
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 20XX 15

APPENDIX A
ACCELERATED PROJECTED GRADIENT AL-
GORITHM

In this section, we provide a detailed explanation on
the accelerated projected gradient (APG) method em-
ployed in Section 5. The APG method is a first-order
method based on the acceleration scheme developed
by Nesterov [34]; it has been applied for solving var-
ious machine learning algorithms (formulations) [45].

To solve the specific mathematical formulation in
Eq. (20), APG maintains a feasible solution sequence
{Zi} and a searching point sequence {Si} by recycling
the following two steps:

• Update the searching point Si as below:

Si = (1 + αi)Zi − αiZi−1. (35)

• Update the solution point Zi+1 as below: (1) com-
pute an auxiliary point Ẑ via solving

Ẑ=argmin
Z∈C

γi
2

∥

∥

∥

∥

Z−
(

Si−
1

γi
∇f(Si)

)
∥

∥

∥

∥

2

F

+g(Z); (36)

(2) set Zi+1 = Ẑ if Ẑ satisfies the inequality

f(Ẑ)≤ f(Si)+
〈

∇f(Si), Ẑ−Si

〉

+
γi
2
‖Ẑ−Si‖2F ; (37)

otherwise set γi = 2 × γi and re-compute Ẑ via
Eq. (36).

The computation in Eq. (36) and Eq. (37) are two main
components of the APG method; the former one is
commonly referred to as the proximal operator [44],
which is involved in each iteration of APG; the latter
one (verification of the inequality in terms of γi) is
referred to as line search (for an appropriate step size
estimation).

In the following presentation, we illustrate the com-
putation of the proximal operator, the line search, the
main algorithm as well as the convergence analysis.
Note that we assume that the smooth convex compo-
nent f(·) in Eq. (20) has a Lipschitz constant Lf [55]:

‖∇f(Z)−∇f(S)‖F ≤ Lf‖Z − S‖F , ∀S,Z ∈ C; (38)

the smallest Lipschitz constant L̂f in Eq. (38), L̂f =
minLf , is called the best Lipschitz constant for the
function f(·).

Proximal Operator Computation Consider the fol-
lowing construction

fL(S,Z) = f(S) + 〈Z −S,∇f(S)〉+ L

2
‖Z −S‖2F . (39)

Clearly fL(S,Z) is strongly convex with respect to the
variable Z. For any L ≥ L̂f , it can be verified that the
inequality

f(Z) ≤ fL(S,Z) (40)

holds [34]. Denote

GL(S,Z) = fL(S,Z) + g(Z), (41)

where fL(S,Z) is defined in Eq. (39) and g(Z) is
the non-smooth component of the objective function
in Eq. (20). Denote by ZL,S the global minimizer to
GL(S,Z) with respect to Z, i.e.,

ZL,S = arg min
Z∈M

GL(S,Z). (42)

It can be verified that ZL,S is unique, as fL(Z, S) is
strongly convex and g(Z) is convex with respect to
Z; moreover, ZL,S can be obtained via solving the
proximal operator as

min
Z∈C

L

2

∥

∥

∥

∥

Z −
(

S − 1

L
∇f(S)

)∥

∥

∥

∥

2

F

+ g(Z).

Note that the efficient computation of the proximal
operator is important for the practical algorithm effi-
ciency, as it is involved in each iteration of the APG
method.

Step Size Estimation Given L and S, denote

PL(S) = L(S − ZL,S). (43)

PL(S) is called the projected gradient of f(·) at S. By
rewriting Eq. (43) as

ZL,S = S − 1

L
PL(S), (44)

clearly 1/L can be seen as the step size associated with
the projected gradient PL(S).

Denote the objective function in Eq. (20) as

F (Z) = f(Z) + g(Z). (45)

It follows from Eq. (40) that

F (ZL,S) ≤ GL(S,ZL,S), ∀L ≥ L̂f . (46)

If the inequality in Eq. (46) is satisfied, PL(S) is
called the L-gradient of f at S [33]. In practice we
can estimate an appropriate L (hence the appropriate
step size 1/L) by ensuring the inequality in Eq. (46).
Theoretically, any step size 1/L of the value L larger
than the best Lipschitz constant L̂f guarantees the
global convergence in the projected gradient based
algorithms [33].

Main Algorithm The pseudo-codes of the APG
method are presented in Algorithm 1. The parameters
αi and ti are auxiliary variables which are constructed
to maintain the solution point sequence {Zi} and the
searching point sequence {Si}; they are important for
the convergence analysis of APG. Clearly the solution
point Zi is always feasible in Eq. (20); it converges to
the globally optimal solution of Eq. (20). On the other
hand, the searching point Si is not necessarily feasible;
Si can be seen as a forecast of the next feasible solution
point Zi+1, as it is a linear combination of two feasible
solution points from previous iterations.

Convergence Analysis Using standard techniques
in [33], [34], we can show that the APG method in



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 20XX 16

Algorithm 1 Solving Eq. (20) via the APG Method

1: Input: Z0, L0 ∈ R, and max-iter.
2: Output: Z.
3: Set Z1 = Z0, t−1 = 0, and t0 = 1.
4: for i = 1, 2, · · · ,max-iter do
5: Compute αi = (ti−2 − 1)/ti−1.
6: Compute S = (1 + αi)Zi − αiZi−1.
7: while (true)
8: Compute Ẑ = ZLi,S via Eq. (42).
9: if F (Ẑ) ≤ GLi

(S, Ẑ) then exit the loop
10: else update Li = Li × 2.
11: end-if
12: end-while
13: Update Zi+1 = Ẑ and Li+1 = Li.
14: if the stopping criterion is satisfied then exit

the loop.

15: Update ti =
1

2
(1 +

√

1 + 4t2i−1
).

16: end-for
17: Set Z = Zi+1.

Algorithm 1 globally converges at rate of O(1/k2),
where k denotes the iteration number. For complete-
ness, we present the detailed convergence analysis of
APG as below. Before presenting the detailed con-
vergence analysis, we first establish an important
inequality [56], [33], as summarized in the following
lemma.

Lemma A.1. Let Lf be the Lipschitz continuous gradient
associated with the function f(·) as defined in Eq. (38). Let
ZL,S be the minimizer of GL(S,Z) as defined in Eq. (42).
Then if L ≥ Lf , the following inequality holds

F (Z)−F (ZL,S) ≥ 〈Z − S,PL(S)〉+
1

2L
‖PL(S)‖2F (47)

for any Z ∈ C.

Proof: It follows from the convexity of f(·) and
g(·) that

f(Z) ≥ f(S) + 〈Z − S,∇f(S)〉 (48)

g(Z) ≥ g(ZL,S) + 〈Z − ZL,S , ∂g(ZL,S)〉 , (49)

where ∂g(ZL,S) denotes the subgradient [34] of g(·)
at ZL,S . It is well known that Ẑ minimizes GL(S,Z)
(with respect to the variable Z) if and only if 0 is a
subgradient of GL(S,Z) at Ẑ, that is,

0 ∈ L (ZL,S − S) +∇f(S) + ∂g(ZL,S). (50)

From Eqs. (41), (45), (48) and (49), we have

F (Z)−GL(S,ZL,S)

= f(Z) + g(Z)− fL(S,ZL,S)− g(ZL,S)

≥ 〈Z − ZL,S ,∇f(S) + ∂g(ZL,S)〉 −
L

2
‖S − ZL,S‖2F

= −L 〈Z − ZL,S , ZL,S − S〉 − L

2
‖S − ZL,S‖2F

= 〈Z − S,PL(S)〉+
1

2L
‖PL(S)‖2F ,

where the second and third equalities follow from
Eqs. (50) and (43), respectively. This completes the
proof of this lemma.

We present the main convergence rate analysis of
APG in the following theorem.

Theorem A.1. Let Z∗ be the global minimizer to Eq. (20);
let L̂f be the best Lipschitz continuous gradient defined in
Eq.(38). Denote by k the index of the iteration, and by Zk

the solution point at the kth iteration of Algorithm 1. Then
we have

F (Zk+1)− F (Z∗) ≤ 2L̂

k2
‖Z0 − Z∗‖2F ,

where L̂ = max{L0, 2L̂f}, where L0 and Z0 are the initial
values of Lk and Zk in Algorithm 1, respectively.

Proof: Let Zi be the intermediate solution point at
the ith iteration and denote

εi = F (Zi)− F (Z∗).

Setting Z = Zi, S = Si, and L = Li in Eq. (47), we
have

ǫi − ǫi+1 ≥ 〈Zi − Si,PLi
(Si)〉+

1

2Li

‖PLi
(Si)‖2F , (51)

where the left side of the inequality above follows
from

Zi+1 = ZLi,Si
= argmin

Z∈C
GLi

(Si, Zi).

Similarly, setting Z = Z∗, S = Si, and L = Li in
Eq. (47), we have

−ǫi+1 ≥ 〈Z∗ − Si,PLi
(Si)〉+

1

2Li

‖PLi
(Si)‖2F . (52)

Multiplying Eq. (51) by ti−1− 1 and summing it with
Eq. (52), we have

(ti−1 − 1) εi − ti−1εi+1 ≥ 〈(ti−1 − 1)(Zi − Si) + Z∗

−Si,PLi
(Si)〉+

ti−1

2Li

‖PLi
(Si)‖2F . (53)

Moreover, multiplying Eq. (53) by ti−1, we have

t2i−2εi − t2i−1εi+1 ≥
1

2Li

‖ti−1PLi
(Si)‖2F

+〈ti−1PLi
(Si), (ti−1 − 1)(Zi − Si) + Z∗ − Si〉. (54)

where the left side is obtained via the equation

t2i−1 − ti−1 = t2i−2

from the line 15 in Algorithm 1. On the other hand,
it follows from Eq. (43) we have

PLi
(Si) = Li (Si − ZLi,Si

) = Li (Si − Zi+1) . (55)

From Eq. (35) and the line 5 in Algorithm 1, we have

ti−1Si = ti−1Zi + (ti−2 − 1)(Zi − Zi−1). (56)

Denote

Ci−2 = ti−2Zi − (ti−2 − 1)Zi−1 − Z∗. (57)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 20XX 17

From Eqs. (55), (56) and (57), we can verify that

ti−1PLi
(Si)=ti−1Li(Si − Zi+1)=Li(Ci−2 − Ci−1). (58)

Moreover, we have

(ti−1 − 1)(Zi − Si) + Z∗ − Si

= (ti−1 − 1)Zi + Z∗ − ti−1Si

= −ti−2Zi + (ti−2 − 1)Zi−1 + Z∗ = −Ci−2.(59)

Substituting Eqs. (58) and (59) into Eq. (54), we obtain

‖Ci−1‖2F − ‖Ci−2‖2F ≤
2

Li

(

t2i−2εi − t2i−1εi+1

)

≤ 2

Li−1

t2i−2εi −
2

Li

t2i−1εi+1. (60)

Summing Eq. (60) from i = 1 to i = k, we have

‖Ck−1‖2F − ‖C−1‖2F ≤
2

L0

t2−1ε1 −
2

Lk

t2k−1εk+1.

Therefore, we have

2

Lk

t2k−1εk+1 ≤ ‖C−1‖2F − ‖Ck−1‖2F +
2

L0

t2−1ε1

≤ ‖C−1‖2F +
2

L0

t2−1ε1 = ‖Z0 − Z∗‖2,(61)

where the equality follows from t−1 = 0 in Algo-
rithm 1. From line 15 in Algorithm 1, we have

2ti = 1 +
√

1 + 4t2i−1
≥ 2ti−1 + 1. (62)

Summing Eq. (62) from i = 1 to i = k, we have

tk ≥
1

2
(k + 1), ∀k. (63)

Substituting Eq. (63) into Eq. (61), we complete the
proof.

APPENDIX B
EXAMPLE: MULTI-TASK LEARNING WITH

HINGE LOSS FUNCTION

In this section, we present a concrete example to
illustrate the BCD method and the APG algorithm for
solving rASO in Eq. (8). We employ the hinge loss
function in the rASO formulation:

min
{uℓ},M

m
∑

ℓ=1

1

nℓ

nℓ
∑

i=1

L
(

uT
ℓ x

ℓ
i , y

ℓ
i

)

+ c G2(U,M)

subject to tr(M) = h, 0 �M � I, (64)

where G2(U,M) is defined in Eq. (9), and the loss
function L(·) is given by

L
(

uT
ℓ x

ℓ
i , y

ℓ
i

)

= max
(

1− yℓi
(

uT
ℓ x

ℓ
i + bℓ

)

, 0
)

,

and the parameter c is given by c = αη(1 + η).
Note that the optimization problem in Eq. (64) is
non-smooth convex due to the non-smooth hinge loss
function.

B.1 The BCD Method for Solving Eq. (64)

We employ the BCD algorithm in Section 4 to solve
Eq. (64). We focus on discussing its main computa-
tional procedures.

Optimization of U Given a fixed M , we can optimize
the variable U as

min
{uℓ,bℓ}

m
∑

ℓ=1

(

nℓ
∑

i=1

ξℓi + c uT
ℓ (ηI+M)

−1
uℓ

)

subject to ξℓi ≥ 0, ξℓi ≥ 1− yℓi
(

uT
ℓ x

ℓ
i + bℓ

)

.

Since all pairs of the variables {uℓ, bℓ} (ℓ ∈ Nm) in the
problem above are decoupled, we can optimize each
of the pairs by solving a QP problem in the form of

min
u,b

n
∑

i=1

ξi + c uT (ηI+M)−1u

subject to ξi ≥ 0, ξi ≥ 1− yi(u
Txi + b), i ∈ Nn.(65)

The optimal solution to Eq. (65) can be obtained via
solving its equivalent primal or dual formulation (in
standard SVM form) using existing SVM solvers such
as the LIBSVM package [42] as follows. Specifically
in Eq. (65), if the involved Hessian matrix (ηI+M)−1

has a small size such that its SVD can be efficiently
computed, the associated optimization problem can
be solved via equivalent reformulation into a support
vector machine (SVM) as: (1) compute the full SVD
(ηI + M)−1 = P̂ Σ̂P̂T ; (2) set û = Σ̂

1

2 P̂Tu and x̂i =
Σ̂−

1

2 P̂ xi; (3) reformulate Eq. (65) into as a standard
SVM by variable substitution as

min
û,b

1

2
‖û‖2 + 1

2c

n
∑

i=1

ξi

subject to ξi ≥ 0, ξi ≥ 1− yi(û
T x̂i + b), i ∈ Nn.(66)

On the other hand, in Eq. (65), if the involved
Hessian matrix has a relatively large size, computing
the full SVD on (ηI+M)−1 may be expensive. For this
setting, we convert Eq. (65) into its equivalent dual
form, in which the number of optimization variables
only depends on the sample size. By augmenting the
objective function of Eq. (65) with the constraints, we
have the associated Lagrange function as

L =

n
∑

i=1

ξi + c uT (ηI+M)−1u−
n

∑

i=1

αiξi

−
n

∑

i=1

βi

(

ξi − 1 + yi(u
Txi + b)

)

,

where αi, βi ≥ 0 denote the dual variables. Taking
derivatives with respective to the primal variables



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 20XX 18

ξi, u, b and setting them equal to zero, we have

∂L

∂ξi
= 1− αi − βi = 0, (67)

∂L

∂u
= 2c (ηI+M)−1u−

n
∑

i=1

βiyixi = 0, (68)

∂L

∂b
= −

n
∑

i=1

βiyi = 0. (69)

By substituting Eqs. (67), (68),and (69) into Eq. (65),
we have the dual optimization problem as

min
u,b

βT e− 1

2
βT diag(y) Ker diag(y) β

subject to 0 � β � 1, βT y = 0, (70)

where Ker = 1

2c
XT (ηI + M)X ∈ R

n×n. Similarly,
the optimization problem above is the dual form of
a standard SVM with the kernel matrix Ker.

Optimization of M Given a fixed U , we can optimize
the variable M as

min
M

tr
(

UT (ηI+M)
−1

U
)

subject to tr(M) = h, 0 �M � I.

The optimal MZ can be obtained via two steps:

• Step 1 Compute the SVD of U as U = P1ΣP
T
2 ,

where P1 ∈ R
d×d and P2 ∈ R

m×m are orthogonal,
and Σ = diag(σ1, σ2, · · · , σq, 0, · · · , 0) ∈ R

d×m has
q non-zero singular values on its main diagonal.

• Step 2 Solve the optimization problem as

min
{γi}qi=1

q
∑

i=1

σ2
i

η + γi

subject to

q
∑

i=1

γi = h, 0 ≤ γi ≤ 1. (71)

and denote its optimal solution by {γ∗i }.
The optimal M to Eq. (71) is given by M = P1Λ

∗PT
1 ,

where Λ∗ = diag(λ∗1, · · · , λ∗q , 0, · · · , 0) ∈ R
d×m.

The Main BCD Algorithm The pseudo-codes of the
BCD method for solving Eq. (64) is presented in
Algorithm 2. Note the convergence criterion in line 10
can be set as follows. The change of objective values
in two successive steps is smaller than a prespecified
value (e.g., 10−6).

B.2 The APG Algorithm for Solving Eq. (64)

We employ the APG algorithm in Section 5 to solve
Eq. (64). Similarly, we focus on discussing the efficient
algorithms for solving the key computational proce-
dures involved in APG.

Algorithm 2 Solve Eq. (64) via the BCD Algorithm

1: Input: {(xℓ
i , y

ℓ
i )}, i ∈ Nnℓ

, ℓ ∈ Nm, h ∈ N.
2: Output: U , V , and M .
3: Parameter: α and β.
4: Initialize M subject to the constraints in Eq. (64).
5: repeat
6: Update U via Eq. (70).
7: Compute the SVD U = P1ΣP

T
2 .

8: Compute {γ∗i }qi=1
via Eq. (71).

9: Update M as M = P1diag(γ∗1 , · · · , γ∗q )PT
1 .

10: until convergence criterion is satisfied.
11: Construct Θ using the top h eigenvectors of M .
12: Construct V as V = ΘU .
13: Return U , V and Θ.

B.2.1 Proximal Operator Computation

To compute the optimal solution Eq. (64), APG itera-
tively solves the associated proximal operator, i.e., an
optimization problem in the general form as

min
U,M

‖U − Û‖2F + ‖M − M̂‖2F + γ̂

m
∑

ℓ=1

nℓ
∑

i=1

ξℓi

subject to ξℓi ≥ 0, ξℓi ≥ 1− yℓi (u
T
ℓ x

ℓ
i + bℓ),

tr(M) = h, 0 �M � I, (72)

where γ̂ = 2

γ
. In Eq. (72), the optimization variables U

and M are decoupled and the optimal solution can be
obtained independently via solving two optimization
problems as below.

Computation of U The optimal U to Eq. (72) can be
computed via solving

min
UZ

‖U − Û‖2F + γ̂

m
∑

ℓ=1

n
∑

i=1

ξi

subject to ξℓi ≥ 0, ξℓi ≥ 1− yℓi (u
T
ℓ x

ℓ
i + bℓ). (73)

Let U = [u1 · · ·um] and Û = [û1 · · · ûm]. Each of the
vector uℓ can be obtained by solving a QP problem as

min
uℓ

‖uℓ − ûℓ‖2F + γ̂
n

∑

i=1

ξi

subject to ξℓi ≥ 0, ξℓi ≥ 1− yℓi (u
T
ℓ x

ℓ
i + bℓ). (74)

The QP problem in Eq. (74) is similar to the standard
SVM formulation, while ‖uℓ − ûℓ‖2F leads to a linear
term 2ûT

ℓ uℓ in its primal and dual formulations; hence
this QP problem could not be solved directly using
the existing SVM solver. We can solve this QP prob-
lem using the general optimization solvers such as
MOSEK3, the sequential minimal optimization (SMO)
algorithm [57], or the standard projected conjugate
gradient (PCG) chunking algorithm. Note that both
SMO and PCG avoid the large matrix computation;
SMO scales between linearly and quadratically with

3. http://www.mosek.com/



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 20XX 19

the training size while PCG scales between linearly
and cubically with the training size [57].

Computation of M The optimal M to Eq. (72) can be
computed via solving

min
MZ

‖M − M̂‖2F
subject to tr(M) = h, 0 �M � I. (75)

The optimal M can be obtained via two steps:

• Step 1 Compute the eigendecomposition of the
symmetric M̂ as M̂ = P Σ̂PT , where P ∈ R

m×m

is orthogonal, Σ̂ = diag(σ1, · · · , σm) ∈ R
m×m

is diagonal with the eigenvalues on its main
diagonal.

• Step 2 Solve the optimization problem

min
{σi}

m
∑

i=1

(σi − σ̂i)
2

subject to
m
∑

i=1

σi = h, 0 ≤ σi ≤ 1.

and denote its optimal solution by {σ∗i }.
The optimal M to Eq. (75) is given by M = PΣ∗PT ,
where Σ∗ = diag(σ∗1 , · · · , σ∗m) ∈ R

m×m.

B.2.2 The Main APG Algorithm

The pseudo-codes of the APG algorithm for solving
Eq. (64) are similar to Algorithm 1. Specifically to
solve Eq. (64), APG solves Eq. (72) (the proximal
operator) in each of its iteration, where γ̂ is set as
2/Li and the value of Li is determined via the line
search scheme in Eq. (37).

APPENDIX C
SOLVING EQ. (14) IN LINEAR TIME

We present a parametric approach to solve the op-
timization problem in Eq. (14) in linear time. This
approach is previously proposed in [43] to solve a
bounded quadratic optimization problem with mul-
tiple variables and one linear constraint.

C.1 A Parametric Formulation

We consider a parametric variant of Eq. (14) as

min
{γi}qi=1

q
∑

i=1

(

σ2
i

η + γi
+ tγi

)

subject to 0 ≤ γi ≤ 1, i ∈ Nq, (76)

where t is an arbitrary parameter. Obviously for a
given t, the optimization of {γi}qi=1

in Eq. (76) is de-
coupled; each optimal γi can be obtained via solving

min
γi

σ2
i

η + γi
+ tγi

subject to 0 ≤ γi ≤ 1. (77)

The optimization problem above is convex and its
objective function is piecewise differentiable. For
clear presentation, we denote the optimal solution to
Eq. (77) by γi(t). It can be verified that

γi(t) =











0 σi√
t
− η ≤ 0

σi√
t
− η 0 < σi√

t
− η < 1

1 1 ≤ σi√
t
− η

. (78)

C.2 Computing an Optimal Solution with the Ap-

propriate Interval

Define an auxiliary function Γ(t) as

Γ(t) =

q
∑

i=1

γi(t). (79)

Using the techniques from [43], we can verify several
important properties of Γ(t), as summarized in the
following theorem (proof omitted).

Theorem C.1. Let Γ(t) be defined in Eq. (79). Then it
satisfies the following properties.

(1) Γ(t) is monotone not increasing in terms of t.
(2) If Γ(t) = h, then {γi(t)}qi=1

is optimal to Eq. (14).
(3) If Γ(t) 6= h for all t ∈ R, no feasible solution exists

in Eq. (14).

Definite the critical parameter pairs tli and tui [43]
by

tli =
σ2
i

(η + 1)2
, tui =

σ2
i

η2
, (80)

and denote all distinct critical parameters by
t1, t2, · · · , tr, where t1 < t2 < · · · < tr. It follows from
Eq. (78) that within any interval (ti, ti+1), γi(t) has
a unique expression. Moreover, from Theorem C.1,
we can verify that if Γ(t1) > h and Γ(tr) < h, there
exists an index j such that Γ(tj) ≥ h and Γ(tj+1) ≤ h.
Note that the interval (tj , tj+1) is referred to as the
appropriate interval for Eq. (14).

Given the appropriate interval, the optimal solution
to Eq. (14) can be constructed as follows. Define three
index sets: Il =

{

i | tli ≤ tj
}

, Iu = {i | tj+1 ≤ tui },
and Im =

{

i | tj < tui , t
l
i < tj+1

}

. For any arbitrary
t ∈ [tj , tj+1], the optimal γi(t) to Eq. (14) can be
expressed as

γi(t) =







0 i ∈ Il
σi√
t
− η i ∈ Im.

1 i ∈ Iu

(81)

Denote Γ(topt) = h. Therefore topt can be obtained via
solving

Γ(topt) =

q
∑

i=1

γi(topt)

=
∑

i∈Il
0 +

∑

i∈Im

(

σi√
t
− η

)

+
∑

i∈Iu
1 = h.(82)

By substituting topt into Eq. (81), we can get the
optimal solution to Eq. (14).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 20XX 20

Algorithm 3 The Linear Time Search Algorithm

1: Input: {t1, · · · , tr},
{

(tl1, t
u
1 ), · · · , (tlq, tuq )

}

, and h.
2: Output: topt, tmin, and tmax.
3: if Γ(t1) = h or Γ(tr) = h then
4: set topt = t1 or topt = tr; exit the Algorithm.
5: end if
6: if Γ(t1) < h or Γ(tr) > h then
7: no feasible solution exists; exit the Algorithm.
8: end if
9: Set tmin = t1, tmax = tr, and I = {1, · · · , q}.

10: repeat
11: tl = median

(

{tli | i ∈ I}
)

.
12: tu = median

(

{tui | i ∈ I; tli ≥ tl}
)

.
13: for t = tl, tu do
14: if Γ(t) = h then
15: topt = t; exit the Algorithm.
16: end if
17: if z(t) > h then
18: tmin = max(tmin, t).
19: end if
20: if z(t) < h then
21: tmin = min(tmax, t).
22: end if
23: end for
24: for i ∈ I do
25: if tli ≤ tmin then
26: I = I \ {i}; γi = 0.
27: end if
28: if tmax ≤ tui then
29: I = I \ {i}; γi = 1.
30: end if
31: if tui ≤ tmin ≤ tmax ≤ tli then
32: I = I \ {i}; γi = σi/t− η.
33: end if
34: end for
35: until I is an empty set.

C.3 Search for the Appropriate j

Computation of the optimal solution to Eq. (14) boils
down to the efficient search of the appropriate interval
(tj , tj+1) from the distinct critical parameters. We em-
ploy an efficient algorithm to search the appropriate
index j. This algorithm is originally proposed in [43]
with linear time complexity.

We present the main idea of the efficient search
algorithm below for completeness. Recall that the
distinct critical parameters satisfy t1 < t2 < · · · < tr
are . Assume that Γ(t1) > h and Γ(tr) < h. From Theo-
rem C.1, we have topt ∈ [t1, tr]. The general scheme of
the linear time search algorithm is as follows. Starting
by setting tmin = t1 and tmax = tr, we iteratively
update tmin and tmax and meanwhile ensure

topt ∈ [tmin, tmax]. (83)

For a specific t, if Γ(t) > h we set tmin = max(tmin, t);
if Γ(t) < h, we set tmin = min(tmax, t); if Γ(t) = h, we

set topt = t and exit the algorithm. The pseudocodes
of the algorithm is presented in Algorithm 3. Note
that in Algorithm 3, the codes from line 24 to line
34 ensures the size of the set I can be reduced by
at least 1

4
⌈I⌉ elements. It can be verified that the

complexity of Algorithm 3 is O(q), where q denotes
the size of the search sequence; detailed analysis can
be found in [43]. If Algorithm 3 stops at line 7, no
feasible solution exists in Eq. (14); if Algorithm 3
stops at either line 4 or line 15, the optimal solution
to Eq. (14) can be obtained by substituting topt into
Eq. (81); otherwise we have tj = tmin and tj+1 = tmax;
the optimal solution to Eq. (14) can be obtained from
Eqs. (81) and (82). Note that before applying the linear
time search algorithm, we pre-compute all the critical
parameters defined in Eq. (80).


