
Table S1: Model parameters  

  Value Reaction Propensity References and Comments 

k-a MarA-promoter 
dissociation rate  

8.1 ( )min 1−  10 00
akP P A−⎯⎯⎯→ +  

11 01
akP P A−⎯⎯⎯→ +  

12 02
akP P A−⎯⎯⎯→ +  

 

10ak P− ⋅  

11ak P− ⋅  

12ak P− ⋅  

Other feedback operons: 1.8 min-1 [1], 2.4 min-1 [2]. 

The stochastic pulsing is not disrupted for a wide 
range of k-a and k-r values.  

ka MarA-promoter 
association rate  

k−a
1500

 

( )minmolecules 1⋅ −  

00 10
akP A P+ ⎯⎯→  

01 11
/akP A Pβ+ ⎯⎯⎯→  

02 12
/ 'akP A Pβ+ ⎯⎯⎯→  

 

00
1

ak P A
V
⋅ ⋅ ⋅  

01
1 ak P A
V β
⋅ ⋅ ⋅  

02
1

'
ak P A

V β
⋅ ⋅ ⋅  

Dissociation constant for MarA = 25nM = 1500 
molecules/cell [3].  

V is the ratio between the volume of the cell at a 
given time and the average volume of E. coli 

considered in the paper ( 31 mµ ). 

 

 

k-r MarR2-promoter 
dissociation rate  

8.1 ( )min 1−  01 00 2
rkP P R−⎯⎯⎯→ +  

02 01 2
2 rkP P R−⋅⎯⎯⎯→ +  

11 10 2
rkP P R−⎯⎯⎯→ +  

12 11 2
2 rkP P R−⋅⎯⎯⎯→ +  

 

01rk P− ⋅  

022 rk P−⋅ ⋅  

11rk P− ⋅  

122 rk P−⋅ ⋅  

Other feedback operons: 1.8 min-1 [1], 2.4 min-1 [2]. 

The stochastic pulsing is not disrupted for a wide 
range of k-a and k-r values. 

 

 

 

kr MarR2-promoter 
association rate  

k−r
150

 

( )minmolecules 1⋅ −  

00 2 01
2 rkP R P⋅+ ⎯⎯⎯→  

01 2 02
rkP R P+ ⎯⎯→  

00 2
1 2 rk P R
V
⋅ ⋅ ⋅ ⋅  

01 2
1

rk P R
V
⋅ ⋅ ⋅  

Dissociation constant for MarR2 = 2.5nM = 150 
molecules/cell [4-6].  



10 2 11
2 /rkP R Pα⋅+ ⎯⎯⎯⎯→  

11 2 12
/ 'rkP R Pα+ ⎯⎯⎯→  

 

 

10 2
21 rk P R

V α
⋅

⋅ ⋅ ⋅  

11 2
1

'
rk P R

V α
⋅ ⋅ ⋅  

α00 Transcription rate with 
no MarR2 molecules 

and no MarA 
molecules bound to the 

promoter 

0.40 ( )min 1−  00
00 00 uf ufP P M R Aα⎯⎯⎯→ + + +  

 

 

00 00Pα ⋅  From other systems: 0.36 min-1 [1], 0.1 min-1 [2].  

α00, β(a/r) and cAct are chosen to match the experimental 
data (10,000 molecules if MarR2 binding sites are 
eliminated, 500 molecules in the basal level – See 

Supplementary Methods). 

α01 Transcription rate with 
one MarR2 molecule 

and no MarA 
molecules bound to the 

promoter 

α00/ cInh1 ( )min 1−  01
01 01 uf ufP P M R Aα⎯⎯⎯→ + + +  

 

01 01Pα ⋅  One molecule of MarR2 is bound; the transcription 
rate is modified by cInh1. 

α10 Transcription rate with 
no MarR2 molecules 

and one MarA 
molecule bound to the 

promoter 

α00 × cAct ( )min 1−  10
10 10 uf ufP P M R Aα⎯⎯⎯→ + + +  

 

10 10Pα ⋅  One molecule of MarA is bound; the transcription 
rate is modified by cAct. 

α11 Transcription rate with 
one MarR2 molecule 

and one MarA 
molecule bound to the 

promoter 

α00 × cAct / cInh1 ( )min 1−  11
11 11 uf ufP P M R Aα⎯⎯⎯→ + + +  

 

11 11Pα ⋅  One molecule of MarA and one molecule of MarR2 
are bound; the transcription rate is modified by cAct / 

cInh1 . 

α12 Transcription rate with 
two MarR2 molecules 

and one MarA 
molecule bound to the 

promoter 

α00 × cAct /( cInh1 × cInh2) 

( )min 1−  

12
12 12 uf ufP P M R Aα⎯⎯⎯→ + + +  

 

12 12Pα ⋅  One molecule of MarA and two molecules of MarR2 
are bound; the transcription rate is modified by cAct / 

(cInh1 × cInh2). 



α02 Transcription rate with 
two MarR2 molecules 

and no MarA 
molecules bound to the 

promoter 

α00/( cInh1 × cInh2) ( )min 1−  02
02 02 uf ufP P M R Aα⎯⎯⎯→ + + +  

 

02 02Pα ⋅  Two molecules of MarR2 are bound; the transcription 
rate is modified by 1 / (cInh1 × cInh2). 

cAct Activation factor 80    From another system: 20 [1]. 

marRAB is expressed strongly after induction [7]. α00, 
β(a/r) and cAct are chosen to match experimental data 
from this study (10,000 molecules if MarR2 binding 
sites are eliminated, 500 molecules in the basal level 

– See Supplementary Methods). 

cInh1 Repression factor for 
the first MarR2 binding 

800    MarR2 binding impairs RNA polymerase binding and 
progression [5,8]. The system is robust to changes in 

this parameter. 

cInh2 Repression factor for 
the second MarR2 

binding 

10    MarR2 binding impairs RNA polymerase binding and 
progression [5,8]. The system is robust to changes in 

this parameter. 

λM mRNA degradation 
rate 

ln(2) / 24 ( )min 1−  M λM! →!! 0  
M Mλ ⋅  [9],Stochastic pulsing behavior is robust to changes in 

this parameter. 

βa marA translation rate  0.34 × 20 ( )min 1−  a
ufM M Aβ⎯⎯→ +  a Mβ ⋅  Translation rate = 34% of the lacZ translation rate [7].  

lacZ  translation rate: 18.8 min-1 [10], lacZ 
initialization every 3.2 sec [11].  

βr marR translation rate  0.044 × 20 ( )min 1−  r
ufM M Rβ⎯⎯→ +  r Mβ ⋅  Translation rate = 4.4% of the lacZ translation rate. 

[7].  

 

kfa MarA folding rate  5 ( )min 1−  fa
uf

kA A⎯⎯→  fa ufk A⋅  Fast, due to the small size of the protein and the 
coupling of this process with translation in vivo [12]. 

The system is robust to changes in this value. 



Other examples: 60 min-1 for Cytochrome C [13], 0.9 
min-1 for the synthetic oscillator [1]. 

kfr MarR folding rate  5 ( )min 1−  fr
uf

kR R⎯⎯→  fr ufk R⋅  Fast, due to the small size of the protein and the 
coupling of this process with translation in vivo [12]. 

The system is robust to variations in this value.  

Other examples: 60 min-1 for Cytochrome C [13],  0.9 
min-1 for the synthetic oscillator [1]. 

kdr MarR dimerization 
rate 

0.01 ( )minmolecules 1⋅ −   22 drkR R× ⎯⎯→   1 ( 1)
2

dr
R Rk

V
⋅ −

⋅ ⋅  
Assumed to be consistent with the cI protein in E. 
coli, 0.01 mol-1 min-1 [14]. The system is robust to 

variations in this value. 

Another example: 0.18 min-1 for the synthetic 
oscillator [1]. 

k-dr MarR2 dimer 
disruption rate  

kdr /50 ( )min 1−  2 2drkR R−⎯⎯⎯→ ×  2drk R− ⋅  Assumed to be consistent with the cI protein in E. 
coli, kdr /50  min-1. The system is robust to variations 

in this value. 

Other example: kdr /100 min-1 for the synthetic 
oscillator [1]. 

 

λauf Unfolded MarA 
degradation rate  

λr ( )min 1−  0auf
ufA λ⎯⎯⎯→  auf ufAλ ⋅  We assumed only folded MarA to be actively 

degraded by Lon protease [15], setting the 
degradation rate for unfolded MarA at a reduced 

level, comparable to what we used for degradation of 
the folded MarR2 protein. There is only a small 

amount of unfolded protein; as a result, the system is 
robust to variations in this parameter. 

λa MarA degradation  )2ln(  ( )min 1−  0aA λ⎯⎯→  a Aλ ⋅  [15] 

λruf Unfolded MarR 
degradation rate  

λr ( )min 1−  0ruf
ufR λ⎯⎯⎯→  ruf ufRλ ⋅  We assumed the same degradation rate as the folded 

MarR2 protein. There is only a small amount of 
unfolded protein; as a result, the system is robust to 

variations in this parameter. 



λr MarR and MarR2 
degradation  

ln(2) / 24 ( )min 1−  0rR λ⎯⎯→  

2 0rR λ⎯⎯→  

r Rλ ⋅  

2r Rλ ⋅  

We assumed the protein to be stable, using a 
degradation time that matches the dilution rate due to 

cell division in rich medium [16]. Changes in the 
parameter do not disrupt stochastic pulsing. 

ksal MarR2 allosteric 
inhibition rate 

20 

( )minmolecules 1⋅ −  

2 2
SalkSal MarR MarR Sal−+ ⎯⎯⎯→  2

1
Salk MarR Sal

V
⋅ ⋅ ⋅  

Selected to fit experimental data from [17] and [18]. 
The system is robust to changes in this parameter. 

k-sal  MarR2-Salicylate 
complex disruption 

rate 

5.0  

( )min 1−  

2 2
SalkMarR Sal Sal MarR−

− ⎯⎯⎯→ +  2Salk MarR Sal−− ⋅  Selected to fit experimental data from [17] and [18]. 
The system is robust to changes in this parameter. 

 As detailed in Supplementary Methods, the parameters given below are used to fit the model to the following experimental data:  3.3-fold 
repression with only one MarR2 site active and a 20-fold repression with both sites active [7,19]; competition in the binding between MarA 
and MarR2 [5], either by sliding block [20] or alignment of the marbox with the -35 box [8]; approximately 9,000 molecules with 5mM of 
salicylate induction [4] and maximum expression with salicylate of 10,000 molecules ([17] with the data from [4]); basal expression of 500 
molecules (Maximum level / Repression fold with both sites active). 

α Inhibition in the 
binding of the first 
molecule of MarR2 
when MarA and no 
MarR2 are bound 

 

1000 
10 2 11

2 /rkP R Pα⋅+ ⎯⎯⎯⎯→  
  

α' Inhibition in the 
binding of the second 
molecule of MarR2 

when MarA and 
MarR2 are bound 

 

1.5 
11 2 12

/ 'rkP R Pα+ ⎯⎯⎯→  
  

β Inhibition in the 
binding of MarA when 
one MarR2 molecule is 

bound 

 

1.5 
01 11

/akP A Pβ+ ⎯⎯⎯→  

 

  



β' Inhibition in the 
binding of MarA when 
two MarR2 molecules 

are bound 

1.5 
02 12

/ 'akP A Pβ+ ⎯⎯⎯→  
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