Parameter	Sensitivity coefficient ¹	Comment
$k_{s,b}$	1.02	β -catenin synthesis rate constant
$AXIN_{tot}$	-9.74×10 ⁻⁰¹	Axin concentration
$k_{p,b}$	-9.22×10^{-01}	β -catenin phosphorylation rate constant
k _{f,apa}	-5.07×10 ⁻⁰¹	Axin binding to the APC SAMP repeats (forward rate constant)
APC_{tot}	4.84×10^{-01}	APC concentration
k _{r,apa}	4.60×10 ⁻⁰¹	Axin binding to the APC SAMP repeats (dissociation rate constant)
$k_{-p,b}$	3.45×10^{-01}	β-catenin dephosphorylation rate constant
$CKI\alpha_{tot}$	-3.00×10^{-01}	CK1a concentration
k _{f,ca}	-2.85×10^{-01}	CK1α binding to Axin (forward rate constant)
$k_{r,ca}$	2.59×10^{-01}	CK1α binding to Axin (dissociation rate constant)
GSK_{tot}	-2.32×10 ⁻⁰¹	GSK-3 β concentration
$k_{d,b2}$	-2.24×10^{-01}	β -catenin degradation (fast degradation rate constant)
$k_{f,ga}$	-2.19×10 ⁻⁰¹	GSK-3β binding to Axin (forward rate constant)
kr og	2.04×10^{-01}	GSK-3β binding to Axin (dissociation rate constant)
$k_{d bl}$	-6.56×10 ⁻⁰²	β-catenin degradation (slow degradation rate constant)
k_{fba}	-3.55×10^{-02}	β -catenin ARM repeats 3 and 4 binding to Axin (forward rate
<i>j</i> , <i>oa</i>		constant)
k _{r ba}	2.85×10 ⁻⁰²	β-catenin ARM repeats 3 and 4 binding to Axin (dissociation rate
1,04		constant)
k _n	2.54×10 ⁻⁰²	APC phosphorylation rate constant
k_n^p	-2.50×10^{-02}	APC dephosphorylation rate constant
kr2 han	2.15×10 ⁻⁰²	β-catenin ARM repeats 3 and 4 binding to phosphorylated APC 20-
<i>j2,0up</i>		aa repeat (foreward rate constant)
krl han	1.06×10^{-02}	β-catenin ARM repeats 5-9 binding to APC 15-aa repeat region
11,0 <i>up</i>		(dissociation rate constant)
kr2 han	-1.03×10^{-02}	β-catenin ARM repeats 3 and 4 binding to phosphorylated APC 20-
12,0up		aa repeat (dissociation rate constant)
γ	-1.01×10^{-02}	Enhancement factor for intracomplex binding
kei han	-7.53×10^{-03}	B-catenin ARM repeats 5-9 binding to APC 15-aa repeat region
··j1,0ap	,	(forward rate constant)
BCAT _{tot}	N/A	B-catenin concentration
101		F

 Table S1: Local parameter sensitivity analysis.

¹In general local (differential) sensitivity coefficients are defined as $\frac{x_i}{y_j} \left(\frac{\partial y_j}{\partial x_i}\right)$, where x_i represents the

value of a model parameter and y_j represents the steady-state value of a model variable. Here, we focus on sensitivity coefficients for the steady-state level of β -catenin. The partial derivative appearing in the definition of each sensitivity coefficient is calculated via a finite-difference approximation: $\frac{\partial y_j}{\partial x_i} \sim \frac{\Delta y_j}{\Delta x_i}$, where Δx_i represents a 1% change in the nominal value of parameter x_i (Table 1) and Δy_j represents the resulting change in the steady-state value of the variable y_j (i.e., the steady-state concentration of β -

catenin). A positive (negative) sensitivity coefficient indicates that an increase in the value of the corresponding parameter value causes an increase (decrease) in the steady-state value of the corresponding variable (y_j , the steady-state concentration of β -catenin). The sensitivity coefficients given here characterize the robustness of the nominal steady state for a normal cell (i.e., the form of the model used to consider the case of full-length APC).