
Supplementary Information: Assessing the utility of residue-residue
contact information in a sequence and structure rich era

Hetunandan Kamisetty, Sergey Ovchinnikov, David Baker

Learning

The basis of methods that predict contact information from Multiple Sequence Alignments is that pro-
teins with statistically significant sequence similarity have similar structure and that this common structural
constraint affects their compositional variability. Thus, a statistical model of the constraints on the composi-
tional variability might recover structural constraints (contacts). Historically, these methods were based on
Mutual information (MI) and its variations and tended to suffer from the problem of conflating direct and
indirect statistical coupling: if positions (A,B) and (B,C) have a high MI; so do (A,C). Thus, even if only
spatially proximal positions co-evolve in composition, non-adjacent positions can display a high MI due to
transitivity.

More recent methods use a global statistical model as described in Eq. 2. The use of a global statistical
model allows disentangling direct interactions versus indirect transitive effects. Here, we briefly review
alternate approaches to learning this model.

Maximum Likelihood Estimation

A common approach to learning statistical models from data is the maximum likelihood procedure [1] which
for the case of the model in Eq. 2 having parameters Θ =(v,w) is

v̂, ŵ = arg max
v,w

ll(v,w|D)−R(v,w)

where ll(v,w|D) =
∑N

n=1 logP (xn|v,w) is the log likelihood of the model given a set of protein se-
quences D = [x1, x2..xN ] and R(v,w) is an optional penalty term added to prevent over-fitting, especially
in high-dimensions. Since the maximum likelihood procedure finds parameters that maximize the joint prob-
ability distribution of the observed data, it uses all the moments of the distribution to match the observed
correlations. In the limit, the maximum likelihood procedure is guaranteed to converge to the true parame-
ters ( ie learning is consistent ) if the model is identifiable. For the model described in Eq 2, the likelihood
depends on the value of Z, the partition function which is, unfortunately, computationally intractable in the
general case. Approximations to Z based on the Bethe Free Energy and its generalizations that use message
passing have been used in discrete models of proteins [2, 3] but can be prohibitively slow when used as an
inner step to learn v and w from sequence alignments [3].

Method of Moment Estimation

In cases where the likelihood is unknown, hard to compute or hard to optimize, a common alternative is
the method of moments[4]. If the model has p parameters, the method of moments computes p moments

1



of the distribution as a function of the parameters, equates them to the corresponding observed correlations
and solves the resulting equations to estimate the parameters. In the limit of infinite data, like Maximum
Likelihood, an exact moment matching procedure is also consistent[5, Chapter 33].

The moments of the model in Eq. 2 are P (Xi) (for each of the 21 valid choices of Xj ), P (Xi, Xj)
etc. The method of moments approach learns parameters of the distribution such that these moments match
the corresponding observables (frequencies, M(Xi), and correlations, F (Xi, Xj), respectively). To do this,
one requires a relationship between the parameters of the model and its moments. For the distribution in Eq
2, the log partition function is its cumulant generating function[6]; its derivatives therefore provide such a
link:

∂

∂vi
logZ = P (Xi)

∂2

∂vivj
logZ = P (Xi, Xj)− P (Xi)P (Xj)

This set of equations can be solved by then equating the moments to the corresponding observables to
obtain estimates of the parameters. The advantage of such an approach is that it is a consistent learning pro-
cedure. The disadvantage is that the relation between the marginal probabilities and the parameters depends
on the partition function that is the source of the computational intractability of the learning procedure. In
contrast, as described in the Methods, the pseudo-likelihood [7] method employed by GREMLIN avoids this
source of computational intractability by modeling the conditional distributions. Modeling conditional dis-
tributions is sufficient to recover the true parameters of the distribution. Intuitively, this is because if all the
conditional distributions above are exactly modeled, the joint distribution must be exactly modeled as well.
Incidentally, a similar justification proves the convergence properties of Gibbs Sampling[8].

Choice of Prior Family

Previously we suggested the use of an l1 + l2 based regularizer to learn generative models of protein se-
quences [9]. This choice of regularization is equivalent to using a sparsity-promoting Laplace prior on the
strengths of the interactions. While that appears to learn parameters that are closer to their true strength, the
task of contact prediction is simpler as we are only interested in the relative ranking of the interactions and
not their actual values. On the set of 15 PFAM domains used in [10], we found that with APC, using a Gaus-
sian prior on the individual values of the parameters (ie l2 regularization) was as accurate as using a Laplace
prior in predicting contacts. Additionally, using Gaussian priors results in a continuously differentiable
objective function with smaller computational costs. We therefore choose this form for prior information
throughout this paper. The development of alternate approaches to the APC that account for entropic effects
might allow sparsity-inducing priors to improve upon extant methods in data-scarce settings.
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Figure S1

Accuracy of contact prediction when restricted to positions at least 24 residues apart. (A)-(D): Comparison
of GREMLIN with DCA (A), PSICOV (B) MIc (C) and GREMLIN when no prior information is used (D).
Each point corresponds to a protein, the axes indicate the accuracy of the top ranked L/2 Cβ −Cβ contacts
predicted by the indicated methods. (E): (solid lines) Average accuracy for varying numbers of predictions;
(broken lines) fraction of targets where GREMLIN was more accurate than the indicated method. We varied
the number of sequences in the input alignment for a subset of 75 targets with deep alignments. Average
accuracy across this set as a function of the depth of the alignment (in log-scale) over this subset, at L/5 (F)
and L/2 predictions (G)
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Significance of hit found by HHsearch vs GDT-TS of hit to native crystal structure across targets with crystal
structures of resolution < 2.1Å in the CAMEO set. We classified PFAM families into three classes based
on the cutoffs shown in red.
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Figure S3

Rank correlation between GREMLIN score and fraction of native contacts while varying the number of
predictions used. We ranked alternate models for all CAMEO targets varying the number of predictions
used in the computation of the GREMLIN scores. To account for the variability in number of sequences
and models for each target, we computed standardized rank-correlations between the rank of the model
using GREMLIN scores and its rank based on the distance to native. The average standardized correlation
uniformly increases as the number of predictions used increases from L/4 to L (A,B). Increasing the number
of predictions beyond L increases the overall standardized rank-correlations, however this increase is not
significant or uniform (C).
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Comparison of ranking accuracy between GREMLIN and HHsearch . We scored alternate models generated
from templates for all CAMEO targets with more than 50 templates and compared the ability of GREM-
LIN scores and HHsearch scores to rank these templates correctly. We used two metrics of ranking accuracy:
the correlation between the score and the fraction of native contacts – a measure of global ranking accuracy,
and the accuracy of the best model ( by fraction of native contacts ) among the top 5 models ranked by each
metric. GREMLIN was significantly more accurate globally (A,C); however the accuracy of best model in
the top 5 was of comparable accuracy to those selected by HHsearch (B,D) for most targets.
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Figure S5

Ranking accuracy depends on the depth of the alignment. For 68 targets that had at least 20L sequences and
more than 50 templates, we varied the depth of the alignment and ranked alternate models using GREM-
LIN scores in each case. The average correlation and rank-correlation between fraction of native contacts of
the model and its GREMLIN score increases with increasing alignment depths (A). When there are 10L se-
quences, the correlation coefficient is close to the value attained with all sequences for nearly all targets (all
targets within 0.1 of maximum; 80% of targets within 0.05) (B,red-line); the numbers with 5L sequences are
slightly lower but comparable (∼80% of targets within 0.1; ∼70% within 0.05) (B, blue-line). The behavior
of rank-correlations is similar (C).
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Figure S6

Prior probability based on sequence separation and predicted secondary structure: πss. We estimated the
prior probability that a pair of residues are in contact (closest separation between heavy atoms less than 5Å)
conditioned on their secondary structure (Helix (H), Sheet (E) and Coil (C), assigned by STRIDE[11]) and
their sequence separation, from its frequency of occurence in a set of non-redundant protein structures ([12])
predicted to be monomeric by PISA[13, 14]. Most secondary-structure specific effects are limited to low
sequence separation with sheet-sheet contacts being a notable exception.

For a query protein, the probability of each secondary structure element at a position P (ssi) was esti-
mated using PSIPRED [15]; the expected probability of being in contact was then estimated by summing
over the corresponding conditional probabilities as follows:

πss(i, j) =
∑

ssi∈{H,E,C}

∑
ssj∈{H,E,C}

P (ssi)P (ssj)P (contact|ssi, ssj , |i− j|)

The P (contact|ssi, ssj , |i−j|) value for sequence separation 100 was used for larger sequence separations.
When varying the depths of the alignments we used the secondary structure predictions previously gen-

erated from the whole alignment. Results when using secondary structure predicted with sub-alignments are
very similar (Fig. S10).
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Figure S7

Effect of prior information on accuracy of contact prediction. On a set of 73 proteins that likely do not
have prior homolog structures (Table IV), we compared the accuracy of the top L/2 predictions with and
without priors. When restricted to positions at least 24 residues apart, GREMLIN achieves higher accuracy
than PLMDCA by using secondary structure and sequence separation priors (A); however SVMCON has
higher accuracy than GREMLIN on a large fraction of targets (C). Integrating SVM-based priors into co-
evolution based GREMLIN predictions improves upon accuracy of individual methods (B,D). PLMDCA and
GREMLIN (with no priors) have comparable accuracy when restricted to positions at least 12 residues apart
(E) and 24 residues apart (F), although GREMLIN was 5-20x faster on this dataset.
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SVM priors improve robustness and predictions with few sequences. On the set of hard targets that likely
have no prior homolog structures, using the SVM prior improves the robustness of predictions for targets
with few sequences in the alignment (left and middle panels). With the SVM prior, the accuracy of predicted
contacts (restricted to positions at least 24 residues apart) for targets with at least 2.5L sequences (middle,
green bar) was comparable to targets with more than 5L sequences with and without priors (right). On each
box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points with outliers plotted individually.
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Figure S9

Contacts are adequate to rank and discriminate native structures accurately. As a positive control, for targets
in the CAMEO dataset, we generated perfect predictions using only correct contacts between positions at
least 6 residues apart varying the number of contacts from L/4 to 2L (in the order predicted by GREMLIN ).
In each case, we determined if the contacts correctly rank alternate models and discriminate between native
and alternate models (Category III in Fig 3b). The fraction of targets in Category III increases monotonically
as the number of contacts increases from L/4 to about 5L/4 and plateaus beyond (A, blue lines). When L
contacts are used, 97% of the targets have accurate ranking and native discrimination. In contrast, due to
the inaccuracies in predictions, the corresponding fraction using actual GREMLIN predictions is much lower
(A, red lines). (B) suggests an explanation for this behavior: most targets in this dataset have between L and
2L contacts; thus, a large fraction of the total contacts are present in the top L correct contacts.
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Figure S10

Effect of alignment depths on PSIPRED accuracy. When comparing the accuracy of GREMLIN with vary-
ing alignment depths, we used PSIPRED’s secondary structure predictions with default parameters (which
might use deeper alignments). To test if this affects our conclusions, we used the generated sub-alignments
as input to PSIPRED and compared the accuracy of predicted secondary structure with varying alignment
depths (using [16] to add pseudo-counts). The average accuracy of PSIPRED is essentially identical at these
alignment depths (A): the difference between L and 20L sequences is less than 1%. Error bars show standard
deviation of accuracy. The accuracy of the top L/2 GREMLIN predictions (when restricted to positions at
least 12 residues apart, as previously) when L sequences are used for both PSIPRED and GREMLIN is essen-
tially identical to the predictions when secondary structure was predicted using all sequences(A). Results at
higher alignment depths are similar.
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