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Materials and Methods

All chemicals are of the highest commercially available purity and were used as received, unless
noted otherwise. Water used in all experiments was distilled and deionized by a Milli-Q system
from Millipore. TDMImP was synthesized according to reported procedures (1). TM4PyP and
TTMAP were purchased from Frontier Scientific, Inc. Co- and Ga-porphyrins were synthesized
by metalating the corresponding porphyrin free base with cobalt(ll) acetate or gallium(lll)
chloride respectively in H,O (2) and purified as the chloride salt by a double-precipitation
method (3).

UV-vis spectra were recorded with a Hewlett-Packard 8453 diode array spectrometer at room
temperature. CV, SWV and controlled potential bulk electrolysis were performed on a BAS 100B
electrochemical workstation in pH buffered aqueous solutions at room temperature using a
Ag/AgCI reference electrode, a glassy carbon or indium tin oxide (ITO, resistance 10 Ohm per
square inch, Nanocs) working electrode, and a Pt auxiliary electrode. pH was measured using an
accumet AB15 pH electrode from Fisher Scientific. O, evolution was measured by a YSI 550A
Clark electrode from Fondriest Environmental. ESEM and EDX analysis were carried out on a
Quanta 200 FEG ESEM. Details about fitting the buffer concentration effect on water oxidation
catalysis are described below.

Data fitting.

Electrocatalytic equation:

icat = NFAD at*Coatkoat ' 2 Keat = Kwater + Ko[B]

(icat/iwater)” = (Coat/Ceat’)’(Keat/Kwater) = (Ceat/Ceat®)*(1 + Ko[B/Kwater) ~ (S1)
icat: OvVerall catalytic current

iwater: current without the presence of buffer base

n: number of electrons transferred

F: Faraday constant

10f 13



A: surface area of the working electrode

Ceat: effective concentration of active catalyst

C.at": total concentration of catalyst

Dcat: diffusion coefficient of catalyst

kcat: Overall rate constant of the O-O bond formation (pseudo-first-order)

Kwater: rate constant of the O-O bond formation in unbuffered solution (pseudo-first-order)
kp: rate constant of the O-O bond formation contributed by the addition of buffer base

(second order)

For an inhibition pathway that involves the following equilibria:

OH Keg,1 B Keq,2 B
_(‘;OIIIL+ +B,-OH_ | met +B, -HO _éomﬁr

| B, +OH [ B+H,0 |

OH, OH, B

Keg1 = [CO"-BJ[OH]/[Co"-OH][B]; Keq,2 = [C0"-B,][H.0)/[Co""-B][B]
S0, [C0"-B] = Keq1[Co"-OH][B/[OH]
[C0"-Bz] = Keq2[Co"-B][B]/[H20] = Keq,1Keq 2[Co"-OH][B]*/[OH][H O]
Mass balance: [Co"-OH] + [Co"-B] + [C0"-B,] = [Co"-OH]°
Coat/Coat® = [CO"-OHJ/[C0"-OH]® = 1/(1 + Keq1[BY[OHT + Keg 1Keq 2[BI/[OH[Hz0])  (S2)
Combine egs S1 and S2:
(icat/iwater)” = (1 + Ko[B]/Kwater)/(1 + Keq,1[BY[OHT + Keq,1Keq 2[BI/[OH][H20])? (S3)
For an aqueous solution buffered at pH 7, [OH] = 10" M, [H,0] = 55.6 M
At low buffer concentration,
1+ Keq1[BY[OHT + Keg,1Keq 2[BI/[OHTH20] = 1
Eq S3 then becomes: (icatliwater)’ = 1 + Ko[Bl/kwater, the same as eq. 4 in the text.
Fits of concentration dependence of catalytic current for four buffers used, as shown in
Figure S18, were obtained using eq. S3. Fitted parameters (Ko/Kwater, Keg,1, @and Keq,1Keq,2)

are summarized in Table S1.
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Table S1. Summary of parameters obtained from fittings according to eq. S3.

Buffer Phthalate | Na-Pi | n-BuPi | t-BuPi

Keg,1 2.7E-7 4 3E-7 | 1.7E-6 | 6.8E-6

Keq2Keq,1 | 1.6E-5 21E-4 | 4.8E-3 | 3.4E-2

Ko/Kwater | 500 2400 | 2650 |4510

R? 0.99 090 [0.99 |0.99

30f13



0.8 1

pit’_Js: 51and 9.4

o
(9]
1

Absorbance
(=]
~
1
A at 425 nm
o
2

o
38
]

0.0 1

460 SKIJO 660
Wavelength (nm)
Figure S1. Optical spectra of 10 uM Co-TDMImP in the form of Co”(OH2)2 (Amax = 407,
527, 558 nm) (dashed) and Co"(OH)(OH,) (Amax = 419, 540, 575 nm) (solid) at pH 7.

Species not shown: Co"(OH,), at pH 2 (Amax = 420, 539, 575 nm) and Co"(OH), at pH

12 (Amax = 425, 545, 579 nm). Inset: pH titration curve of Co"-TDMImP monitored at 425

nm. The two pKj, values were derived from data fitting.
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Figure S2. Experimental (top) and simulated (bottom) ESI-MS spectra of

[Co"-TDMImP]*". Precise m/z values are listed next to each peak.
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Figure S3. CW X-band EPR spectra of frozen samples in water of 1 mM Co(acetate),
(dotted, ger = 5.56 and 3.13), 1 mM Co'-TDMImP (solid, ges = 2.30), and 1 mM
Co"-TDMImP (dashed, EPR silent). T = 5 K; microwave power = 0.2 mWV.
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Figure S4. 'H NMR spectrum of 1 mM Co"-TDMImP obtained in D,O. Chemical shifts
are labeled above each peak: 6 9.34 (s, porphyrin B-pyrrole-H, 8H), 8.12 (s,
imidazolium-H, 8H), 3.67 (s, methyl-H, 24H).
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Figure S5. Optical spectra recorded at room temperature of 10 uM Co'-TDMImP in
unbuffered H,O (solid) and 1 M Na-Pi buffer at pH 7 (dashed), and 10 uM Co"-TDMImP
in unbuffered H,O (dotted) and 1 M Na-Pi buffer at pH 7 (short dashed). Inset: CVs of 1
mM Co-TDMImP at room temperature and a scan rate of 100 mV s in pH 7 solutions

containing Na-Pi buffer of 0.01 M (solid), 0.05 M (dashed), 0.1 M (dotted), and 0.2 M
(short dashed) at room temperature.
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Figure S6. Theoretical (filled squares) and measured (filled cycles) O, formation (in
umol) during controlled potential electrolysis of 0.5 mM Co-TDMImP for 1 h at 1300 mV

in 0.2 M Na-Pi buffer at pH 7. Inset: plot of the O, formation yield as a function of time.
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Figure S7. Current density profile of controlled potential bulk electrolysis of buffer
background (dotted); 0.5 mM Co-TDMImP solution (dashed); and clean buffer using the
same ITO working electrode after the red trace was obtained (solid). Other conditions:

room temperature, 0.2 M Na-Pi buffer at pH 7, applied potential 1300 mV.
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Figure S8. UV-vis spectra of 0.5 mM Co"-TDMImP before (solid) and after (dashed)
electrolysis at an applied potential of 1300 mV for 4 hours. Inset: plot of the absorption
maximum of the two Q-bands at 540 nm (filled squares) and 575 nm (filled circles) as a

function of time.
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Figure S9. CVs of 1 mM Co-TDMImP at room temperature in 0.2 M Na-Pi buffer at pH 7
showing the current normalized on the basis of the square root of scan rate at a scan

rate of (from top to bottom) 500 mV s, 200 mV s™', 100 mV s™', and 50 mV s™.

0
< 200
= _
2 g.
8 -400 - g ‘
o
600 300 % @ e e o ®
r 0 50 100 150
Time (min)

1500 1300 1100 900
Potential vs. Ag/AgCI (mV)

Figure S10. Linear sweep voltammetry of 1 mM Co-TDMImP in 0.2 M Na-Pi buffer at pH
7 monitored for the first 150 minutes after the solution was freshly prepared. Showing are
scans taken at 5 (solid), 50 (dashed) and 150 (dotted) minutes. Inset: plot of current at

1100 mV (filled squares) and 1400 mV (filled circles) as a function of time.
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Figure S11. (A) CVs of 1 mM Co-TDMImP (red) and 0.2 mM Co(NOs), (black) before
(dashed) and after (solid) the addition of 0.25 mM EDTA. (B) CVs of 1 mM Co-TDMImP
(red) and 0.2 mM Co(NOs). (black) before (dashed) and 10 minutes after (solid) the
addition of 0.5 g Chelex resin. Other conditions: room temperature, 0.2 M Na-Pi buffer,

pH 7, scan rate 100 mV s™.

Figure S12. ESEM images of (A) freshly polished glassy carbon electrode; (B) glassy
carbon electrode after 20 CV scans in 0.2 M Na-Pi pH 7 solution containing 5 mM
Co-TDMImP; and a cobalt oxide film on a glassy carbon electrode after 20 CV scans in

the same buffer containing (C) 0.1 mM and (D) 1 mM Co(NO3)s.
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Figure S13. EDX analysis of freshly polished glassy carbon electrode (blake); glassy

carbon electrode after 20 CV scans in 0.2 M Na-Pi pH 7 solution containing 5 mM
Co-TDMImP (red); and a cobalt oxide film on a glassy carbon electrode after 20 CV

scans in the same buffer containing 0.1 mM (green) and 1 mM Co(NOs). (blue).
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Figure S14. CVs of 1 mM Co-TDMImP at room temperature and a scan rate of 100 mV
s™ in pH 7 Na-Pi buffer solutions at HPO4* concentration of (panel A, from top to bottom)
0 M, 0.027 M, 0.042 M, 0.057 M, and (panel B, from bottom to top) 0.076 M, 0.19 M and
0.38 M. Standard deviations for these curves are in a range of +20 pA and were shown in

Figure 2A.
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Figure S15. CVs (solid lines) and SWVs (dashed lines) of (from top to bottom) 1 mM
Ga"-TTMAP, Ga"-TM4PyP and Ga"-TDMImP. Peak potentials are labeled. Other

conditions: room temperature, scan rate 100 mV s™', 0.2 M Na-Pi buffer, pH 7.
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Figure S16. CVs of 1 mM Co-TTMAP at room temperature and a scan rate of 100 mV s™

-100 1

80 88

at pH 7 in phthalate (dashed), Na-Pi (solid) and n-butylphosphonate (dotted) buffers.
Inset: Plot of the potential measured at -50 pA as a function of pK, of the buffer species.

The red line represents the best linear fit with a slope of -50 mV pK,™.
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Figure S17. CVs (panel A) and SWVs (panel B) of 1 mM Co-TDMImP (solid),
Co-TM4PyP (dashed) and Co-TTMAP (dotted). Other conditions: room temperature,

scan rate 100 mV s™', 0.2 M Na-Pi buffer, pH 7. The Co""" potentials for Co-TDMImP and
Co-TM4PyP are labeled.
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Figure S18. Experimental (filled black squares) and fitted (curves) results of (icat/iwater)’ @s

a function of buffer dianion concentration for (A) phthalate, (B) Na-Pi, (C)
n-butylphosphonate and (D) t-butylphosphonate. Solid curves represent the best fits
using eq. S3. Dashed curves represent fits assuming that there is no formation of the

doubly bound species Co"-B (Keq2 = 0).
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