Text S3. Determination of a single reconstructed trajectory for each C_{α} atom

Fluctuations of C_{α} atoms on the base frequency have to be treated separately for each C_{α} atom to obtain single filtered trajectories. The first eigenvector obtained by employing PCA on the three reconstructed Cartesian coordinates of a C_{α} atom gives the principal (dominant) motion of that C_{α} atom. If the first eigenvalue is sufficiently larger than the other two, then it may be assumed that the first eigenvector can faithfully represent the fluctuations of the C_{α} atom, on which PCA has been employed. Hence, PCA was employed on the three Cartesian coordinates of each C_{α} atom of residues between Met1 and Asp298. For 272 C_{α} atoms, the first eigenvector was found to explain more than 75% of the fluctuations, justifying that three Cartesian coordinates can be reduced to a single residue coordinate. Since dihedral angles and H-bond distances can each be represented by single variables, such a complication does not arise for these variables.