d graphics
and technical drawings. Asymptote can generate PRC files containing 3-d scenes, and embed them
within PDF files by making external calls to LATEX. A number of elegant examples are provided that
show Asymptote’s ability to render 3-d surfaces and graphs in PDF documents (http://asymptote.
sourceforge.net/gallery/3Dgraphs/). Asymptote is licensed under the GNU Lesser Public License,
and is our source for a freely-available PRC writing library. One of us (MV) developed the PRC export
code in Asymptote.

The movie15 LATEX package. The movie15.sty style file (http://www.ctan.org/tex-archive/
macros/latex/contrib/movie15/; recently superceded by media9.sty (http://www.ctan.org/tex-archive/
macros/latex/contrib/media9)) extends LATEX with the capability to insert various non-static media
in PDF files created with LATEX. Specifically it can embed PRC-format files as 3-d figures, with optional
3D JavaScript attachments that are enabled on activation of the 3-d figure. It also provides mechanisms
to create preset views, shading and lighting options for 3-d figures.

The libHaru free PDF library. LibHaru (http://libharu.org) is a freely-available library that
provides an application programing interface to generate PDF files, comprising text, vector graphics and
images, and 3-d figures based on PRC-format (and U3D-format) files and optional 3D JavaScript scripts.
Like the movie15 LATEX package, libHaru provides hooks to create preset views, shading and lighting
options for 3-d figures.

The S2PLOT 3-d graphics library. The S2PLOT library (http://astronomy.swin.edu.au/
s2plot) [12], which we announce in this paper to be available as Free Software, provides a clean and
simple API for creating interactive, 2-d and 3-d visualisations of data. S2PLOT’s rich API of more than
200 functions includes support for low-level geometric primitives (points, lines, 3- and 4-vertex facets),
intermediate-level structures (disks, cylinders, cones, ellipsoids, vector and bitmap text, textured facets
including billboards), and high-level science-oriented entities such as axis labels, surface and skyscraper
plots, isosurfaces and volumetric renderings. Camera interaction and control, and rendering settings
are standard to all S2PLOT programs, but can be modified by the programmer. A simple but flexible
callback system supports the display of time-dependent or animated geometry and the receipt of user

http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=54948
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=54948
http://www.adobe.com/devnet/acrobat/pdfs/js_3d_api_reference.pdf
http://www.adobe.com/devnet/acrobat/pdfs/js_3d_api_reference.pdf
http://asymptote.sourceforge.net/
http://asymptote.sourceforge.net/
http://asymptote.sourceforge.net/gallery/3D graphs/
http://asymptote.sourceforge.net/gallery/3D graphs/
http://www.ctan.org/tex-archive/macros/latex/contrib/movie15/
http://www.ctan.org/tex-archive/macros/latex/contrib/movie15/
http://www.ctan.org/tex-archive/macros/latex/contrib/media9
http://www.ctan.org/tex-archive/macros/latex/contrib/media9
http://libharu.org
http://astronomy.swin.edu.au/s2plot
http://astronomy.swin.edu.au/s2plot

5

input including 3-d object selection and manipulation.
From version 3.1 upwards, S2PLOT can write PRC files using the included PRC export module, based

on the PRC export code in Asymptote. Nearly all types of geometry rendered interactively by S2PLOT
can be exported to a PRC file. Noteworthy features of the S2PLOT PRC export module implementation
are:

• Model tree preservation. S2PLOT provides the function pushVRMLname(char *name) that can
be used by the programmer to create a group in the model tree for export to VRML, our previous
pathway to 3-d PDF figures. The PRC export module honours model tree names created this way
and encloses subsequent geometry exported to the PRC file in a correspondingly-named group. This
group name (with an automatically-generated serialized suffix that ensures uniqueness and can be
obtained programmatically) can be referenced in JavaScript/s embedded in a PDF document to
control the named parts of the model tree. This feature is critical: without it our implementation
of volume rendering, billboards and frames in 3-d PDF would not be possible.

• Texture compression. Textures that are entirely opaque (i.e. textures that have no pixels
with opacity less than 1.0 and are typically applied to surface meshes) are stored in the PRC
file as compressed JPEG images. Textures that have transparent pixels (e.g. volume render-
ing textures, billboard textures) are converted to PNG images using the ImageMagick (http:
//www.imagemagick.org) convert tool, with their colour space limited to a maximum of 256
unique colours, using Floyd-Steinberg [14] dithering. This strategy yields savings of ∼ 50 per cent
in file size compared to using uncompressed bitmaps of 32-bits per pixel.

• Surface mesh compression. Internally, S2PLOT stores surface meshes as arrays of independent
facets. For export to PRC format, collections of like-coloured 3- and 4-vertex facets, each with
their own vertices, vertex normals and vertex colours, are combined into single-colour meshes that
comprise a list of vertices and vertex normals, that are indexed to create facets. This delivers
considerable savings in storage space (vertices shared by typically three or four facets in a surface
mesh are stored only once), and colours are stored once per mesh rather than per vertex or facet.
Additionally, collections of facets stored as vertex-indexed meshes are loaded and rendered much
faster by Adobe Reader and Adobe Acrobat, than equivalent sets of individual, unindexed facets.

• Colour compression. Multi-coloured surfaces, e.g. surfaces coloured by a scalar parameter
mapped to a colourmap, are difficult to store efficiently and have rendered correctly and at in-
teractive frame rates in 3-d PDF form. The S2PLOT PRC export module addresses this problem
by quantizing surface colours, and creating a single mesh for each unique colour in the reduced
space. In practice, this corresponds directly to applying surface mesh compression as described
above, but with a relaxed criterion for determining like colours. That is, facets are combined to-
gether into a single-colour mesh when they are within a predefined distance of the current mesh
colour, measured in RGB space. This procedure yields relatively compact PRC-format files, with
the speed advantage of vertex-indexed meshes, with (generally) acceptable colour quantization.

Procedure

The procedure for generating a PDF document with one or more interactive, 3-d figures is illustrated in
Figure 1 and described below. Specific detail on the procedure as it pertains to the various examples in
this paper will be presented alongside the examples to help the reader understand the application of the
procedure to common data types such as surfaces and volumes.

Preparation. S2PLOT version 3.2.1 or higher (Free Software provided as source code and known to
build for Linux and Mac OS X), including the S2PLOT PRC export module, is downloaded, compiled
from source and installed. The user writes a new S2PLOT program (or uses an existing one) that loads or

http://www.imagemagick.org
http://www.imagemagick.org

6

generates data, and renders it in 3-d using standard S2PLOT functions. Examples of existing S2PLOT
programs available for generating 3-d PDF figures from volume and surface data are xrw2pdf and s2stl,
part of the Free Software S2VOLSURF package (http://vera180.its.monash.edu.au/imgteam/index.
php/projects/7-s2volsurf).

There is great flexibility at this stage of the procedure for users creating their own programs. S2PLOT
is a graphics library that must be called from a driver program (usually written in the C or C++
programming language), and ostensibly provides only display-related functionality. Quite apart from
calling S2PLOT functions to display data that has been read or generated by their program, the user can
apply any transformation that they can express in computer program code to the data prior to mapping
it to S2PLOT graphics “primitives”. For example, the user can filter (e.g. smooth) images, geometrically
transform surfaces, re-project point populations and so on. And when calling S2PLOT functions, the
user often has to make explicit choices about the mapping of e.g. image data values to colour, or of e.g.
data parameters to physical attributes such as symbol size, arrow direction, or surface transparency.

Execution. The user compiles and runs their S2PLOT program, and exports a PRC file by pressing
Shift-P. The S2PLOT PRC export module creates a PRC file based on the S2PLOT geometry and
writes it to disk. The module also uses libHaru to create a “quicklook” PDF file with the PRC file
embedded, the standard 3-d JavaScript file supplied with S2PLOT attached to the figure, and a standard
set of predefined views of the model.

Evaluation. The user views the quicklook PDF file in Adobe Reader. If the user is happy with the
output then they proceed to the “Use” step, otherwise they modify their S2PLOT program, rebuild and
return to the “Execution” step.

Use. The user embeds the saved PRC file as a figure in an existing or new LATEX document, using the
movie15.sty or media9.sty LATEX style, and the pdflatex program. Normally they also provide (via
movie15’s arguments) the s2plot-prc.js 3D JavaScript file (which provides basic keyboard controls
and implements advanced techniques such as volume rendering), and a s2views.txt file which provides
a standard set of views for the figure.

Predefined views. Further refinement can be carried out using the 3-d view reporting feature of
movie15.sty to interactively create predefined views with specific parts of the geometry toggled in or out
of the visualisation and/or rendered in part-specific modes, and with specific lighting choices. This is ac-
complished by the user inserting a movieref command (e.g. movieref[3Dgetview]{cortical act}{Click
for view output.}) in the LATEX source file. This provides a text link, which when clicked, presents a
popup window containing text defining the currently-configured view of a 3-d figure, which can be copied
verbatim to the s2views.txt file. If preferred, views can be defined and added programmatically or
manually to the s2views.txt file using the full node names saved by the PRC export module in the
s2direct.map file.

Validation

To validate 3-d PDF volume and surface visualisations, we generated visualisations of the same source
data with corresponding, mainstream applications, under the most similar conditions we could arrange.
We acquired screenshots of these “controls”, of native S2PLOT visualisations, and of 3-d PDF figures
created following the procedures of this paper, with standard (operating system-included) tools, and
examined the screenshots side-by-side. To assist assessment of the qualitative differences, and as a first
step beyond the practice of determining that results just “look right,” we manually aligned (co-registered)
comparison images in Adobe Photoshop version CS5 Extended (1990-2010, Adobe Systems Incorporated,
http://www.adobe.com), and then:

• For volume rendered images, generated difference images by overlaying the comparison images using
the Difference layer blending mode, converting the result to Black & White using an Adjustment

http://vera180.its.monash.edu.au/imgteam/index.php/projects/7-s2volsurf
http://vera180.its.monash.edu.au/imgteam/index.php/projects/7-s2volsurf
http://www.adobe.com

7

layer, and smoothing with a Box Blur image filter of radius one pixel to suppress sub-pixel co-
registration artefacts.

• For surface rendered images, applied the Find edges filter to the comparison images, created a
mask of the edges in each image by selecting all non-white pixels, used the Fill function to paint
the detected edge pixels a single colour, then overlaid the coloured edge images derived from the
comparison images.

Comparisons made in this way are not quantitative, but assist in the evaluation of similarity and difference
between renderings made in different packages by suppressing differences due to internal, private lighting
and shading choices in the individual software packages.

Results

Orientation: the coordinate system, views and controls. To introduce the fundamental structure
and user-control of the 3-d PDF figure, we present Figure 2. This figure shows a wireframe cube, with
its faces marked by simple vector-based text and also by bitmap text which always faces the camera
(“billboard” text). When the 3-d view is activated—which for this figure is automatic in Adobe Acrobat
or Adobe Reader—the user can use the 3-d toolbar to: select preset views, select projection mode
(perspective versus orthographic), and control shading and lighting properties. They can also access the
model tree (the hierarchical structure of geometry primitives that constitute the 3-d scene) and enable and
disable arbitrary branches and nodes. In the default mode, the user can control the camera view freely,
via a primary button mouse drag for moving the camera around the model, and the mouse scrollwheel
for zooming in and out. When examined in a PDF viewer that does not support 3-d figures, or when
printed, a standard 2-d figure (known as a “poster image”, in this case a screenshot of the opening view
of the 3-d figure) is shown.

Specific to S2PLOT-created 3-d PDF figures, are a set of keyboard controls and a set of preset views.
These standard keyboard controls and preset views are listed in Table 1, and have been implemented to
match the defaults for S2PLOT programs executing directly on a workstation. Accordingly, the frequent
user of S2PLOT will find the same key operations and standard views in a PDF version of their 3-d scene
as they will in the executable program which creates the 3-d scene.

Figure 2 also serves as an introduction to an advanced graphics primitive supported in S2PLOT 3-
d PDF figures: the billboard. This is a 4-sided facet on which a bitmap image is displayed, however
the facet is always oriented to face the camera (i.e. to be parallel to the projected image plane. We
have implemented billboards in 3-d PDF by including code in the provided s2plot-prc.js JavaScript
file. Leaves of the model tree that are billboards are identified at figure intialisation time, and prior
to every redraw of the scene, these facets are reoriented for correct display. Billboards are ideal for
displaying particles in populations (e.g. from N-body gravitational or molecular simulations) as soft,
extended entities, and for displaying labels that stay upright and always face the user.

Procedural notes: a simple, self-contained S2PLOT program (s2views.c) was written in the
C programming language. It uses standard S2PLOT functions to open the display device
(s2opend), to set up the world coordinate space (s2swin) for graphics, to draw a box around
the world space (s2box), and to draw simple vector-based text (ns2text). It also uses the
simple S2PLOT interface (ss2ftt) to the FreeType library (http://www.freetype.org) to
create neatly typeset labels and place them, rotated on the screen, always facing the camera
(with function ds2vbbpr). This program example neither reads or generates data, it simply
annotates the world space available for graphics display with S2PLOT. After compiling and
starting the s2views program, a PRC file was exported using the Shift-P keypress. The
default views and keyboard presses, implemented in the s2plot-prc.js JavaScript file and the
s2views.txt text file, and default rendering and lighting modes were used for this example.

http://www.freetype.org

8

Simple, static geometry: a 3-d figure of a protein molecule. Figure 3 presents a molecule from
the Protein Data Bank (PDB) (http://www.rcsb.org/pdb), rendered by S2PLOT and converted to a
3-d PDF figure following the procedure outlined in this paper. The molecule is the RNA polymerase
alpha subunit (alpha CTD) of the Escherichia coli organism ([15]). Bonds (atoms) can easily be toggled
in and out of the display by expanding the model tree and selecting or deselecting the LINES1 (BALLS1)
branches of the tree. By using the hyperlink capability of PDF, clickable links can be provided in the text
to toggle particular parts of the model, e.g. toggle atoms and toggle bonds. This figure also demonstrates
the option of requiring the user to click on the poster image to activate the 3-d figure. In some cases
this may be desirable so that readers are all presented with the 2-d poster image, regardless of the PDF
reader application they are using.

Procedural notes: an existing S2PLOT program (smv by R. Smith, pers. comm.) that creates
3-d visualisations of molecule structures from the PDB, was compiled against the latest version
of S2PLOT. The smv program includes code to read a PDB file, set up the S2PLOT world
coordinate space, and plot the described molecular structure. It includes an in-program menu
system (itself written using S2PLOT functions such as ds2ah to add interactive “handles”
to the visualisation and ds2shcb to capture user input on handles) that enables the user to
choose how the molecule should be coloured, whether the bonds should be displayed, and
other properties. Smv was run with the selected PDB file, the visualisation was configured as
required using the in-program menu, and the geometry was exported to PRC format using
the standard Shift-P keypress. The standard preset views, keyboard controls, lighting and
rendering scheme were ideal for this example, so no further changes were applied to the PRC
or ancillary files (JavaScript, views). Two one-line JavaScript files were created to implement
the clickable links in the prior paragraph.

Figure 4 shows an excerpt of the text-format PDF file for the protein rendered in Figure 3,
as well as a single 3-d projection of the same protein, generated within the PDB web pages
by Jmol (an open source Java viewer for chemical structures in 3D, http://www.jmol.org)
version 12.2.15.

Structural magnetic resonance imaging. Figure 5 shows a volume rendering of a 3-d magnetic
resonance angiograph as an interactive 3-d PDF figure. In our implementation of 3-d volume rendering
in PDF, three orthogonal sets of slices through the volume are stored as pre-shaded texture images in
the PDF file, but only one set is shown at any one time. JavaScript code (included in the S2PLOT
distribution) is used to note camera position changes and update the selected set. This is a compu-
tationally cheap (and therefore fast) yet highly effective volume rendering technique. It does have the
drawback that without manual balancing of overall transparency scaling for each slice set, the transitions
between slice sets (as the camera is moved across the diagonals of the volume) can sometimes be sudden
and distracting. To address this and improve upon our previous efforts (e.g. [9, 11]) we have included a
command-line option in the xrw2pdf program that lets the user easily modify the opacity scaling ratios
manually for the three slice sets until a satisfactory result—an equalized volume rendering—is obtained,
prior to writing output PRC and PDF files. Figure 6 shows screen captures of the xrw2pdf program
rendering nearby views but using different slice sets, without and with opacity rescaling. Saved PRC and
PDF files retain the opacity rescaling.

Procedural notes: we have previously described our method for volume rendering in PDF [11]
and published the corresponding S2PLOT program volren. For the volume rendering in
Figure 5 we adapted and expanded this program into the new S2PLOT program xrw2pdf

which provides a relatively simple but capable, end-user command-line program for generating
interactive 3-d volume renderings of 3-d data as PDF figures. To create this particular figure,
the original data set, a multi-slice 2-d Digital Imaging and Communications in Medicine

http://www.rcsb.org/pdb
http://www.jmol.org

9

(DICOM)-format image, was opened in the OsiriX medical imaging program (version 4.1 64-
bit, Pixmeo Sarl, http://www.osirix-viewer.com/). and saved as a series of TIF-format
image slices. TIF slices were converted losslessly to TGA format using ImageMagick convert,
and the simple tool tgastack2xrw was used to stack these slices into a single, normalised,
16-bit binary format 3-d image. (Alternatively, the DICOM image could have been converted
to NIFTI image format and converted to the normalised 16-bit binary format 3-d image using
nifti2xrw.) The xrw-format image was then rendered to 3-d PRC (and PDF) using xrw2pdf.
Figure 7 shows a subset of the 2-d image slices exported from OsiriX prior to stacking into a
3-d image.

An informal validation of volume rendering in PDF is given in Figure 8. The 3-d magnetic resonance
angiography (MRA) image presented as the interactive, 3-d PDF Figure 5, was visualised as follows
and screen captures were acquired: (1) using the S2PLOT application xrw2pdf to volume render the
native resolution image (112 × 512 × 512 voxels; (2) using Adobe Reader to display the 3-d PDF figure
output created by xrw2pdf from the native resolution image; and (3) using the 3-d mode of the software
OsiriX. In each case, an upright, anterior coronal view was configured; and the 16-bit colour look-up
table (“CLUT”) was designed in the OsiriX volume rendering display to mimic as closely as possible the
“hotiron” colourmap provided by S2PLOT and mapped to the data with xrw2pdf. While subsampled
data was used in the interactive 3-d Figure 5 to reduce filesize; for validation we use the full-resolution
data.

Functional magnetic resonance imaging. Figure 9 shows a surface rendering of the outer cerebral
cortex, or pial surface, of one hemisphere of the brain, and a small selection of rest-state networks of
the brain shown as coloured sections of the surface. The cortex has a complex, folded structure that is
customarily flattened for visualisation and analysis purposes [16]; using our technique we can display and
share this structure in its true geometric form.

In the figure, the user can display functionally-correlated regions of the brain as revealed by the blood-
oxygen-level-dependent (BOLD) effect [17], corresponding to known rest state networks, “painted” onto
the pial surface. Selecting a specific view (e.g. [Visual network]) from the Views menu results in that
named part of the model tree being enabled for display, and all other networks hidden from display. An
additional view [Cortical surface (no activations)] is included in which all network nodes are set to be
not visible.

Procedural notes: we were provided with a structural T1-weighted magnetic resonance (MR)
image, and four thresholded functional MR images depicting independent rest-state brain
networks computed by FSL Multivariate Exploratory Linear Optimized Decomposition into
Independent Components (FSL MELODIC version 4.1.8, http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/MELODIC), from a functional MR study (G. Poudel, pers. comm.). FreeSurfer (ver-
sion 5.0, http://surfer.nmr.mgh.harvard.edu/) was used to compute the pial surface from
the structural image, and to “paint” the rest-state network activations onto this surface. The
hemisphere pial surface was exported to a FreeSurfer Triangle Surface File - ASCII Version,
while the four painted regions were exported to FreeSurfer W (Weight) Files (ASCII format).
An S2PLOT program was written to read the surface files (using the loadObjFromFS and
loadObjWgtFromFS functions included in S2VOLSURF, and display them as coloured meshes.

The S2PLOT function pushVRMLname was used to set the name of each component for display
in the model tree when the 3-d figure is displayed, and for setting up the predefined views
of the different networks. Predefined views were created by editing the default s2views.txt

file to include several named views, within which the pial surface and one network node
are set VISIBLE=true while the other network nodes are set VISIBLE=false. To guarantee

http://www.osirix-viewer.com/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
http://surfer.nmr.mgh.harvard.edu/

10

uniqueness of model tree node names in the PRC file, the PRC export code applies an auto-
generated suffix to each named node. The full, suffixed node name must be used in the
s2views.txt file, and so the S2PLOT PRC export code writes a utility file, s2direct.map,
which includes the full node names for use in the s2views.txt.

In Figure 10 the principal source data for Figure 9 is shown, as visualised by the FreeSurfer
software that extracted the pial surface from the T1-weighted structural image.

Stacked microscope sections. Figure 11 provides an example of volume rendering, combined with
manually-segmented surfaces that can be toggled in or out of the figure. The source data is a stack of
2-dimensional optical microscopy images of a series of adjacent sections of the sample—the soft parts
only of a juvenile specimen of the marine pulmonate snail Ovatella myosotis—yielding a contiguous 3-d
volume.

Procedural notes: (iso-)surfaces of the data were generated with the software AMIRA (version
5.4.0, Visage Imaging, Inc., San Diego, CA, USA) by manual segmentation of section data as
described by [18]. The same software was used to reduce the tessellation of surface meshes
to achieve a suitable file size, and to convert the surfaces to the Alias Wavefront .obj (OBJ)
format.

As for Figure 5, the volume rendering component of this figure was created by assembling
the slice stack into a single, normalised, 16-bit binary format 3-d image using tgastack2xrw,
then displaying the volume usingthe xrw2pdf program. To overlay surfaces stored in OBJ
format on the volume rendering (i.e. in the same object coordinate system space), the xrw2pdf
program was enhanced to read surface(s) from one or more OBJ files and shade each surface
with a nominated solid colour and transparency. A custom s2views.txt file was created
(using the model tree node names in the s2direct.map file) to provide Views menu options
to enable or disable the segmented digestive tract surfaces. As per Figure 5, the slice opacity
scaling feature of the xrw2pdf utility was used to improve the smoothness of the volume
rendering across the view transitions.

Segmented anatomical structure. Figure 12 presents a 3-d interactive visualisation of the jaw mus-
culature of the Australian Laughing Kookaburra (Dacelo novaeguineae). We have previously constructed
an anatomical model of the jaw musculature of the Kookaburra, based on a computed tomography (CT)
scan of a deceased adult specimen ([19]). The Kookaburra was loaned from Australia Museum’s Or-
nithological Collection (specimen no. BF2162), and scanned in the Newcastle Calvary Mater Hospitals
Toshiba Aquilion 64 CT scanner. Segmentation of the CT images was carried out using Materialise
Mimics (http://biomedical.materialise.com/mimics). The CT data was thresholded to select the
areas of the image with grey scale values that represented the bone of the Kookaburra skull, omitting the
soft tissue. The selected areas on each image slice were then joined using Mimics’ 3D modelling tool to
produce a model of the skull and jaw bones. While the soft tissue making up the kookaburra jaw muscles
was visible in the CT scans, it was difficult to differentiate the separate muscles due to the low resolution
of the scan. To aid in differentiating each muscle, the head of the kookaburra specimen was dissected
and described. This information was then used to aid in identifying the jaw muscles in the CT scan. To
create the 3D model of each of these jaw muscles Mimics’ draw tool was used to manually select the edge
of each muscle and join the slices to produce a 3D model. The skull and muscles were then exported in
the Stereolithography (STL) file format.

Procedural notes: to display surfaces stored in STL format, a simple S2PLOT program,
s2stl, was created to read surface(s) from one or more STL files and shade each surface with
a provided solid colour and transparency. The first attempt generated a very large output

http://biomedical.materialise.com/mimics

11

PRC file (> 30 MB!). The free mesh procesing software MeshLab (version 1.3.0, http:

//meshlab.sourceforge.net) was used to apply a quadric-based edge collapse to decrease
the size of the skull mesh (the largest and most detailed component by far) sixfold to 100,000
triangles. This reduced the output PRC (and PDF) file size to under 4MB with almost no
perceptible decrease in surface detail.

Custom views were generated interactively for this figure. The PRC model was placed in a
PDF file using LATEX and the movie15.sty style file, and the movieref command was used
to create a 3Dgetview clickable link. When viewing this figure in Acrobat Reader, the user
can adjust all the view settings (including transparency of parts, camera view orientation,
background colour and lighting) and then click on the 3Dgetview link to retrieve the exact
text block to place in the s2views.txt views file to recall the configured view. This was done
several times to create and store different views and configurations of transparent components
in a single s2views.txt file. This file was then used in the final creation of the figure in the
LATEX document source.

An informal validation of surface rendering in PDF is given in Figures 13 and 14. The segmented
surface data presented as the interactive, 3-d PDF Figure 12, was visualised as follows and screen cap-
tures were acquired: (1) using the s2stl S2PLOT program; (2) using Adobe Reader to display the 3-d
PDF figure output from s2stl; and (3) using Rhinoceros (version 4.0 SR9, Robert McNeel & Associates,
http://www.en.na.mcneel.com/default.htm). In each case, a left saggital view was configured; ortho-
graphic projection mode was used to eliminate perspective differences due to the confounding effects of
differing virtual camera fields-of-view, distances to the subject, and magnification. It was not possible to
arrange for identical lighting enviroments due to the closed nature of the Adobe Reader and Rhinoceros
applications.

Discussion

Our latest workflow for generating 3-d figures in PDF documents improves significantly upon our previous
efforts [9–11]. Specifically we have removed the dependence on commercial software, and we have created
a workflow that will suit the considerable fraction of the academic community working predominantly
in the Unix environment (Mac or Linux) and using LATEX for article preparation. Our approach is a
more open and flexible framework than the (very few) commercial alternatives and supports advanced
geometry types (e.g. billboards) and scientific visualisation methods (e.g. volume rendering) directly. We
provide straightforward programmer-control of the hierarchical model tree, which in concert with custom
JavaScript code, enables a diverse range of interactive visualisations to be imagined and constructed. To
establish the technique and highlight just some of its potential, we have presented a series of figures based
on research-quality data from different scientific fields. We note that by use of an appropriate LATEX style
file (e.g. prosper, http://amath.colorado.edu/documentation/LaTeX/prosper/), 3-d figures can be
included in slide-based talks as well as articles, and we point out that the movie15.sty style file (and
media9.sty) can also embed other media content (e.g. movies) in addition to interactive 3-d content.

Validation. Validating new approaches for the visualisation of scientific data represents an important
control [20] but is rarely acknowledged or attempted. It is made difficult by the diversity and complexity
of data-to-pixel transfer functions that are applied by existing applications, and the commercially-closed
nature of (some) popular visualisation software. Even for simple raster image slicing for example, without
knowing and applying the exact mapping from data value to colour, comparison of two visualisation
processes can be only qualitative. The inherently qualitative and aesthetic nature of most scientific
visualisation precludes any rigourous comparison of results. Instead, “visualizations are accepted if they

http://meshlab.sourceforge.net
http://meshlab.sourceforge.net
http://www.en.na.mcneel.com/default.htm
http://amath.colorado.edu/documentation/LaTeX/prosper/

12

look more or less right”, and “the more innovative and unusual the application, the less likely . . . error[s]
will be detected” [21].

• Volume rendering. In Figure 6 we demonstrate the improvement that is possible by applying
opacity rescaling to 2-d slice-based volume rendering. Panel (a) shows an off-axis rendering in the
S2PLOT application xrw2pdf of the ZY slice set (that is, the camera view direction is most closely
aligned with the X-axis rather than the Y or Z axes. Panels (b) and (c) of Figure 6 show the
resultant rendering when the camera is moved fractionally further around the object, such that the
preferred slice set changes to XZ (i.e. the camera view direction now most aligned with the Y-axis),
where opacity rescaling has been applied (to the XZ slice set relative to the ZY slice set) in panel
(c) only. Without rescaling (b), significant global changes in the appearance of the rendering occur
as the model is rotated and different slice sets are selected for rendering. These transitions are
commonly distracting enough so as to disturb comfort in viewing the model and comprehension
thereof. Rescaling, available on the xrw2pdf command-line, can improve the rendering to the point
where many observers will no longer notice the transitions between slice sets, as comparing (a)
and (c) demonstrates. It is important to note that opacity rescaling is not linear (overall opacity
accumulates exponentially along sight-lines for standard OpenGL blending modes used in slice-
based volume rendering) and so the preferred rescaling cannot be calculated. Instead it is found
by manual user setting of the relative scaling between the three independent slice sets, with a good
starting point for the rescaling values being the ratios of the relative axis lengths (pixel dimensions)
of the data volume being rendered. Volume rendering using 3-d textures, which avoids all need for
opacity rescaling by virtue of OpenGL’s texture resampling capabilities, is available in xrw2pdf but
cannot be implemented in 3-d PDF figures due to lack of support for 3-d textures in the 3-d PDF
extension.

In Figure 8, we show that the overall differences between volume renderings of the same data
in panels (a) S2PLOT, (b) 3-d PDF, and (c) OsiriX, are small. The formal difference between
the S2PLOT and 3-d PDF images—panel (d)—is insignificant. This is expected, since the same
volume rendering operation (OpenGL-based texture sampling and blending) is being applied in both
renderings, to identical texture data. The OsiriX and 3-d PDF images show more difference—panel
(e)—mostly associated with the edges of prominent image features. Texture sampling and blending
are different in this case (OsiriX uses 3-d texture-based rendering, 3-d PDF uses 2-d texture-based
rendering; although for this face-on view the difference would be subtle), and while the transfer
function from data value to voxel colour and opacity has been constructed in the OsiriX 16-bit
editor to be similar to that used for the 3-d PDF figure, it is not identical. These known differences
in the rendering satisfactorily explain the differences observed. Qualitatively, the OsiriX rendering
is smoother, but arguably less detailed than the S2PLOT and 3-d PDF renderings. The above
notwithstanding, the principal outcome is that the 3-d PDF volume rendering offers as faithful
and accurate representation of the volume data as other packages might, in the context of variable
rendering techniques, data transfer functions, and data pre-processing methods.

• Surface rendering. In Figure 13 we present the surface-based anatomical model of the jaw
musculature of the Australian Laughing Kookaburra as rendered in panel (a) by S2PLOT, (b) 3-
d PDF, and (c) Rhinoceros. Of note are the apparent differences in default lighting conditions,
and surface “materials”. For example, the Rhinoceros rendering suggests more reflective surfaces
and/or brighter directional lighting, than present in the S2PLOT or 3-d PDF scene; while colours
are significantly less saturated in the S2PLOT rendering. Figure 14) attempts to display the
geometric differences between the renderings of the Kookaburra jaw anatomy, with effects due to
the lighting and material environment suppressed. Clearly, all three models show good agreement
in terms of feature edges, but minor differences remain, predominantly falling in deep shadow areas
and in highly-curved parts of the surfaces. Computed differences in images of scientific data surface

13

rendered in different packages clearly have limited value, and this observation is linked to the scant
presence in the academic literature of quantitative validation and comparison studies of surface
visualisation techniques. We acknowledge that different software will always prefer different material
and lighting conventions, and simply offer the commentary that in comparison to Rhinoceros and
S2PLOT, there are no identifable flaws with the 3-d PDF surface rendering that would preclude its
use in practice.

Unfortunately, the rendering of transparent surfaces in 3-d PDF is not done well. We believe that
the viewing applications (Adobe Reader and Adobe Acrobat) are not sorting the individual facets
that make up transparent meshes, and accordingly, back-to-front drawing order, which is necessary
for correct drawing of transparent surfaces, is not determined. The effect of this can be observed in
Figure 12 by selecting the view Dorsal Pterygoid muscles or Ventral Pterygoid muscles and rotating
the model. The mottled presentation of the cranium and mandible bone surfaces results from the
triangular facets that make up the surface being drawn in an effectively random order: in any
view, some of the facets on the distant surface are (correctly) drawn before the overlaying near
surface facets, while other facets are (incorrectly) drawn after the near surface facets that overlay
them. Not only are single surfaces drawn incorrectly, but folded and/or multiple transparent meshes
that interleave along the viewing direction will generally not be rendered properly. A work-around
exists: in place of storing multi-faceted meshes in the PRC file, it is possible to store a large list
of unstructured transparent facets. These will be rendered correctly, but the cost in terms of file
size, rendering frame rate, and especially 3-d figure “initialisation” time can be prohibitive, even
for a relatively small set of facets (e.g. a few thousand). The long-term solution is for the viewing
application to globally sort all transparent facets in all meshes, before rendering the current camera
view.

Alternatives. The published use of 3-d PDF outside of the computer-aided design / computer-aided
manufacturing (CAD/CAM) industry, is extremely limited. Hence an in-depth comparison of the 3-d
PDF output of S2PLOT with the output of other programs is neither feasible nor useful. For academic
scientific use, where open knowledge and accuracy in transferring raw image data to visualisations is more
important than (i) aesthetics and (ii) the protection of commercial intellectual property, the selection of
a tool to create a 3-d PDF figure is defined at present by the data type.

For users wishing to create 3-d PDF figures of analytic surfaces, or expertly-annotated, “traditional”
3-d plots (information visualisations), Asymptote [22] is the appropriate tool. Asymptote can create
PRC-format files for use with LATEX and movie15.sty (or media9.sty) and can also directly create PDF
files with embedded 3-d figures. Asymptote is a program whose base data elements are bezier surfaces
and patches. The opposite approach is taken by MathGL (http://mathgl.sourceforge.net), a library
that outputs tessellated data (line segments and triangles). But it is primarily intended to make bitmap
visualizations of massive data sets, while 3D PDF output was introduced as an afterthought and its
quality has been often sacrificed to simplify and speed up its built-in renderer.

For users working exclusively with meshes, MeshLab can export Universal 3D (U3D) format, which
can also be embedded in PDF documents using LATEX. S2PLOT’s strengths are support for 3-d imaging
data and large point data sets, direct scientific visualisation (e.g. volume rendering), and the ability to
customise and generate almost any visualisation in a 3-d PDF figure by using both custom S2PLOT
code and custom 3-d JavaScript code. The ability to structure and name the model tree in S2PLOT,
and therefore control the visualisation to be displayed in Adobe Reader via custom 3-d JavaScript code,
is currently unique.

Poster images. It is worth reminding the reader that 3-d PDF figures do not preclude the use of
normal 2-d figures in a document. Indeed, the poster image can and should be used to provide one or
more traditional 2-d images for PDF reader applications that do not support 3-d figures, or for printing.

http://mathgl.sourceforge.net

14

Including 3-d figures in a PDF file adds capability for publication and communication and need not
impact or change any existing practices oriented towards static media (paper). We have used poster
images in all the figures of this paper.

File size. The inclusion of 3-d figures in a PDF document increases the file size. However, judicious
use of resampling (for 3-d volumetric images) and mesh simplification (for surfaces) can usually deliver
substantial file size savings without compromising the quality of the rendering or impacting on compre-
hension of the data. In any case, we advocate that larger files are entirely warranted when the use of
3-d figures systematically improves the communication and comprehension of multi-dimensional datasets,
models and research results.

Publishing best practice inertia. We have been developing 3-d PDF figure publishing techniques for
nearly five years. We have experienced scientific publishers who are extremely keen to explore how this
technology can provide new features for their user communities, and we have experienced the opposite.
The most common issue is that the Adobe PDF specification which includes the 3-d PDF “annotation”
feature (PDF/E, which we use to deliver 3-d figures in PDF) is not considered by publishers and librarians
to be “archival” (PDF/A). We hope that increased uptake and use of 3-d figures in PDF by the science
community will motivate publishers to work towards an archival PDF specification that includes 3-d
figures, or at least develop publishing practices that support the use of PDF/E documents alongside
PDF/A.

Viewers. Presently, the only applications that support the display of 3-d figures in PDF documents are
Adobe Acrobat and Adobe Reader on desktop platforms (Apple Macintosh OS X, Microsoft Windows,
Linux). Adobe Reader does not support 3-d PDF figures on the popular iOS (iPhone, iPod Touch, iPad)
platform; we are not aware of any other useable 3-d PDF software for this platform, although a recently-
released product, “3D PDF Reader” for iPhone, iPod Touch and iPad (https://itunes.apple.com/us/
app/3d-pdf-reader/id569307672) created by Tech Soft 3D, is able to display PRC- and U3D-format
3-d models embedded in PDF documents. However, 3D PDF Reader does not support JavaScript 3D,
nor does it support documents with multiple 3-d figures. Accordingly it is (presently) not useful for
anything but the simplest S2PLOT-generated 3-d PDF figures.. While it would be possible to write an
(incomplete) PRC reader and display the contained 3-d geometry for almost any platform supporting
OpenGL (as Tech Soft 3D have done for the iOS platform), the overwhelmingly difficult task would to
implement the full 3-d JavaScript API so that custom visualisations such as those produced by S2PLOT
could be rendered correctly.

Concluding remarks. At present 3-d PDF figures in contemporary scientific literature are an unusual,
novel occurrence. Our work aims to lower the barriers to using this technology, and we hope that the
new workflow presented in this paper will encourage the community to begin using this technology
in earnest, to advance scientific communication. The latest S2PLOT software which includes the PRC
export module, can be obtained from http://code.google.com/p/s2plot/. The S2VOLSURF kit which
includes the xrw2pdf and s2stl S2PLOT programs mentioned in this paper is freely available from
http://code.google.com/p/s2volsurf/.

Acknowledgments

We thank the OsiriX Foundation and the University Hospital of Geneva for providing the medical image
used in Figure 5. We are indebted to A. Grahn for providing the LATEX style files movie15.sty and
media9.sty, and J. Bowman and the Asymptote team (especially O. Shardt) for developing the first

https://itunes.apple.com/us/app/3d-pdf-reader/id569307672
https://itunes.apple.com/us/app/3d-pdf-reader/id569307672
http://code.google.com/p/s2plot/
http://code.google.com/p/s2volsurf/

15

Open Source PRC writer. We thank R. Smith for sharing with us his S2PLOT code that parses and
visualises the structures in PDB files, and G. Poudel for providing the data used to create Figure 9. With
respect to the kookaburra model, we thank J. Sladek and W. Boles at Australia Museum for the loan of
the specimen; Newcastle Calvary Mater Hospital and E. Cunningham for use of the CT scanner; S. Wroe
for use of software; and Prof. M. Mahony, A/Prof. P. Clausen and Prof. J. Rodger for supervision and
lab resources.

This paper was generated with pdflatex version 3.1415926-2.4-1.40.13 (TeX Live 2012/MacPorts

2012 5), using movie15.sty version 2009/07/07.

References

1. Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3d surface construction algo-
rithm. SIGGRAPH Comput Graph 21: 163–169.

2. Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. SIGGRAPH Comput Graph 22:
65–74.

3. Einhäuser W, Martin KAC, König P (2004) Are switches in perception of the necker cube related
to eye position? European Journal of Neuroscience 20: 2811–2818.

4. Hubona GS, Wheeler PN, Shirah GW, Brandt M (1999) The relative contributions of stereo,
lighting, and background scenes in promoting 3d depth visualization. ACM Trans Comput-Hum
Interact 6: 214–242.

5. Raush E, Totrov M, Marsden BD, Abagyan R (2009) A new method for publishing three-
dimensional content. PLoS ONE 4: e7394.

6. Crutcher RM, Plante RL, Rajlich P (1998) VRML and Collaborative Environments: New Tools for
Networked Visualization. In: R Albrecht, R N Hook, & H A Bushouse, editor, Astronomical Data
Analysis Software and Systems VII. volume 145 of Astronomical Society of the Pacific Conference
Series, p. 3.

7. Fucile G, Di Biase D, Nahal H, La G, Khodabandeh S, et al. (2011) eplant and the 3d data display
initiative: Integrative systems biology on the world wide web. PLoS ONE 6: e15237.

8. Lee WH, Atienza-Herrero J, Abagyan R, Marsden BD (2009) Sgc - structural biology and human
health: A new approach to publishing structural biology results. PLoS ONE 4: e7675.

9. Barnes DG, Fluke CJ (2008) Incorporating interactive three-dimensional graphics in astronomy
research papers. New Astronomy 13: 599 - 605.

10. Fluke CJ, Barnes DG (2008) The interactive astronomy textbook. Astronomy Education Review
7: 113-125.

11. Ruthensteiner B, Baeumler N, Barnes DG (2010) Interactive 3d volume rendering in biomedical
publications. Micron 41: 886.e1 - 886.e17.

12. Barnes DG, Fluke CJ, Bourke PD, Parry OT (2006) An Advanced, Three-Dimensional Plotting
Library for Astronomy. Publications of the Astronomical Society of Australia 23: 82-93.

13. Goodman AA, Rosolowsky EW, Borkin MA, Foster JB, Halle M, et al. (2009) A role for self-gravity
at multiple length scales in the process of star formation. Nature 457: 63-66.

16

14. Floyd RW, Steinberg L (1976) An Adaptive Algorithm for Spatial Greyscale. Proceedings of the
Society for Information Display 17: 75–77.

15. Jeon YH, Negishi T, Shirakawa M, Yamazaki T, Fujita N, et al. (1995) Solution structure of the
activator contact domain of the RNA polymerase alpha subunit. Science 270: 1495–1497.

16. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: Inflation, flattening, and
a surface-based coordinate system. NeuroImage 9: 195 - 207.

17. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast
dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United
States of America 87: 9868–9872.

18. Ruthensteiner B (2008) Soft part 3d visualization by serial sectioning and computer reconstruction.
Computer 100: 63–100.

19. Quayle MR (2011) A Morphological Study of the Kingfisher Skull. Honours Thesis, The University
of Newcastle.

20. Johnson C (2004) Top scientific visualization research problems. Computer Graphics and Appli-
cations, IEEE 24: 13 - 17.

21. Uselton S, Dorn G, Farhat C, Vannier M, Esbensen K, et al. (1994) Validation, verification and
evaluation. In: Visualization, 1994., Visualization ’94, Proceedings., IEEE Conference on. pp. 414
-418. doi:10.1109/VISUAL.1994.346285.

22. Shardt O, Bowman JC (2012) Surface parameterization of nonsimply connected planar bzier re-
gions. Computer-Aided Design 44: 484.e1 - 484.e10.

23. Ruthensteiner B, Stocker B (2009) Genital system anatomy and development of Ovatella myosotis
by three-dimensional computer visualization. Acta Zoologica 90: 166–178.

17

User writes S2PLOT program

read or create data
create visualisation with S2PLOT

functions

User runs program and requests PRC
+ PDF export

(Shift-P)

(S2PLOT PRC export module loaded)
PRC file created

"Quick look" PDF created using libHaru

User examines "Quick look" PDF in
Adobe Reader

PRC file is embedded in a LaTeX
document using movie15.sty and

pdflatex is run

Additional support files included:
s2plot-prc.js s2views.txt

User happy?

User tweaks program

No

Yes

Quick PDFPRC

PDF

PDF examined in Adobe
Reader

Predefined views created
interactively and copied

to s2views.txt

Optional

Figure 1. Flow diagram for creating 3-d PDF figures with S2PLOT. The final output is a
PDF file generated with LATEX, including one or more 3-d figures, embedded with movie15.sty, created
via PRC export from the user’s S2PLOT program.

18

Figure 2. The standard S2PLOT 3-d PDF space. This simple figure, a wireframe cube with
faces labelled, provides a simple example for becoming familiar with the standard 3-d PDF toolbar, and
the default S2PLOT extensions (keyboard controls) implemented via JavaScript. When reading this
document with a PDF reader that supports 3-d figures (i.e. Adobe Reader and Adobe Acrobat, for PC
or Mac) the 3-d mode will be activated automatically. Otherwise a regular, static 2-d figure will be
displayed.

19

Figure 3. RNA polymerase alpha subunit (alpha CTD) of the Escherichia coli organism.
An S2PLOT program to construct 3-d visualisations of molecules from the Protein Data Bank was used
to render this part of the E. coli organism. Atoms are coloured according to hydropathy. Atoms and
bonds can be toggled in and out of the visualisation by expanding the model tree, or by using
hyperlinks, e.g. toggle atoms and toggle bonds. This figure also demonstrates the optional feature of a
“poster image” which must be clicked to activate the 3-d figure. Data downloaded from the Protein
Data Bank; original source [15].

20

(a)

(b)

Figure 4. RNA polymerase alpha subunit (alpha CTD) of the Escherichia coli organism.
(a) Excerpt of the PDB text-format description file for this protein; and (b) Jmol 3-d projection
obtained at the Research Collaboratory for Structural Bioinformatics (http://home.rcsb.org) PDB
site.

http://home.rcsb.org

21

Figure 5. Volume rendering of a magnetic resonance angiography (MRA) image. The
xrw2pdf utility was used to balance the opacity of each slice set to minimise difference at the (diagonal)
transitions between slice sets. Data downloaded from the OsiriX Foundation and the University
Hospital of Geneva; original identifier CETAUTOMATIX (Normal cardiac MRI and MRA study. Mild
aortic and tricuspid valves regurgitation.) Click to activate the 3-d figure (when using Adobe Acrobat
or Adobe Reader).

22

Figure 6. Demonstration of equalized volume rendering using opacity rescaling in xrw2pdf: (a)
volume rendering of ZY slices; and volume rendering of XZ slices from a nearby viewpoint (b) without
and (c) with opacity rescaling. Opacity rescaling dramatically improves the transition between
renderings of different, oblique slice sets.

Figure 7. Magnetic resonance angiography slices. A subset of the 2-d image slices exported from
OsiriX prior to stacking into the 3-d image used to generate Figure 5.

23

Figure 8. Validation of volume rendering in 3-d PDF. Top row: screen captures of the full-resolution
MRA image, volume rendered in (a) S2PLOT, (b) 3-d PDF, and (c) OsiriX. Bottom row: smoothed,
greyscale difference images between (d) the S2PLOT and 3-d PDF visualisations, and (e) the OsiriX
and 3-d PDF visualisations. See text for further details and discussion.

24

Figure 9. Surface rendering of the outer cerebral cortex (pial surface), and optional overlay
of correlated functional activations corresponding to selected, recognised rest state networks (via the
“Views” menu). Functional MRI data set courtesy Govinda Poudel; cortical surface extraction by
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

http://surfer.nmr.mgh.harvard.edu/

25

(a)

(b)

Figure 10. Pial surface renderings. (a) FreeSurfer tkmedit rendering of T1-weighted structural
MR image and cross-section through extracted pial surface; and (b) FreeSurfer tksurfer 3-d rendering
of the pial surface.

26

Figure 11. Volume rendering, and surface segmentation of the digestive tract, of a
juvenile specimen of the marine pulmonate snail Ovatella myosotis. Sample (total length:
0.86mm) prepared as described in [23]; stacked, optical microscopy images processed and manually
segmented as per [18].

27

Figure 12. Laughing Kookaburra (Dacelo novaeguineae) skull and jaw anatomy. Manually
segmented meshes simplified in MeshLab. Click to activate the 3-d figure (when using Adobe Acrobat
or Adobe Reader).

28

Figure 13. Validation of surface rendering in 3-d PDF (1). Left column: screen captures of the
Laughing Kookaburra skull and jaw anatomy surface-rendered in (a) S2PLOT, (b) 3-d PDF and (c)
Rhinoceros. Right column: corresponding edge-detected images. See text for further details and
discussion.

29

Figure 14. Validation of surface rendering in 3-d PDF (2). Edge-detected images from screen captures
of the Laughing Kookaburra skull and jaw anatomy surface-rendered in: (a) S2PLOT (blue) and 3-d
PDF (orange); (b) 3-d PDF (orange); and (c) Rhinoceros (blue) and 3-d PDF (orange). See text for
further details and discussion.

30

Table 1. Standard S2PLOT 3-d PDF keyboard controls.

Key View or operation
1 Front perspective
2 Back perspective
3 Left perspective
4 Right perspective
5 Top perspective
6 Bottom perspective
7 Oblique perspective
+,- Zoom in, out
[,] Roll camera clockwise, counter-clockwise
←, → swing camera left, right
↑, ↓ swing camera up, down
<,> Decrease, increase camera movement “delta”
Shift-A Toggle autospin
/,* Decrease, increase autospin speed

A list of the default S2PLOT extensions (keyboard controls) implemented via the provided
s2plot-prc.js JavaScript.

