Supplemental Material Farzan, et al., "In utero and early life arsenic exposure in relation to long-term health and disease". | | Pages | |--|-------| | Supplemental Table 1. Epidemiological studies of <i>in utero</i> exposure to arsenic and later life health and mortality outcomes. | 2, 3 | | Supplemental Table 2. Animal models of in utero arsenic exposure and adverse health outcomes. | 4-6 | | Supplemental T | Supplemental Table 1. Epidemiological studies of <i>in utero</i> exposure to arsenic and later life health and mortality outcomes. | | | | | | | | |---------------------------|--|-----------------|--|---|-----------------------------------|---|---|---| | Author | Population/
Study Group | Study
Design | Sample
Size | Exposure
Assessment | Exposure
Level | Outcomes | Mortality/Risk | Main Findings | | Rosenberg,
1973 | Region II,
Chile
(infants,
age 2) | Case
series | N=2 | Historical As
water
contamination | Unknown
(average:
870 µg/L) | Autopsy-
Death from MI | NA | Infants had hallmarks of chronic
As exposure, likely in utero and
in infancy. Both died of MI and
had vascular lesions resembling
atherosclerosis. | | Rosenberg,
1974 | Region II,
Chile
(infants &
children, ages
2-16) | Case
series | N=5 | Historical As
water
contamination | Unknown
(average:
870 µg/L) | Autopsy-
Death from
MI, broncho-
pneumonia,
liver cirrhosis | NA | All children had similar vascular lesions, arterial thickening and had evidence of chronic As exposure, which likely occurred in utero or in early childhood. | | Smith, et al.,
2006 | Region II,
Chile | Ecologic | N=224
lung-related
deaths | Historical As
water
contamination | Unknown
(average:
870 µg/L) | Lung cancer,
bronchiectasis
and COPD
mortality in
30-49 year
olds, 1989-
2000 | Born 1950-57 Lung cancer SMR= 7.0, 95% CI: 5.4-8.9 Bronchiectasis SMR= 12.4, 95% CI: 3.3-31.7 Born 1958-70 Lung cancer SMR= 6.1, 95% CI: 3.5-9.9 Bronchiectasis SMR= 46.2, 95% CI: 21.1-87.7 | Those born just before the high-
exposure period (1950-1957)
and exposed in early childhood
had increased mortality from
lung cancer and bronchiectasis.
Those likely exposed in utero
and in early childhood had
similarly elevated lung cancer
mortality for lung cancer and
very high mortality rates for
bronchiectasis | | Yuan, et al.,
2007 | Region II,
Chile | Ecologic | N=
79,430
deaths | Historical As
water
contamination | Unknown
(average:
870 µg/L) | Mortality and
CVD related
mortality,
1950-2000 | MI mortality rate ratios | Highest risk of MI was for young adult men 30-49 yrs, who were born during the high-exposure period. MI mortality was predominant cause of excess deaths during and immediately after the high-exposure period, with increased acute risks of MI mortality during the high-exposure period. | | Liaw, et al.,
2008 | Region II,
Chile | Ecologic | N= 225 all
cancers; 13
liver cancer
1950-81 | Historical As
water
contamination | Unknown
(average:
870 µg/L) | All cancer and
liver cancer
mortality in
children, 0-19
years, 1950-
2000 | Child liver cancer relative risk Pooled= 10.6, 95% CI: 2.9-39.2 Male= 8.9, 95% CI: 1.7-45.8 Female= 14.1, 95% CI: 1.6-126 | Common childhood cancers were not increased, but childhood liver cancer mortality occurred at much higher rates than expected. | | Dauphine, et
al., 2011 | Region II,
Chile | Ecologic | N=32 | Historical As
water
contamination | Unknown
(average:
870 µg/L) | Spirometry measures of forced expiratory volume in 1 sec (FEV ₁), forced vital capacity (FVC) and survey assessment of respiratory symptoms | Arsenic-associated functional decreases FEV ₁ = 11.5%, p trend= 0.04 FVC= 12.2%, p trend= 0.04 Breathlessness prevalence OR= 5.94, 95% CI: 1.36-26.0 | Early-life arsenic exposure was associated with lower FEV ₁ , lower FVC, and increased breathlessness in adulthood. Dose-dependent relationships between early-life arsenic exposure and adult FEV ₁ and FVC were also identified. | | Smith, et al.,
2012 | Region II,
Chile | Ecologic | N= 128 all
cancer, 9
bladder
cancer, 1
laryngeal
cancer, 9
liver cancer,
12 renal
disease in
those born
1958-1970 | Historical As
water
contamination | Unknown
(average:
870 µg/L) | Mortality in
young adults
30-49 years,
born between
1958-1970 | Bladder cancer SMR Pooled= 18.1, 95% CI: 11.3-27.4 Males born 1958-70= 65.7, 95% CI: 24.1-143 Females born 1958-70= 43.0, 95% CI: 8.9-126 Laryngeal cancer SMR Pooled= 8.1, 95% CI: 3.5-16.0 Liver cancer SMR Pooled= 2.5, 95% CI: 1.6-3.7 Chronic renal disease SMR Pooled= 2.0, 95% CI: 1.5-2.8 | Increased mortality from bladder cancer, laryngeal cancer, liver cancer, and chronic renal disease was observed for in individuals exposed in utero or as children (<18yrs). The greatest increase in mortality was observed for bladder cancer in men and women likely exposed in utero. | |-------------------------|--|---|---|---|--|---|---|--| | Hawkesworth, et al 2012 | Matlab,
Bangladesh
MINIMat study | Prospecti
ve cohort
(birth -
4.5
years) | N= 1887 | Maternal U-As (GW 8) Maternal U-As (GW 30) Child U-As (18 mo) Maternal urine As, GW 30 Maternal blood As, GW 14 | Median: 80µg/L Median: 83µg/L Median: 34µg/L Median: 85 µg/L 5-95 percentiles: 20-508 Median: 4.7 µg/kg 5-95 percentiles: 1.4-22.2 | SBP and DBP in children at 18 months and 4.5 years of age; kidney volume; GFR | 1 mg/L increase in maternal U-As was associated with increase in: Child SBP: 3.69 mmHg 95% CI: 0.74, 6.63; p= 0.01 Child DBP: 2.91 mmHg 95% CI: 0.41, 5.42; p= 0.02 1 mg/L increase in child U-As was associated with increase in: Child SBP: 8.25 mmHg 95% CI: 1.37, 15.1; p= 0.02 1 mg/L increase in child U-As was associated with decrease in: GFR: -33.4 ml/min/1.72 m² 95% CI: -70.2, 3.34; p= 0.08 | Increased maternal urinary As was associated with increased SBP and DBP at 4.5 years of age. Increase in DBP at 4.5 years was associated with a child's U-As at 18 months. A marginal inverse association was found between child's U-As at 18 months and GFR at 4.5 years. Cadmium was also assessed and no associations were found. Although effect sizes were modest, arsenic exposure in early life could have long-term consequences for blood pressure and kidney function. | | Supplemental Table 2. Animal models of in utero arsenic exposure and adverse health outcomes. | | | | | | | | |---|---|-------------------------|--|---|--|--|--| | Author | Purpose/
Hypothesis | Model
system | Route of exposure and
arsenic dose | Arsenic Exposure
Assessments | Findings | | | | Waalkes, et al.,
2003 | Examine ability of arsenic to induce cancer transplacentally | Pregnant
C3H
mice | 0, 42.5, 85 ppm NaAsO ₂ in dams' drinking water from gestational day 8 to birth | Necropsy, tumor
incidence | Male offspring exposed in utero to arsenic had increased dose-dependent incidence of hepatocellular carcinoma, adrenal tumor incidence and multiplicity and increases in liver tumor multiplicity. In female offspring, increases occurred in ovarian tumors, lung carcinomas and proliferative lesions of the uterus and oviduct. | | | | Waalkes, et al.,
2004 | Examine ability of
transplacental
arsenic exposure to
promote TPA-
induced
carcinogenesis | Pregnant
C3H
mice | 0, 42.5, 85 ppm NaAsO₂ in dams' drinking water from gestational day 8 to birth; Topical 12-O-tetradecanoyl phorbol-13-acetate (TPA) 2x weekly from 4-25 weeks of age | Necropsy, tumor incidence | Arsenic-induced dose-dependent increases in hepatocellular carcinoma incidence and multiplicity and increases in adrenal tumor incidence and multiplicity were observed regardless of TPA exposure in male offspring Female offspring had increased epithelial ovarian tumors and pre-neoplastic lesions of the reproductive tract, regardless of TPA exposure. TPA had no effect on skin tumors, but promoted arsenic related liver tumors in females and lung tumors in both males and females. | | | | Waalkes, et al.,
2004 | Examine ability of
transplacental
arsenic exposure to
promote TPA-
induced
carcinogenesis | Pregnant
C3H
mice | 0, 42.5, 85 ppm NaAsO ₂ in dams' drinking water from gestational day 8 to birth; Topical TPA after birth (2 μg/0.1 ml acetone, twice/week for 21 weeks) | Necropsy, tumor incidence | Male offspring developed hepatocellular carcinoma and adrenal tumors after in utero exposure. Female offspring developed lung carcinoma, ovarian tumors, and uterine and oviduct pre-neoplasia. Combined arsenic and TPA treatment induced a significant increase in hepatocellular tumors in female offspring, but arsenic alone was not effective. In utero arsenic exposure can act as a complete carcinogen but can also act as a co-carcinogen in the female liver. | | | | Waalkes, et al.,
2006 | Examine ability of
transplacental
arsenic exposure to
promote DES or
tamoxifen induced
carcinogenesis in
male offspring | Pregnant
CD1
mice | 85 ppm NaAsO ₂ in dams'
drinking water from
gestational day 8 to 18 | Necropsy, tumor incidence | In male CD1 mice, in utero arsenic exposure alone induced liver adenoma and carcinoma, lung adenocarcinoma, adrenal adenoma and renal cystic hyperplasia. Additional treatment with postnatal DES enhanced arsenic-induced hepatocarcinogenesis. In utero arsenic initiated urinary bladder tumors when followed with postnatal tamoxifen and uroepithelial proliferative lesions when followed with tamoxifen or DES. | | | | Waalkes, et al.,
2006 | Examine ability of
transplacental
arsenic exposure to
promote DES or
tamoxifen induced
carcinogenesis in
female offspring | Pregnant
CD1
mice | 85 ppm NaAsO ₂ in dams'
drinking water from
gestational day 8 to 18 | Necropsy, tumor
incidence | In female CD1 mice, in utero arsenic alone induced some urogenital system tumors, including mostly benign tumors of the ovary and uterus, and adrenal adenoma. DES alone induced some tumors, but when given after in utero arsenic, arsenic and DES acted synergistically to greatly enhance urogenital tumor incidence, multiplicity, and progression. Tamoxifen increased arsenic-induced uroepithelial proliferative lesions. | | | | Liu, et al., 2007 | Examine ability of
transplacental
arsenic exposure to
promote TPA-
induced
carcinogenesis | Pregnant
C3H
mice | 85 ppm NaAsO₂ in dams' drinking water from gestational day 8 to birth; Topical TPA after birth (2 μg/0.1 ml acetone, twice/week for 21 weeks) | Necropsy, tumor
incidence, gene and
protein expression by
microarray, RT-PCR
and Western blot
analysis | Comparison of liver tumors and normal liver samples taken from adult male and female mice showed that arsenic/TPA treatment increased expression of α-fetoprotein, k-ras, c-myc, estrogen receptor-α, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in liver tumors and normal livers. | | | | Xie, et al., 2007 | Define the early
molecular changes
in the liver
associated with
transplacental
arsenic exposure | Pregnant
C3H
mice | 85 ppm NaAsO₂ in dams'
drinking water from
gestational day 8 to 18 | Microarray and RT-
PCR | 57 ng/g of arsenic was found in newborn liver, indicating arsenic had crossed the placenta and reached the fetal liver. Global methylation of hepatic DNA was not altered by arsenic, but a significant reduction in methylation occurred globally in GC-rich regions. Arsenic exposure increased expression of genes related to glutathione production, cdk-inhibitors and metallothionein-1. Arsenic deregulated expression of genes related to insulin growth factor signaling pathways and cytochrome P450 enzymes and decreased expression of betaine-homocysteine methyltransferase and thioether S-methyltransferase. | | | | Shen, et al.,
2007 | Define the early molecular changes | Pregnant
C3H | 85 ppm NaAsO ₂ in dams' drinking water from | PCR of genes of
interest from fetal lung | Transplacental arsenic exposure increased ER-α mRNA and protein levels in the fetal lung, as well as overexpression of insulin growth factor, estrogen- | | | | | in the lung
associated with
transplacental
arsenic exposure | mice | gestational day 8 to 18 | tissue, western blot
and tumor
immunohistochemical
staining of ER-alpha | regulated genes (trefoil factor-3, anterior gradient-2) and steroid metabolism genes (17-β-hydroxysteroid dehydrogenase type 5 and aromatase). Lung cancer associated proteins α-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 were all overexpressed in the fetal lung after in utero arsenic exposure. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ERalpha expression. | |-----------------------------|---|---|--|---|---| | Srivastava, et
al., 2007 | Examine the effect of in utero As exposure on the development of atherosclerotic disease | Pregnant
ApoE
knockout
(ApoE-/-)
mice | 85 ppm NaAsO₂ in dams'
drinking water from
gestational day 8 to birth | Blood lipids, aortic
lesion development,
vasoresponsiveness | Mice exposed to As <i>in utero</i> showed a >2-fold increase in lesion formation in the aorta, as compared to controls at both 10 and 16 weeks of age. As exposed mice also had a 20-40% decrease in total triglycerides, but no change in total cholesterol, phospholipids and total abundance of VLDL or HDL particles, but subfractionation of VLDL particles showed a decrease in large VLDL particles. As-exposed mice showed a vasorelaxation defect in response to acetylcholine indicating a defect in endothelial cell signaling. These results indicate that <i>in utero</i> As exposure induces an early onset of atherosclerosis in ApoE(-/-) mice, even in the absence of a high fat diet. | | Waalkes, et al.,
2008 | Examine the potential for in utero As exposure to exacerbate skin carcinogenesis in a sensitive model | Pregnant
Tg.AC
mice | 0, 42.5, 85 ppm NaAsO ₂ in dams' drinking water from gestational day 8 to birth; Topical TPA after birth (2 μg/0.1 ml acetone, twice/week for up to 40 weeks) | Tumor incidence,
immunohistochemistry,
RT-PCR | In utero arsenic treatment before TPA increased SCC aggression and SCC multiplicity (3-fold more than TPA alone). Arsenic plus TPA increased tumor v-Ha-ras, as well as CD34, a marker for both KSCs and skin cancer stem cells, and Rac1, a stimulator of KSC self-renewal, indicating an increased population of likely cancer stem cells, Arsenic-treated fetal skin also had increased v-Haras, CD34 and Rac1. | | Petrick, et al.,
2009 | Characterize the effects of in utero arsenic exposure on the developing lung | Pregnant
Sprague-
Dawley
rats | 500 ppb NaAsO ₂ in dams'
drinking water from
gestational day 8 to 18 | RT-PCR and western
blotting of fetal lung
tissues, pathway
analysis | In utero arsenic exposure altered the expression of 59 genes and 34 proteins in the fetal lung, including those involved in B-catenin (Wnt) signaling, extracellular matrix maintenance, and fetal lung development regulator, sprouty-2. | | Lantz, et al.,
2009 | Characterize the effects of low level in utero arsenic exposure on the developing lung | Pregnant
C57BL6
mice | 5, 10, 50, 100 ppb NaAsO ₂ in dams' drinking water from gestational day 8 to 18 | Immunohistochemistry,
lung morphometry, RT-
PCR and western
blotting of fetal lung
tissues; lung function | Arsenic exposure increased airway reactivity in pups in a non-reversible manner. Arsenic increased smooth muscle actin in the lung in a dose dependent manner, especially around airways smaller than 100 µm in diameter. Arsenic exposure also caused alterations in extracellular matrix protein expression. | | Tokar, et al.,
2010 | Examine ability of transplacental arsenic exposure to promote TPA-induced carcinogenesis in different mouse strain | Pregnant
Tg.AC
mice | 0, 42.5, 85 ppm NaAsO ₂ in dams' drinking water from gestational day 8 to birth; Topical TPA after birth (2 μg/0.1 ml acetone, twice/week for 21 weeks) | Necropsy, tumor
incidence | Arsenic increased adrenal cortical adenomas, independent of TPA. Arsenic increased urinary bladder hyperplasia in males, but only with TPA. Arsenic-treated females had UB hyperplasia and papillomas and had uterine hyperplasia and tumors independent of TPA. | | Tokar, et al.,
2011 | Examine the effects of "whole-life" arsenic exposure | CD1
mice | 0, 6, 12, 24 ppm NaAsO ₂ in the drinking water 2 weeks prior to breeding, during pregnancy, lactation, and after weaning through adulthood | Necropsy, tumor
incidence | In both sexes, arsenic increased incidence of adrenal tumors, lung adenocarcinoma and hepatocellular carcinoma. Gallbladder tumors were increased in males and in females uterine carcinomas and ovarian tumors were increased with arsenic dose. Arsenic-induced tumors were found at very similar target sites, although tumors from whole-life exposure were generally more aggressive and frequent. | | States, et al.,
2012 | Test whether in utero As exposure is impacting the development of atherosclerotic disease via the altered hepatic development | Pregnant
ApoE
knockout
(ApoE-/-)
mice | 49 ppm NaAsO₂ in dams'
drinking water from
gestational day 8 to birth | Microarray analysis of
hepatic transcriptome
(mRNA and microRNA)
at postnatal days 1 and
70 | Mice exposed to As <i>in utero</i> had altered mRNA and microRNA profiles and a 51-gene signature was identified. Genes upregulated included HSP70, a stress related pro-inflammatory protein that likely promotes atherogenesis, as well as genes involved in antigen processing and presentation, complement and coagulation, and protein export. Genes downregulated were involved in glycolysis and gluconeogenesis. SREBP was also elevated and of the altered genes, ~16% had SREBP binding sites, which likely has important impacts on cholesterol and insulin regulation, as well as adipogenesis and triglyceride synthesis. | | Ngalame, et al.,
2012 | Determine how in utero arsenic changes the expression of Hsp70 and Hsc70 during early postnatal development | Pregnant
ApoE
knockout
(ApoE-/-)
mice | 49 ppm NaAsO₂ in dams'
drinking water from
gestational day 8 to 18 | Global and CpG
methylation analysis
and western blot
analysis of livers from
GD18 fetal mice and 3,
10, and 24 week old
mice | Hsp70 induction was observed at 3 and 10 weeks, but not at GD18 or 24 weeks. Arsenic did not affect global DNA methylation or promoter region methylation, but methylation was increased within the Hsp70 transcribed region. Delayed induction of Hsp70 may cause a transient state of stress, predisposing to later life disease. | |--------------------------------|---|--|---|--|--| | Kozul-Horvath,
et al., 2012 | Test effect of low-
dose in utero
exposure to As on
mouse fetal and
postnatal
development | Pregnant
C57B6/J
mice | 10 ppb NaAsO ₂ in dams'
drinking water from
gestational day 1 to birth
and/or up to postnatal day
30 | Birth outcomes (birth weight, gestational length, litter size), postnatal growth, breast milk nutrition and triglyceride levels in dams | Arsenic exposure <i>in utero</i> and postnatally resulted in decreased growth in the pups, primarily due to decreased nutrient content in the dams' milk, as crossfostering experiments were able to reverse the effect. The effect appeared to be more pronounced in female pups and took longer to resolve (up to six weeks) after cessation. Dams exposed to arsenic showed increased liver triglyceride levels, as well as decreased serum and milk triglycerides. | | Ramsey, et al.,
2013 | Investigate role of
early life arsenic
exposure in lung
development and
innate immunity | Pregnant
BALB/c,
C57BL/6,
and C3H/
HeARC
mice | 100 ppb NaAsO₂ in dams'
drinking water from
gestational day 1 to birth | Lung growth and
mechanics, microarray
analysis | C57BL/6 mice were the most susceptible to effects of arsenic, with overall smaller size, smaller lungs, and impaired lung mechanics compared with controls. In utero arsenic exposure up-regulated expression of mucus production genes (Clca3, Muc5b, Scgb3a1), innate immunity genes (Reg3γ, Tff2, Dynlrb2, Lplunc1), and lung morphogenesis (Sox2). Arsenic also induced mucous cell metaplasia and increased expression of CLCA3 protein in the large airways. | | Ramsey, et al.,
2013 | Investigate role of
low dose early life
arsenic exposure in
lung development
and mechanics | Pregnant
C57BL6
mice | 0, 10, 100 ppb NaAsO ₂ in dams' drinking water from gestational day 1 to birth | Lung volume, lung
mechanics, and
pressure-volume
curves in offspring at 2,
4, 6 and 8 weeks of
age. | In utero arsenic was associated with low birth weight and impaired parenchymal lung mechanics in early life, to which male offspring were more susceptible. However, lung function in both males and females appeared to be recovered by adulthood. |