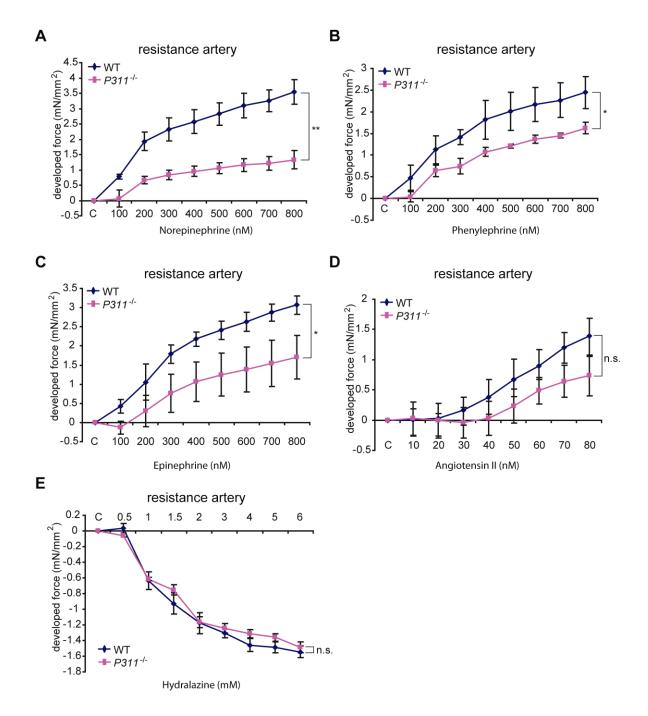
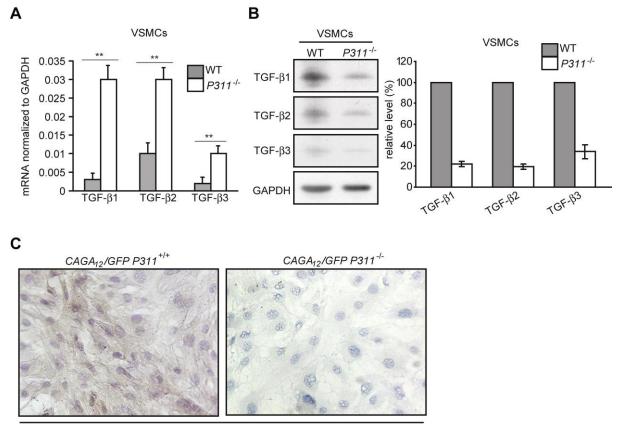
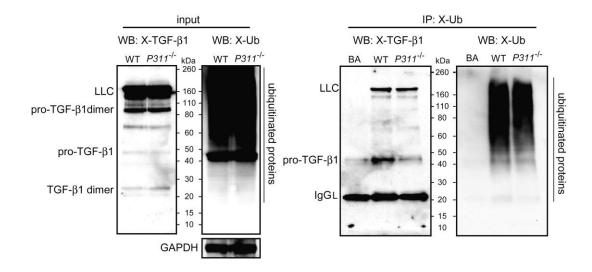

Supplemental Figures

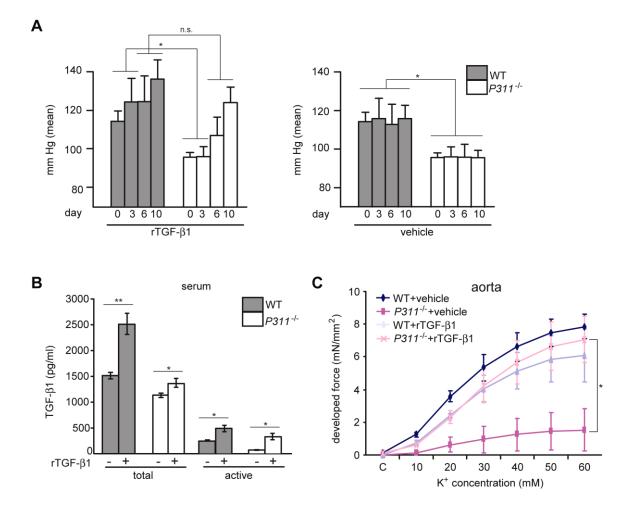

Supplemental Figure 1 Presence of P311 in mouse and human vascular muscle. (**A**) P311 immunoreactivity (brown staining) in WT and $P311^{-/-}$ mice aortas in upper two panels. Hematoxylin and eosin staining (H&E) showing nuclei (blue staining) and eosinophilic structure (pink staining) in bottom four panels. Scale bars, 50 µm in upper two panels and 10 µm in the rest. (**B**) Western blot analysis of P311 in WT and $P311^{-/-}$ mice aortas. (**C**) P311 immunoreactivity (brown staining) in human artery. Arrow indicates endothelium. Scale bar, 40 µm. (**D**) P311 immunoreactivity (brown staining) in human artery and vein. Scale bar, 100 µm. (**E** and **F**) Morphometry images, anatomic cross-sectional area (ACSA), length of internal elastic lamina (IEL) and number of nuclei comprised between two elastic laminas in the aortas (**E**) and mesenteric arteries (**F**) from WT and $P311^{-/-}$ mice. Arrows indicate elastic lamina. Scale bars, 25 µm for aorta and 50 µm for mesenteric artery. Data represent mean ± s.d. n.s., non-significant by one-way ANOVA.


Supplemental Figure 2 $P311^{-/-}$ mice have normal heart function. Transthoracic echocardiography parameters of WT and $P311^{-/-}$ mice. (A) Left ventricular mass (LVM). (B) Left ventricular ejection fraction (LVEF). (C) Cardiac output. Data represent mean \pm s.d. *p < 0.05, n.s., non-significant by one-way ANOVA.

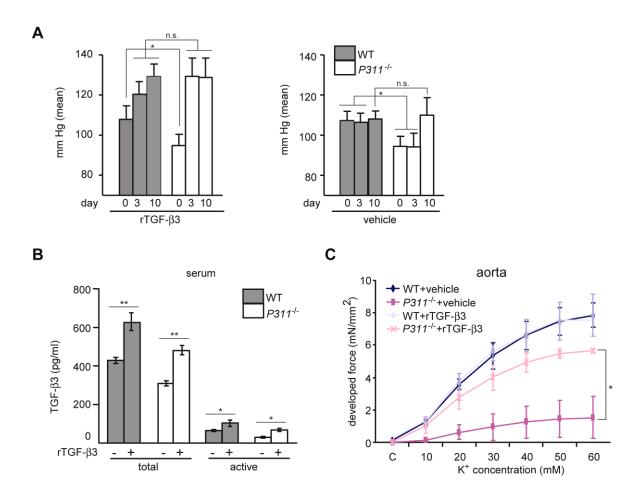
Supplemental Figure 3 Artery lumen diameters of WT and $P311^{-/-}$ mice determined by pressure myograph. (A) Passive artery lumen diameter curve determined in Ca²⁺-free PSS buffer. (B) Active artery lumen diameter curve determined in PSS buffer (containing 2.5 mM CaC1₂).

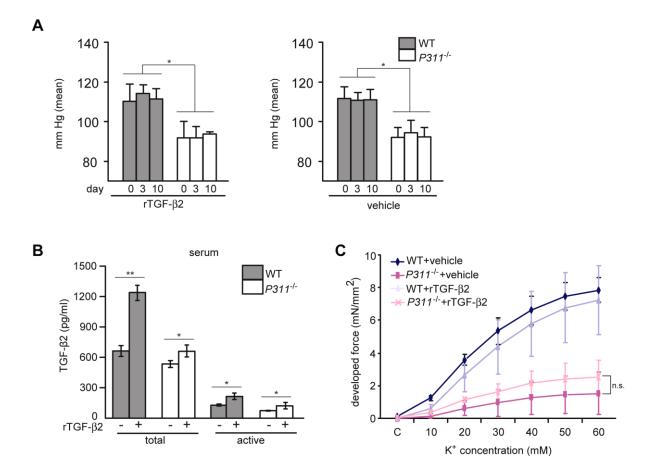


Supplemental Figure 4 Myographic determination of the contractile and dilatational response of isolated resistance arteries (~100 µm in diameter) from WT (n = 3) and P311^{-/-} (n = 3) mice to vasoconstrictors and vasodilator. (A) Norepinephrine. (B) Phenylephrine. (C) Epinephrine. (D) Angiotensin II. (E) Hydralazine. Data at final time points were statistically analyzed by one-way ANOVA. Data represent mean \pm s.d. *p < 0.05, **p < 0.01, n.s., non-significant.



X-GFP Ab


Supplemental Figure 5 VSMCs isolated from $P311^{-/-}$ mice have a decrease in the level and activity of TGF- β 1, 2 and 3 and their preforms but not in the corresponding mRNAs. (**A**) Real-time PCR showing mRNA levels of TGF- β s in WT and $P311^{-/-}$ mice aortic VSMCs. Data represent mean \pm s.d. **p < 0.01 by one-way ANOVA. (**B**) Western blots showing TGF- β s in VSMCs from WT and $P311^{-/-}$ mice. The relative level of TGF- β s in $P311^{-/-}$ VSMCs is shown in the histogram on the right as compared with WT VSMCs. (**C**) GFP immunoreactivity (brown staining) in $CAGA_{12}/GFP$ transgenic $P311^{+/+}$ and $P311^{-/-}$ mice VSMCs.


Supplemental Figure 6 P311 shows no effect on TGF- β 1 ubiquitination. Ubiquitin (Ub) immunoprecipitation (IP) assays and western blots (WB) showing the ubiquitinated TGF- β 1 in aortas. Input was normalized according to TGF- β 1 level in WT and *P311^{-/-}* mice aortas. Equal amount of total ubiquitinated protein was immunoprecipitated from normalized input for TGF- β 1 detection. LLC, large latent TGF- β complex. BA, beads alone.

Supplemental Figure 7 Administration of rTGF- β 1 to $P311^{-/-}$ mice improves blood pressure and contractility. (**A**) Plethysmographic blood pressure determination in WT (n = 5) and $P311^{-/-}$ (n = 5) mice, with and without rTGF- β 1 treatment. (**B**) ELISA showing total and active TGF- β 1 in WT (n = 4) and $P311^{-/-}$ (n = 4) mice blood serum, with and without rTGF- β 1 treatment. (**C**) Contractile response of aortas from WT (n = 5) and $P311^{-/-}$ mice (n = 5) to increasing K⁺ concentration, with and without rTGF- β 1 treatment. Data represent mean \pm s.d. *p < 0.05, **p < 0.01, n.s., non-significant by one-way ANOVA.

Supplemental Figure 8 Administration of rTGF- β 3 to $P311^{-/-}$ mice improves blood pressure and contractility. (**A**) Plethysmographic blood pressure determination in WT (n = 5) and $P311^{-/-}$ (n = 5) mice, with and without rTGF- β 1 treatment. (**B**) ELISA showing total and active TGF- β 3 in WT (n = 4) and $P311^{-/-}$ (n = 4) mice blood serum, with and without rTGF- β 3 treatment. (**C**) Contractile response of aortas from WT (n = 5) and $P311^{-/-}$ mice (n = 5) to increasing K⁺ concentration, with and without rTGF- β 3 treatment. Data represent mean \pm s.d. *p < 0.05, **p < 0.01, n.s., non-significant by one-way ANOVA.

Supplemental Figure 9 Administration of rTGF- β 2 to $P311^{-/-}$ mice does not improve blood pressure and contractility. (**A**) Plethysmographic blood pressure determination in WT (n = 5) and $P311^{-/-}$ (n = 5) mice, with and without rTGF- β 2 treatment. (**B**) ELISA showing total and active TGF- β 2 in WT (n = 4) and $P311^{-/-}$ (n = 4) mice blood serum, with and without rTGF- β 2 treatment. (**C**) Contractile response of aortas from WT (n = 5) and $P311^{-/-}$ mice (n = 5) to increasing K⁺ concentration, with and without rTGF- β 2 treatment. Data represent mean \pm s.d. *p < 0.05, **p < 0.01, n.s. non-significant by one-way ANOVA.