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1 Material and methods

1.1 Microfluidic device design and fabrication

1.1.1 Design

The microfluidic device was designed in Clewin (WieWeb software, Netherlands). It is com-
posed of two functional layers: a flow layer and a control layer, which each require the fabri-
cation of a separate mold. The flow mold has a complex layout with three different structure
heights for each of its functional components. This mold consists of flow channels (15 µm
high), 260x300 µm small microchemostats (5 µm high), and shallow sieve channels (1.7 µm
high), which allow for diffusion of nutrients and chemical compounds from the flow channels to
the microchemostats. The control layer contains channels necessary for creating microvalves,
which control the flow inputs, the chamber button, and a chamber outlet valve. The chamber
button pressurizes the chamber and forces cells to grow in a monolayer. The chamber outlet
valve permits the partial closing of the chamber to prevent possible contamination during the
initial phase of on-chip cell culturing. The control layer has a height of 12 µm (Figure S1.a-c).
Each of these structures required the writing of a separate chrome mask and was named as
follows: 1. sieve channels, 2. chambers, 3. flow lines and 4. control lines. We placed three
devices on one mold, allowing us to fabricate 3 devices at once. Due to PDMS shrinkage, we
scaled the flow layer by 100.5% to fit to the spotting pitch of our cell arrays whose pitch is
restricted since we used 4 pins for spotting of the arrays (see section 1.5.1). We also scaled the
control layer by 101.5% to allow proper alignment with the flow layer.

1.1.2 Mold fabrication

Microfluidic device molds were fabricated using standard photolithography methods [1] in the
clean room facility of the center of micronanotechnology (CMI, EPFL, Switzerland). For each
of the four channel layers describe above, a chrome mask coated with AZ1518 (Nanofilm,
Westlake Village, CA), was written on a DWL200 (Heidelberg Instruments Mikrotechnik GmbH,
Germany), with a 4 mm writing head (2 µm resolution). Masks were developed with AZ351
(MicroChemicals GmbH, Germany) in a DV10 robot (Suess MicroTec AG, Germany), etched
in a perchloric acid and ceric ammonium nitrate bath (Chromium etchant #1, MicroChemi-
cals GmbH), and finally stripped of the remaining photoresist in a remover bath for 30 min
(Remover 1165, Chimie Tech Services, France). These masks where then used to pattern
photoresist-coated wafers on a MA6 mask aligner (Suess MicroTec AG). The negative photo-
resist SU8 (Gersteltec, Switzerland) or the positive resist AZ9260 (MicroChemicals GmbH),
were used to generate square or rounded structures, respectively. The sieve channels, mi-
crochemostat chambers, and control lines were made of SU8. We used different polymer-
solvent ratios to optimize product viscosity and obtain the targeted coating height. Negative re-
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sists were coated on a Sawatec LMS200 spin coater (Sawatec AG, Switzerland) and developed
in two successive baths of propylene glycol methyl ether acetate (PGMEA; Sigma-Aldrich,
Switzerland) followed by active rinsing with 2-propanol. It is important to note that SU8 was
not developed directly after the exposure of the first SU8 layer. Instead, layer 1 (sieve channels)
and 2 (chambers) were developed together, after layer 2 was exposed and baked. This process
prevented the sieve structures from impacting the topology of the second layer, resulting in
a flat chamber profile. The flow channels were made of AZ9260, as they required a rounded
cross-section to prevent valve leakage. The positive resist was coated on a RC8 THP spin coater
(Suess MicroTec AG) and developed with AZ400K (MicroChemicals GmbH) on an automatic
resist processing cluster (EVG150, EVGroup, Austria). The flow channels were annealed with
a final baking step of the flow wafer at 160◦C for 15 min. Table S1 summarizes the different
baking times, temperatures, spin speeds, exposure times, and development processes for the
four channel layers. Each wafer was profiled with an alpha-step 500 surface profiler (KLA
Tencor, Milpitas, CA). The following structure heights were obtained for layer 1 to 4: 1.5-2.0
µm (sieve channels), 4.5-5.5 µm (chambers), 15-16.5 µm (flow lines) and 13-14 µm (control
lines). Two different flow wafers (#1’961, #20’527) and two different control wafers (#22’728,
#24’206), each with similar heights, were selected and used for the fabrication of all subsequent
microfluidic devices.

1.1.3 Microfluidic device fabrication

The microfluidic devices were fabricated essentially as described previously [2]. The flow
and control wafers were first treated in a vapour bath of trimethylchlorosilane (TMCS; Sigma-
Aldrich) for 15 min. Polydimethylsiloxane (PDMS; Sylgard 184, Dow Corning Corp., Mid-
land, MI) was used with two different elastomer to curing agent ratios: 1:20 for the flow layer
and 1:5 for the control layer. 20g of PDMS (1:20) were spin coated on the flow wafer at 1800
rpm with a P6700 spin coater (Specialty coating systems Inc., Indianapolis, IN), to obtain a
thin film of PDMS. 42g of PDMS (1:5) were poured onto the control wafer, which was placed
in a circular glass dish, and degassed for 15 min in a desiccator. We baked both molds at 80◦C
for 30 min. Following baking, each of the three devices was cut from the control mold, result-
ing in three rectangular PDMS pieces of about 4-5 mm thickness. Holes for the control line
connections were punched with a manual hole-puncher (Schmidt Technology Corp, Cranberry
Twp., PA), using a steal punch with an outside diameter of 0.024 in (Ref. # CR0320245N21R4,
Technical innovations Inc., Angleton, TX). The control layer was manually aligned to the flow
layer and both layers were bonded at 80◦C for 1.5 hour. Finally, each device was cut and peeled
from the molds, and holes were punched in the flow layer to allow connection to the flow inlets
and outlets.
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1.2 Microscope hardware

A fully automated inverted epi-fluorescence microscope (Nikon Eclipse Ti-E, Nikon Instru-
ments Inc., Melville, NY) enclosed by a temperature controlled incubation chamber (ice-
Cube&Box, Life Imaging Service, Basel) was used for all image acquisitions. The microscope
consisted of an encoded x-y stage, a motorized objective turret, a motorized filter wheel, and
a hardware based auto-focus system. Two automated shutters (35mm Smartshutter TI, Sut-
ter instruments, Novato, CA) were placed in the paths of the trans- and epi-illumination to
control bright field and fluorescent exposure times. We used a LED based system for fluores-
cence illumination (CoolLED pE-2, Custom interconnected Ltd., UK). The LED based system
was selected due to its better intensity stability over time (Figure SS2). Three different objec-
tives were used: (i) a 4x plan achromat (Nikon ref. #MRL00042), (ii) a 20x achromat LWD
(Nikon ref. #MRP00202), and (iii) an oil immersion 60x plan apochromat (NA 1.4, Nikon ref.
#MRD31602). We also used two different filter cubes: (i) GFP-B (Ex 460-500/DM505/BA
510-560, Nikon), (ii) TexasRed filter (Ref. #F36-504, AHF Analysentechnik AG, Germany).
Images were acquired with a back-illuminated EMCCD camera with a 1024x1024 pixel sensor
array (Ixon DU-888, Andor Technology, UK). The camera was externally cooled with 16◦C
water (Oasis 160, Solid State Cooling Systems, Wappingers Falls, NY) and further cooled to
-70◦C using the internal peltier cooler.

1.3 Valve control

Pressure of the flow and the control lines was set by pressure regulators with a range of 1.3
to 25.0 psi (Type 10, Bellofram Corp., Newell, WV), connected to an in-house compressed
air supply. To control the flow and the button pressure, we used high precision digital pres-
sure gauges with ceramic sensors (PDC-102N2BFA, KOBOLD Instruments AG, Switzerland).
Microfluidic valves were actuated by computer-controlled solenoid valves (Pneumadyne Inc.,
Plymouth, MN). We custom-designed a printed circuit board to link the solenoid valves to a
USB input/output card (USBIO24R, Elexol electronic solutions, Australia), which remotely
operated each valve using a Visual Basic interface. Details about the circuit design and its
components can be found at cellbase.epfl.ch.

1.4 Microscope software

We wrote a Visual Basic program to control the microscope, its peripherals, the EMCCD cam-
era, and the solenoid valves. The software was manually initialized with three corner points on
the device to automatically acquire all positions on the device. Each double chamber position
was calculated with simple trigonometry from the reference points. The software defines an
optimal path that serpentines through each position and minimizes the distance between adja-
cent imaging stops (Figure S3). The software also handles two different medium sources and
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switches between them for defined periods of time. It acquires time-lapse movies on two dif-
ferent light channels (phase contrast and fluorescence) and supports different camera settings
for each channel.

1.5 On chip experiment

1.5.1 Cell preparation, microarraying and aligment

For each experiment, we replicated a different subset of 1152 yeast-GFP strains into 96-well V-
shape plates (Nunc Ref. #249662, Fisher scientific, Switzerland). To prevent cross-contamination,
plates were sealed with a breathable adhesive membrane (Breathe-Easy, Sigma-Aldrich). After
20-24 hours of incubation at 30◦C and 240 rpm in YPD (Ref. #Y1375, Sigma-Aldrich), sup-
plemented with 50µg/ml of ampicillin (Sigma-Aldrich), the cells were sedimented by centrifu-
gation at 2400 rpm for 3min. Each strain was spotted on an epoxysilane coated glass coverslip
(Ref. #25X60-1-C50-25, Thermo Fisher scientific specialty glass, Portsmouth, NH) using a
standard DNA micro-arrayer (Qarray2, Genetix, UK), and four arraying pins (MP3B, ArrayIt
Corp, Sunnyvale, CA), resulting in an array of 1152 (24x48) spots. The humidity within the
arraying bed was set to 73% to prevent drying of the cell spots during spotting. Spotting with
these settings resulted in an average spot diameter of 96.4 ±9.8 µm (Figure S4). Directly after
spotting, a PDMS chip was aligned to the cell array, such that each spot was situated within
an individual chamber. During this process, spots quickly dry and did not stick to the chip, al-
lowing multiple alignment trials without causing cross-contamination or disruption of the cells.
The time between removal of the cell array from the spotter and priming with media typically
ranged between 20 and 30 min.

1.5.2 Chip priming

Control lines were connected to the pressure source via water filled tygon tubing (0.02 in ID,
0.06 in OD) connected to the device with metal pins (0.3 mm ID, 0.65 mm OD). All control
lines were primed with dH2O at 5 psi. Consequently, pressure was increased to 20 psi, such
that each valve could be fully switched on or off via computer-controlled solenoid valves (see
section 1.4). Additionally, the chamber outlet valve was primed with dH2O and pressure was
maintained at 3 psi, in order to indent the chamber outlet channel without completely closing
it. This prevented cells from entering/leaving the chambers, reducing cross-contamination,
while at the same time allowing the chambers to fill with medium. As soon as the control
lines were primed (time varied between 10-20 min), the flow layer was primed with SD-his at
1.3 psi. A special strategy was employed to maintain cells on the sieve side of the chamber
outlet and prevent them from exiting the chambers. First, the flow channel on the sieve side
was closed (valves V1 and V3 closed; figure S1d, sequence 1) and medium flowed on the
chamber outlet side, progressively flushing each chamber and pushing the cells toward the
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sieve channels. Due to surface tension, the medium did not flow through the sieve to fill the
opposite flow channel. A short opening of V1 flushed the upstream section of the sieve-side
channel, until the first chambers were reached (sequence 2). Then, the medium could flow
through the sieve and complete the priming of the flow channel on the sieve side (sequence 3).
When flow reached the outlet of the chip, the outlet valve was closed and the remaining air
in the device was eliminated by out-gas priming through the PDMS. Once the chip was fully
primed with medium, both upstream valves (V1 and V2) were closed and the outlet valve was
opened. This released the pressure, which built up during priming and caused chamber ceiling
deformation. The chamber returned to its relaxed shape and forced the cells into a well spread
monolayer. Finally, both upstream valves were opened simultaneously allowing medium to
flow on each side of the chambers efficiently perfusing the cells within the microchemostat
chambers (sequence 4).

1.5.3 Initial growth phase control

After priming, chips were continuously perfused with SD-his at 1.7 PSI, at 30◦C. The cells were
grown for 16-20 hours to let them recover from spotting, enter log-phase, and fully populate
each chamber. During that time, low resolution (4x) images of the entire device were acquired
every 30min using NIS-element software (Nikon Instruments Inc.). These low magnification
image sequences allowed us to systematically check the growth of each strain and identify local
problems on the chip. Chambers exhibiting problems were annotated and later discarded from
the data set.

1.5.4 Automated time-lapse movie acquisition

The chip and its tubing connections were immobilized on the motorized stage using tape. Im-
ages were acquired with a 60x oil immersion objective. The intermediate 1.5x lens was used to
obtain a final magnification of 90x. DF 37 immersion oil (Cargille laboratories, Cedar grove,
NJ) was selected for its stability over a long period of time; it did not dry out and its refrac-
tive index was not affected by a viscosity change, therefore allowing the focal distance to stay
constant over time. The two automated shutters were used to switch between phase contrast
(Ph3, Nikon instruments Inc.) and fluorescent channels within 50 ms. Focus was maintained
at all times by a hardware-based focus system (perfect focus system (PFS); Nikon Instruments
Inc.) that constantly measures the distance to the glass-medium or glass-PDMS interface and
continuously adapts to vertical variability. As the refractive index of PDMS differs from that
of medium, care must be taken that the PFS measures either the glass-medium interface or
the glass-PDMS interface. Focus can be set to the cell mono-layer by manually trimming the
offset between the glass-medium interface and the cell plane. Camera settings were the same
for all experiments. Acquisition time was set to 200ms for the fluorescent channel, with an
EM-gain of 100 and an analog gain of 2.4. For the phase contrast channel, acquisition time
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was set to 50ms with an EM-gain of 2 and an analog gain of 2.4. The LEDs were set in the
λ2 channel (470 nm) at 20% intensity. To reduce the acquisition time, pairs of chambers were
imaged together. Finally, we acquired time-lapse movies of all 576 positions (1152 chambers)
at a sampling frequency of 20min for a total duration of 13 to 24 hours.

1.6 Device characterization

1.6.1 Medium switch

Because by design there was no active flow of medium through our microchemostat, medium
switch times depended primarily on the diffusion times of small molecules into our chambers.
The medium exchange times in the flow channels impacted the overall switch time to a lesser
degree because the medium exchange time was much faster compared to the diffusion times.
We connected two different medium sources to each of the three subsections of a device, to
measure our medium switch times in our microchemostats. One medium source was SD -his
and the other was either SD -his supplemented with sulphorhodamine 101 (Sigma-Aldrich) or
a 10 kDa Dextran conjugated Rhodamine B isothiocyanate (Sigma-Aldrich). For each of the
three subsections of the device (1. row 1-8, 2. row 9-16, 3. row 17-24), we ran a separate set
of medium switches while recording the fluorescence intensity of the chambers. We used a 4x
objective, the TexasRed filter and illuminated with our LED system set in the λ3 channel (535
nm) at 20%. Acquisition time was set to 200 ms, with an EM-gain of 100 and an analog gain
of 2.4. 12 positions, covering the 384 chambers of one subset were visited every 15 s. Medium
was switched every 40 min and two repeats were monitored for all subsets. After switching,
the new medium rapidly exchanged on each side of the chamber and started diffusing (Figure
S5.a). Intensity was calculated as the median intensity in a rectangular area automatically lo-
cated across the pair of chambers. The equilibration time was defined as the time necessary
to reach 95% of the fluorescence at equilibrium (Figure S5.b). We compared two repeats for
each subset of one chip and one repeat of one switch taken on another chip and on a different
day (Figure S5.c). Equilibrium was reached within 4 to 5 minutes, showing good repeatability
between different regions of a same chip and between two different chips. We also measured
the equilibration time of 10 kDa Dextran conjugated Rhodamine B isothiocyanate to check the
diffusion of a larger compound (Figure S5.d) and we found an equilibration time of 14 min.
To measure the impact of cells on diffusion in a packed microchemostat, RPN4-GFP yeast
cells were grown at log-phase in 3ml of SD -his, flown through the chambers and captured by
the sieve channels. After growing the cells to confluence for 12h another series of sulphorho-
damine switches were performed. The results show that the presence of cells did not affect the
equilibration time, which was measured to be around 4 min (Figure S5.e).
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1.6.2 Lamp calibration and stability assessment

We tested two different light sources: (1.) a mercury source (Intensilight, Nikon instruments
Inc.) and (2.) LEDs (CoolLED pE-2, Custom interconnected Ltd., UK). Recordings were taken
with a laser power meter (FieldMaxII-TO, Coherant Inc., Santa Clara, CA). The optical sensor
was taped directly on top of the 20x objective. To calibrate the mercury source, power was
measured for a set of neutral density filters (ND1, ND2, ND4, ND8, ND16, ND32), using the
GFP and Texas red filter cubes (Figure S2.a). The LEDs were calibrated in the λ2 (470 nm) and
λ3 (535 nm) channels, using the GFP and Texas red filter cubes respectively. The power was
measured for inputs of 0%, 20%, 40%, 60%, 80% and 100% (Figure S2.b). We assessed the
relative stability of the two light sources by measuring the respective power of each light source
over 12 hours, with an acquisition period of 30 s and a resolution of 1 pW, (Figure S2.c). For
the latter experiment, measurements were taken with the GFP filter cube and the LEDs were
set in the λ2 channel at 10% and the intensilight was used without optical density filter (ND1).
We found that the LED light source was impressively more stable than the Intensilight, with
maximal variation of 1%. The Intensilight showed bigger variations, a drift over long period of
time, and sensitivity to aging. Together, this shows that the LED is a suitable light source for
long-term image recordings.

1.7 Screening of the yeast GFP library

1.7.1 Yeast strains

All 4159 strains used in this study are from the yeast GFP clone collection [3] (Invitrogen AG,
Switzerland). Strains were grown at 30◦C in 96-well U-bottom plates (Nunc Ref. #262162,
Fisher scientific, Switzerland) and incubated for 24 hours in yeast synthetic defined medium
(Ref. #Y0626, Sigma-Aldrich) complemented with amino-acids without histidine (Ref. #Y1751,
Sigma-Aldrich), referred to as SD -his. A working stock in 20% glycerol was kept at -80◦C.

1.7.2 Stress conditions

A variety of stress-inducing media additives were used in this study. Medium was connected to
the chip just before the start of image acquisition to prevent degradation of the chemicals. The
following medium compositions were used:

1. High MMS: SD-his was complemented with methyl methanesulfonate (MMS; Ref. #129925,
Sigma-Aldrich) to a final volume of 0.03%

2. Low MMS. SD-his was complemented with MMS to obtain a final volume of 0.0075%

3. Sorbitol. SD-his was complemented with 2M sorbitol ( Ref. #S1876, Sigma-Aldrich) to
a final concentration of 1M
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As an alternative to MMS, UV-induced DNA damage was tested. UVC radiation (254nm) was
generated by a mercury lamp (Pen ray 11SC-01, UVP, Upland, CA) equipped with a UVC filter
(G-275, UVP). The setup was characterized with a UV radiometer (UVX Radiometer, UVP -
courtesy of LESO-PB, EPFL). An irradiance of 11 mW/m2 was measured just below a PDMS
chip, placed at the usual location on the scope. We used three different doses by varying the
exposure time (10 min - 6.6 J/m2, 30 min - 19.8 J/m2, 1 hour - 39.6 J/m2).

1.7.3 Titration of MMS concentration and its effect on cell growth

We measured growth curves of 4 yeast strains (Gpd1-GFP, Cdc10-GFP, Rnr4-GFP, Eno1-GFP)
for different concentrations of MMS. MMS dilutions were prepared in a flat-bottom 96-well
plate filled with 150 µl of SD -his. Strains were grown overnight in 3ml of SD -his and 5 µl
of each cell solution was used to inoculate two rows of the plate. 15 µl of mineral oil (Sigma-
Aldrich) was added to each well to prevent evaporation. Optical absorbance at 600 nm was
measured for 15 hours using a plate reader (Synergy MX, Biotek, Switzerland). Temperature
was set to 30◦C and the plate was continuously shaken to prevent cell sedimentation. An
exponential was fit to the log-phase of each growth curve and doubling times were directly
derived from the growth rate (Figure S6).

1.7.4 On-chip doubling time estimation

To estimate the growth rate on chip, we used highways that guide the cells vertically, in the
y-dimension. High time resolution sequences were acquired with a time step of 30 seconds,
for a total duration of 120 minutes. Single-cells were tracked frame to frame, to determine
the vertical movement of the cells ∆y as a function of their initial position y (Figure S7).
Considering that cells can only escape the chamber on one side, and that the volume of the
chamber is constant over time, we established a relationship that defines a cells new position
∆y, depending of its initial position y0, the time step ∆t between the two measurements and
the average doubling time Td :

y(t0 + ∆T ) = y0 · 2
∆t
Td (1)

Thus, the estimated movement of a cell ∆y = y(t0 + ∆t)− y0 is a linear function of y:

∆y = yo · (2
∆t
Td − 1) (2)

The slope a of this function was measured by averaging single-cell movements over space and
time. Knowing a, the doubling time Td was approximated with the following relationship:

Td =
∆t

log2(α + 1)
(3)
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With this method, 12 image sequences from different chambers were analyzed. We found an
average doubling time of 129 min, with a standard deviation of 17 min. Batch measurements
gave an average of 120 min with a standard deviation of 12 min. The cell doubling time
therefore is on average 10 min slower on chip.

1.7.5 Yeast GFP library imaging under standard and MMS conditions

We imaged the full yeast GFP library (4156 strains), 11 plates at a time, or 1056 strains per
experiment. A control plate with selected strains was included in each experiment. After
6 hours of recording at steady-state, cells were treated with high MMS and recorded for 7
additional hours. We screened the entire library in duplicate, in a total of 8 experiments. The
quality of each movie was manually assessed (see section: 1.9.4). 3860 strains (92.8%) were
covered with at least one good quality movie. We manually picked the remaining 299 strains
into four 96-well U bottom plates. One additional experiment with these strains allowed us to
complete the screen and cover 4085 strains (98.2%) (Figure S2).

1.7.6 Strain subset selection and secondary analysis

Based on the manual annotation and the bulk analysis of the large-scale experiment (see section:
1.9.4, 1.9.3), we selected a subset of 576 strains that showed responses to MMS-treatment, in
terms of protein abundance or localization change. We selected all strains that were manually
annotated as exhibiting a localization change. For the intensity change, we selected the strains
that showed 5 hours post-treatment, an intensity fold-induction above 1.68 (20.75), as measured
in bulk. We completed the selection by picking the strains with the highest intensity fold-
induction among the remaining strains that were manually annotated as changing in intensity.
The 576 strains were automatically cherry picked and re-arrayed using a colony picker (Qpix2
XT, Genetix, UK). Strains were stored in 6, 96-well U bottom plates. 11 experiments were
conducted with the selected strains to monitor their response to other sources of stress. The
stress conditions and relative experimental timings are summarized in table S2.

1.8 Deletion Strain Construction

1.8.1 Deletion strains

Strains containing C-terminal GFP fusions at 14 genes of interest (genotype: MATa his3∆1
leu2∆0 met15∆0 ura3∆0 goiX-GFP::HIS3MX; obtained from ATTC and confirmed by PCR
of the ORF-GFP junctions) were first crossed to Y9230 (MATα can1∆::STE2pr-URA3 lyp1∆

ura3∆0 leu2∆0 his3,1 met15∆0). The resulting diploids were then sporulated and haploid seg-
regants of the following genotype were identified: MATα his3∆1 leu2∆0 met15∆0 ura3∆0
lyp1∆ yfg-GFP::His3MX can1∆::STE2pr-URA3. These 14 GFP fusion strains were then
crossed to a set of 40 different single-gene deletion strains (ORF replacements by kanMX4;
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generated by the Saccharomyces Genome Deletion Project ) of the following genotype: MATa
his3∆1 leu2∆0 met15∆0 ura3∆0 yfg::KanMX using a liquid-handling robot. The result-
ing diploids were sporulated and haploids of the following genotype MATa his3∆1 leu2∆0
met15∆0 ura3∆0 yfg::KanMX lyp1∆ yfg-GFP::His3MX can1∆::STE2pr-URA3 were selected.
Robotic mating, sporulation and haploid selection were done according to Tong et al. [4]. The
gene disruptions in strains giving rise to phenotypes in our screen were confirmed by 5 PCR
reactions designed to detect both junctions of the kanMX deletion/insertion, the absence of
the corresponding junction fragments of the wild-type allele, and a full-length cassette inser-
tion (lack of the wild-type allele). All deletion-GFP strains were imaged in quadruplicate in
response to UV-pulses as described above.

1.9 Image processing and single-cell analysis

1.9.1 Overview

The initial analysis of the image sequences required personal intervention to assess movie
quality and to make a first round of qualitative observations. However, the single-cell anal-
ysis was fully automated and quantitative. The same set of parameters was used to analyze
all the movies. Therefore, the analysis pipeline is robust and did not require optimization on
an experiment-by-experiment basis. The entire analysis process is the following (with time
estimates in brackets):

1. Manual analysis of low magnification movie (see section 1.5.3, 20 minutes)

2. Manual quality analysis (see section 1.9.4, 4 hours for quality only)

3. Updating path settings in the parameter file (see section 1.4, 2 minutes)

4. Submission of jobs to the batch system (5 minutes)

5. Automated computational analysis: chamber separation, cell segmentation, cell sorting,
auto-fluorescence deconvolution, and feature extraction (see sections below, 8-12 hours
of computation time depending on the number of frames per sequence)

6. Data merging (see section 1.9.9, 20 minutes)

1.9.2 Chamber separation

As we image two chambers at the same time we needed to separate these two chambers into
independent image sequences. Also, a small positional or rotational drift could occur during
recording due to imperfect taping of the device onto the microscope stage. A MATLAB-based
script was written to identify the chamber boundaries, find the spatial shift, the rotation of
the chambers, align the position over time, and create two separate stacks of images for each
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pair of chambers (Figure S9). To identify chamber boundaries, we successively applied a set
of edge detectors and morphological operators to the phase contrast images. First, a Sobel
filter was applied to identify cell-containing regions, i.e., the microchemostats. To fill the gaps
between the edges, we performed two successive morphological closures: first, with a disk
with a radius of 30 pixels and then with a rectangle of 60x10 pixels. This resulted in binary
image in which the chambers were white and the rest of the image black. Boundaries were
then detected with a Sobel filter. To increase the thickness of the boundaries, we applied a
vertical and a horizontal dilation with a line of 5 pixels width. To define chamber rotation,
we applied a Hough transform on the boundary image and identified its highest peaks, each
representing a line. We found the longest vertical line (± 6◦) and took its angle as the image
rotation. As rotation does not change much over the course of the experiment, we took the
mean of the rotation over the full image stack and used this value to rotate each image of the
stack with a method of nearest-neighbor interpolation. A binary template was manually drawn
and used to find the spatial shift. First, the spatial correlation of the boundary image and the
template was calculated. Then, we convoluted the resulting correlation matrix with a trident
filter (a horizontal filter with three rectangular shapes). This prevented misalignment of the
template with one chamber boundary only, by increasing the middle peak of the correlation.
The maximal value of the matrix was identified and the x-y shift derived from its position over
time. Limits were set on the vertical and horizontal shifts to prevent aberrant errors. Finally, the
shift values for the whole image stack were fitted to a second order polynomial to interpolate a
smooth and continuous movement. This was particularly important to prevent ”shaky” movies.
The interpolated shift values were used to crop the images on the chamber boundaries. All
the images of one stack were cropped to the size of its smallest image. The same rotation
and cropping was applied to the corresponding stack of fluorescent images. All thus corrected
image sequences were saved with a 14 bit depth.

1.9.3 Bulk background subtraction and fluorescence intensity measurement

Data was initially analyzed in bulk by calculating the average background and foreground in-
tensities over the entire field of view of each image stack. For each cropped and rotated image,
a background image was generated. Sliding a window of 50x50 pixels through the image with
an increment of 25 pixels, we were able to calculate background values located at each window
center. The background value was determined as the 5th percentile of the pixel distribution
within the window. Based on this grid of values, we interpolated a background image using a
triangle-based cubic interpolation. Finally, fluorescence intensity was calculated as the mean
of all the pixel values after background was subtracted.
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1.9.4 Manual annotation

To check for image quality and to have a first impression of the data, we watched all movies in
the fluorescent channel. Each movie has a duration of 4 to 7 seconds (10 frames/second), and
was analyzed frame by frame if necessary. It takes about 12-16 hours for one person to annotate
one experiment consisting of 1152 movies, 0.6-0.8 minutes on average per movie. Denervaud
and Maerkl annotated the movies based on a defined list of criteria:

1. Empty: tagged if no cells were in the chamber

2. Cross-contamination: tagged if cross-contamination was detected (wrong strain in the
chamber, two apparently different stains in one chamber)

3. No growth: tagged if the cells did not recover after spotting and were not growing

4. Late growth: tagged if cells entered log-phase too late

5. Dead cells: tagged if many dead cells were present in the chamber. Dead cells appeared
bright in the fluorescent channel.

6. Focus: tagged if cells grew in a multilayer or if the image was out of focus.

7. Washed out: tagged if the cells were partially washed out of the chamber during the
experiment.

8. Saturating: tagged if the fluorescent signal saturated the camera.

9. Neighbor leak: tagged if the fluorescence from the neighboring chamber was high and
leaked into the chamber, therefore affecting the measured signal.

The two annotators agreed to discard a movie in 63% of the cases. Maerkl agreed with Den-
ervaud 94% of the times, and Denervaud was in general stricter on the quality. To make the
quality check stringent, a movie was discarded if either of the two annotators checked it as
discarded.
For the large-scale experiment, we also observed the overall cell behavior and annotated in-
tensity changes (up, stable, or down) and localization changes, following MMS treatment. For
localization, we annotated changes based on 13 localization patterns:

1. Nothing: no signal above cell background.

2. Cytoplasm

3. Nucleus

4. Nucleolus
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5. Nuclear periphery

6. Mitochondrion

7. Structured: combines subcellular structures that are hard to define such as early and late
Golgi, and low intensity mitochondria.

8. Bud/bud neck

9. ER

10. Vacuole

11. Punctate: takes together endosome, lipid particles, peroxisomes and other punctate com-
posite patterns.

12. Actin/Tubulin/Spindle pole

13. Unclassified: unclassified low intensity patterns, often due to uneven cell background.

Based on the qualitative observations, we classified each strain in one of these four categories:
no change, intensity change, localization change, intensity and localization change. Observa-
tions can be made on one or two movies depending on the number of repeats that are good or
discarded. Annotations from the two controllers were merged in the following ways:

• For the intensity changes, we denoted a strain as changing if 75% or more of the annota-
tions were positive. By a single annotation, we mean an annotation on one repeat, made
by one annotator. Eg: A strain with one repeat has two annotations, therefore both have
to agree. A strain with two repeats has four annotations, therefore at least three have to
be positive.

• For the localization changes, we denoted a strain as changing if 50% or more of the
annotations were positive. Eg: A strain with one repeat has two annotations, therefore at
least one must be positive. A strain with two repeats has four annotations, therefore at
least two must be positive.

This classification was used to select a small set of strains that showed a response upon MMS
induced stress (see section: 1.7.6). However, final classification and analysis was performed
using the automated image analysis software.
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1.9.5 Cell Segmentation

The segmentation of the cells within the image stack was carried out in a two-step process.
The first step, named detection stage, consisted in partitioning the images in non-overlapping
regions using contextual spatiotemporal information. The set of regions provided a coarse
segmentation, each of them representing a cell detection. The second stage, named outlining
stage, consisted in analyzing each region individually to determine a closed curve that outlined
the cell contour within the region. Since the number of images within the dataset was large,
it was necessary to limit the access of several images at the same time in order to contain the
memory consumption of the algorithm. For this reason, just one image was loaded into memory
at a time, including the spatiotemporal analysis of the detection stage.

We began the detection stage by creating a mask within the imaging area that determined
the regions where no movement occurred through each image stack. The motivation behind the
creation of this mask is to determine the static region within the image sequences without any
moving cell at any point in time (e.g., pillars within the chambers or cell carcasses). For this
purpose, we computed (pixel-wise) the temporal standard deviation σt of the brightness values.
This could be achieved efficiently in a single pass through the sequence [5]. The non-moving
region (NMR) was then defined as the pixel locations such that

σt
Max−Min

(4)

was below a user-specified threshold τNMR, and where Max and Min represent the maximum
and minimum pixel brightness through the whole sequence respectively. The threshold was
determined manually for each experiment, since it is strictly related to the cell dynamics, and
to the temporal resolution of the time-lapse sequence. Typical values of τNMR are in the range
of [0, 0.1], that is, between 0-10% of pixel intensity variation though time. We illustrate this
process in Figure S10.

Next, for each image of the sequence, a preprocessing step was performed prior to the
splitting of the images in non-overlapping regions. We applied a morphological dilation with
a 4-connected ball as a structuring element, and a smoothing filter with a Gaussian kernel of
variance σ2

w = 52. This smoothing proved to be strong enough to eliminate spurious local
minima to seed the forthcoming image partitioning algorithm. Finally, the image values were
linearly stretched between 0 and 255, and the image was quantized in 8 bits.

The splitting of each image into regions was carried out by the watershed transform [6].
This algorithm is usually described intuitively in terms of flooding simulations. Consider the
brightness of the image as a topographic surface, and assume there are local minima. If the sur-
face is immersed in water, the water will flood the catchment basins of the image. Then, dams
are raised wherever water coming from different minima confluences. At the end of the process
each minimum is surrounded by dams delineating its associated catchment basin. In our case,
the cells appeared as dark objects surrounded by brighter halos over a gray background. This
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made the watershed algorithm appropriate for separating the cells into local catchment basins,
but not suitable for providing accurate cell outlines. The watershed regions that intersected with
the non-moving region were discarded, since they corresponded to empty regions or structuring
elements of the chamber. We illustrate this process in Figure S11a.

We denoted as extended watershed sub-images the regions within the original images that
corresponded to the regions within the bounding boxes of the watershed regions plus an exten-
sion of nf = 3 pixels in each direction. This parameter provided contextual information of the
adjacent cells.

In the outlining stage, each extended watershed sub-image was analyzed independently.
The most important techniques used in this stage were the parametric active contours (a.k.a.
snakes). Within an image, a snake is a curve that evolves from an initial position toward the
boundary of an object [7,8]. The evolution of the curve is usually formulated as a minimization
problem, and the associated cost function is the snake energy.

In order to obtain a first estimate of the contour of the cell, we used a minimalistic snake
named the ovuscule [9]. This snake takes the shape of an ellipse, and is parametrized by three
control points. The elliptic shape of the ovuscule makes it a very robust cell-segmentation al-
gorithm in poor imaging conditions [10]. Moreover, it is fast to compute and its optimization
can be carried out by fast gradient-descend-based methods. We initialized each ovuscule within
each sub-image such that the bounding box of the ovuscule coincided with the sub-image mar-
gins. The optimization of the snake energy was then efficiently carried out by a Powell-like
line-search method [11]. Since the initial location of the ovuscule was very close to the cell
contour, we limited the maximum number of iterations to 100 without losing accuracy. We
illustrate the segmentation accuracy of the ovuscule in Figure S11b when segmenting a cell
within a extended watershed sub-image.

Two scenarios were possible depending on eccentricity of the resulting ovuscule after the
optimization process. If the eccentricity e was lower than 0.8, the shape provided by ovuscule
was considered valid, and a refinement process over the ellipse was carried out. On the contrary,
if the eccentricity was higher or equal than 0.8, the ovuscule was not considered valid and a
morphological process was applied to segment the cell. Note that e = 0 corresponds to a
perfect circle, and e = 1 to a degenerated ellipse with no area.

For the first scenario, a preprocessing step was performed prior to the refinement of the
ellipse. We applied a smoothing filter with a Gaussian kernel of variance σ2

s = 42, and we
linearly stretched the image values between 0 and 255. Next, we used a more flexible snake
variant with variable number of control points named E-snake [12]. This snake was built using
exponential splines as basis functions to represent the outline of the shape. While this snake
is versatile enough to provide a good approximation of any closed curve in the plane, its most
important feature is that it perfectly reproduces circular and elliptical shapes. These features
are very appropriate to delineate blob-like objects and allowed for a smooth transition from
the ovuscule. Moreover, it has been shown that due to the properties of the basis functions,
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this snake minimizes the computational load with the properties stated above [13]. The snake
energy was taken to be the addition of the magnitude of the image gradient projected onto the
snake, which corresponds to the snake energy with α = 1 in [12]. We set the number of control
points to M = 5. This number of points was high enough to capture small departures from
an elliptic shape, and small enough to avoid overfitting to the noise. The optimization of the
snake energy was also efficiently carried out by the same Powell-like line-search method than
the ovuscule. Since the initial location of the snake corresponded to the exact same shape as
the ovuscule, the snake was usually very close to the cell contour. Thus, we also limited the
maximum number of iterations to 100. If the snake converged before the 100 iterations, the
final cell outline was taken to be the curve provided by the snake, otherwise, the outline of
the ovuscule was used. We illustrate the segmentation accuracy of the E-snake in Figure S11c
when refining the segmentation of the ovuscule given in Figure S11b.

For the second scenario, that is, when none of the above active contours converged, the
sub-image was thresholded using the IsoData algorithm [14]. This classified each pixel into
two classes: the cells, and the background. Since the binary class that contained the cells
also contained parts of neighboring cells, we labeled all 4-connected components that were
contained within the watershed region, and selected the one with the biggest size. Next, we
applied a morphological dilation with a 4-connected ball as a structuring element. Finally, we
obtained the outline of this region by the Square Tracing Algorithm [15]. The final cell outline
was obtained by downsampling by a factor of 5 the result of the tracing algorithm.

1.9.6 Single-cell background subtraction

The background was subtracted for each cell locally. Fluorescence fluctuations due to mono-
layer issues could be removed, while preserving the relative intensity change for each cell. The
background value was calculated with the segmentation plugin. We tested 4 ways of calculating
the background:

1. Minimal pixel value of the watershed region.

2. Minimal pixel value of the watershed region excluding the cell region.

3. 5th percentile of the pixel distribution of the watershed region

4. 5th percentile of the pixel distribution of the watershed region excluding the cell region.

We decided to use method 1 for its robustness and its ability to deal with slight inaccuracies
in the segmentation. This was particularly important when the fluorescent signal was located
mainly in the cell periphery.
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1.9.7 Single-cell quality filtering.

We implemented a virtual cell-sorting algorithm to include only well-segmented cells, to gate
cell size, and discard dead cells. We implemented a MATLAB script that takes as input the
features from the cell segmentation plugin and defines whether a cell is retained in our analysis
based on the following criteria:

1. cell distance from the image boundaries

2. cell size

3. cell segmentation quality

4. cell intensity (to detect bright dead cells)

The distance to the image boundary was calculated as the minimal vertical or horizontal dis-
tance between the cell center and the boundary. A fixed threshold was manually set to 40
pixels. Because cells that are on the boundaries are generally not well segmented, all the cells
closer than this threshold were discarded. To remove aberrant segmented objects such as big
empty areas, chamber posts or small artifacts, we set a strict threshold on cell size. Namely,
we retained cells that fall within a so-called ”safety gate”, between 300 and 1500 pixels in size
(6.31 to 31.54 µm2). To further improve size gating and remove cells with aberrant size, we
only accepted cells that fit within the 2nd and 98th percentile of the cell size distribution (Fig-
ure S12.a) Segmentation quality was assessed using a support vector machine-based classifier
(SVM) that takes as input a set of quality features calculated during segmentation. A training
set of 24 images (6155 cells) was selected amongst medium to low quality images, covering all
possible errors and inaccuracies. Segmented cells in these images were then manually anno-
tated as good or bad quality. For each of the three segmentation methods (ovuscule, snake and
region-based thresholding), a classifier was trained based on the following features (see Figure
S12.b-d for distribution of the feature values):

1. Cell circularity:

c =
4π · area
perimeter2

(5)

2. External intensity (outside the cell) to internal intensity (within cell) ratio

3. Cell area / watershed area

4. Segmentation quality factor for each method:

• Ovuscule: Minimal energy

• Snake: Minimal energy

• Region-based thresholding: cell area / convex area
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Cells passing the boundary distance check and size gating were used to train the SVMs. For
each segmentation type, a training and a testing set of equal size were randomly chosen from
the annotated set of cells. Having more negatives than positives in the training set allowed us
to optimize the classifiers for specificity (1-false positive rate). Overall, we correctly identified
83.7% of the cells, with a specificity of 92.3% (Figure S12.e-f).

As a final sorting step, we analyzed the cell’s fluorescence intensity distribution in each
image and discarded cells that were outliers. For a distribution of intensities {I1, ..., IN} of
N selected cells, we calculated the average (Ī), the standard deviation (Iσ), the lower quartile
(ILQ), the upper quartile(IUQ) and the inter-quartile range (IIQR). A cell n with intensity In

was tagged as an outlier if it lies beyond the outer fence and deviates from the mean by more
than 3 standard deviations:

1.
In < ILQ − 3 · IIQR , or In > IUQ + 3 · IIQR (6)

2.
In < Ī − 3 · Iσ , or In > Ī + 3 · Iσ (7)

1.9.8 Auto-fluorescence measurement and deconvolution

To measure the distribution of cell auto-fluorescence, we imaged the GFP library parent strain
(BY4741) under the same condition as the GFP strains. A device was bonded to an epoxy-
coated coverslip for 20 min at 80◦C and primed with SD complete (+his). Cells were flown
through the device at 1.5 PSI and forced through the chambers by closing valves V1 and V3
(Figure S1.d). After 12 hours of incubation, we performed time-lapse acquisition of 768 cham-
bers in SD complete medium for 6 hours (18 frames) with the same parameters as previously
described (see section 1.5.4). Each movie was manually annotated for quality to obtain a final
set of 127 movies. Each image sequence was processed by the same image analysis pipeline
described above. For each chamber, we obtained a distribution of fluorescence intensities by
pooling all the frames together, resulting in 4897 ± 467 (mean±s.d.) cells per chamber. We
tested the goodness of fit of four different distributions (normal, gamma, log normal, and logis-
tic) with qq plots (Figure S13a-b) and a Kolmogorov-Smirnov test. The log normal distribution
gave the best fit with an average p-value of 0.28±0.2569 (mean±s.d.), accepting the null hy-
pothesis (good fit) at the 5% confidence in 99 cases (80%). Averaging the 127 fits together,
we obtained a final log normal distribution with the follwing parameters: µ = 4.212±0.019
(mean±s.d.) and σ = 0.131±0.005 (mean±s.d.).

For each GFP strain distribution, we deconvoluted the auto-fluorescence using a proba-
bilistic approach. For a cell i, the fluorescent signal measured si is the sum of the cell auto-
fluorescence bi and the contribution of GFP gi. Therefore, the probability of the measured
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signal S = {si}, considering the auto-fluorescence distribution B = {bi} and the GFP signal
G = {gi}, is the following:

P (S) =

∫ ∞
0

P (g) P (b) δ(s = g + b) dg db (8)

With s=g+b, we get:

P (s) =

∫ s

0

Pg(x) Pb(s− x) dx (9)

Therefore, the probability distribution of the measured signal is the convolution of the
GFP distribution and the auto-fluorescence distribution. The auto-fluorescence distribution was
represented by the log-normal lnN (µ, σ), with the parameters measured above. We used a
gamma distribution with shape parameter k and scale parameter θ to estimate the GFP signal
Pgamma(x, k, θ). The gamma distribution has been shown to be a good approximation of protein
distribution [16, 17]. Therefore, the probability of the measured signal can be re-written as:

P (s, k, θ) =

∫ s

0

Pgamma(x, k, θ) lnN (s− x, µ, σ))dx (10)

The log-likelihood of this probability for the set of measured cells {si} is:

LogL(k, θ) =
∑
i

lnP (si, k, θ) (11)

We maximized the log likelihood using a Markov Chain Monte Carlo (MCMC) method. Gen-
erating the random walk of k and θ over 2000 samples, we obtained the mean and standard
deviation of k and θ, µ (=kθ) and η (=1/k). P (s, k, θ) was calculated using a numerical inte-
gration.

1.9.9 Movie selection and data merging

For the first screen, we obtained the following coverage: 2580 strains with double coverage,
1320 strains with single coverage, 185 with 3x or more coverage, and 74 strains with no cover-
age (see figure S17). We decided to select the best movie, based on the phase contrast image,
for each strain in order to obtain a non-redundant final dataset and to avoid any bias between
strains with double coverage and single coverage. Thus, we decided to select the best movie
for each strain in order to obtain a non-redundant final dataset. To systematically assess movie
quality, we measured four criteria, based on our single-cell quality filter:

1. lowest cell count over 50 for the frame with the fewest cells

2. average ratio of good cells over total cell number

3. number of null frames (frames with no good cells, due to transient loss of focus)
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4. number of low frames (frames with less than 50 good cells)

To apply the selection, we first set a minimal threshold of 50 on the lowest cell count requiring
each frame to contain at least 50 cells (criterion 1). If only one movie fulfilled this condition, it
was defined as the best movie. If more than one movie fulfilled this condition, the best movie
was defined among those as the one with the highest average rate of good cells (criterion 2).
If no movie fulfilled this condition, the best movie was first defined as the one with the lowest
number of null frames (criterion 3), and if necessary as the one with the lowest number of low
frames (criterion 4). Supplementary list 1 shows a summary of the movie selection process,
and the values of the different criteria and the origin of the best movie for each strain.
For the second set of experiments based on a subset of 576 strains, we obtained a higher number
of movies per strain (1 to 4, see figure S18a). Instead of selecting the best movie, we took
advantage of each good quality movie by averaging the data over all the repeats.

1.10 Analysis of protein abundance

1.10.1 Filtering of abundance data

Average abundance values of the cell population were directly calculated from the gamma fit
obtained after the deconvolution of autofluorescence (see section 1.9.8). The minimal possible
value was set to 1, to avoid divisions by zero or very small numbers. We first filtered the time-
course obtained for each strain. We disregarded every strain for which abundance does not go
at any time point above a threshold of 3 times the standard deviation of the autofluorescence
distribution. This allows us to concentrate on strains reaching significantly high abundance
levels. 1383 strains failed to pass this threshold, showing that many proteins are expressed at
very low levels, or simply not expressed. To further improve the quality of our dataset, we
disregarded strains for which abundance values varied more than 2-fold during the six hours
preceding MMS treatment. 168 strains showed unstable behavior in steady conditions. We ob-
tained a final set of 2534 strains, for which we analyzed the dynamics of protein abundance (see
figure 3.a). The same approach was used to filter the data of the second round of experiments.

1.10.2 Fold-change value and significance

Fold-change was calculated in reference to the median of the values before treatment, x̃pre.
Thus, fold-change at each time-point is defined as:

ft =
xt
x̃pre

(12)

We also calculated the significance of the change. The repeatability of fold-change mea-
surement was assessed from 2580 strains, where two measurement repeats are available. Mea-
surement error is calculated for each replicate as the difference of the log2(fold-change). The
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errors distribute equally around zero and were well approximated in a given abundance win-
dow by a Gaussian. We used a running standard deviation (window size = 250 data points),
to approximate the distribution of errors, for a given abundance. Because error decreases with
abundance, the running standard deviation was fitted by a negative exponential, dependent on
the initial abundance level, x̃pre (see figure S15):

σ2(x̃pre) = 14.07 · x̃−1.09pre + 0.25 (13)

Thus, the p-value, pf , of the fold-change, ft, was directly assessed from the initial abun-
dance level x̃pre:

p(ε) = 1− Φ(log2(ft), 0, σ
2(x̃pre)), if log2(ft) > 0

p(ε) = Φ(log2(ft), 0, σ
2(x̃pre)), if log2(ft) ≤ 0 (14)

where Φ(x, 0, σ2) is the cumulative distribution function of a Gaussian centered in 0, with
a standard deviation of σ2. This p-value gives us the significance of the change, in regard to the
estimated distribution of measurement error.

1.10.3 Periodicity of the abundance signal

To measure the periodicity of abundance variation in the pulse experiments, we calculated a p-
value associated with a 6 hour oscillation, using a Fisher test for a specific period, as previously
described [18, 19]. In short, the periodic components of the signal were extracted by Fourier
analysis. The Fisher test for one component is given by the following equation, where Pk is
the power of the kth component of the discrete Fourier transform and P6h is the power for a 6
hours period.

S =
2 · P6h∑
k 6=0,∞ Pk

(15)

The p-value, pper, was inferred directly from the Fisher score:

pper = (1− S)
T
2
−2 (16)

where T is the length of the signal.

1.10.4 Selection of induced proteins

To select for induced proteins, we applied two thresholds: (i) on the fold-change and (ii) on
the significance of the change (see section: 1.10.2). For the experiments with a single stimulus
(MMShigh, MMSlow, Sorbitol), the minimal fold-change was set to 3 and the significance p-
value (pf ) had to be below 0.01 (see figure 3.b, S27b and S29b). For the pulse experiments
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(MMSpulses, UVpulses), a third threshold was set on the significance of the signal periodicity
(see section: 1.10.3). Because protein accumulation is low in response to short stimuli, we
set less stringent threshold for the pulse experiments. However, the analysis of the signal
periodicity allowed to detect protein response with a high sensitivity and specificity. The fold-
change threshold was set to 2, the significance threshold was set to 0.05 and the p-value for
periodicity (pper) had to be below 1e−4 (see figure S28b and S30b).

1.10.5 Analysis of the rate and timing of protein induction

The rate and timing of protein induction was calculated for a set of 124 proteins in MMShigh
(see figure 3.e), for 10 proteins in MMSlow (see figure S25.a-b) and for 24 proteins in MMSpulses
(see figure S25.c-d). Rate and timing values were averaged over the number of repeats available
for each proteins. For each available movie, abundance time-series were first smoothed, using
a smoothing cubic spline (MATLAB function ’csaps’), with a smoothing factor of 0.8. Values
were normalized to the median of the last 6 time-points pre-MMS, ỹpre (last 2 hours). The time
to induction was defined as the first time-point were the abundance variation was significant
and remained significant. To assess significance, we first analyzed protein variability in steady
conditions, by looking at the distribution of the pre-MMS data points (18 data points, 6 hours).
We could find a relationship between the standard deviation and the mean, calculated for the
full set of 4085 movies. Thus defined the intra-experiment error, ν, with the following equation
(see figure S16d+f):

ν(ỹref ) = 0.054 · ỹref + 1.98 (17)

To asses the significance of a change in the signal, in regard to the intra-experiment error, we
used the p-value, p(ν), defined as follows:

pν = 1− Φ(yt, ỹpre, ν(ỹpre)), if yt > ỹpre

pν = Φ(yt, ỹpre, ν(ỹpre)), if yt ≤ ỹpre (18)

where Φ(y, µ, σ2) is the cumulative distribution function of a Gaussian with mean µ and a
standard deviation of σ2. Finally, time to induction was defined as the first significant data
points (pν < 1e−4), for which all the following data points where also significant.
Finally, because protein accumulation was well fitted by a linear function, we defined the rate
as the slope of a linear fit to the 9 data points following induction (3 hours).

1.11 Classification of dynamical subcellular localization patterns

We aimed at robustly detecting changes of cellular location of proteins following MMS expo-
sure.
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1.11.1 Feature extraction

For each cell, we extracted a small rectangular image, surrounding the cell contour. Back-
ground was defined as the 5th percentile of the non-cell pixels and was subtracted from the
image. Contrast was increased by stretching the image in the full 8-bits range (0-255), between
a minimal value, defined as the 5th percentile of the cell pixels, and the maximal pixel value.
To capture the texture of the fluorescent signal, we then calculated a set of 97 features (Table
S3). We first defined a set of 17 histogram-based features and 3 geometrical features, which we
complemented with 7 morphological features [20, 21], 10 granulometry measures [22], and 60
threshold adjacency statistics (TAS) [23].

1.11.2 Supervised Classifier

Our experimental design implies a certain compromise between high-throughput temporal
imaging and the level of detail of subcellular localization analysis. Thus, we would like to
distinguish between very fine localization patterns as usually defined in cell biology and more
objective geometrical shapes. Exploratory analysis indicated that we would be able to robustly
distinguish six shapes. As we show below, our probabilistic classification scheme based on
assigning probabilities of belonging to one shape to each segmented cell gives us satisfactory
spatial resolution both in terms of comparing with previous data [3] and detecting changes in
localization. To train our classifier, we built a training set by manually annotating cells ex-
tracted from 104 images as representatives of one of the following patterns. Examples can be
found in Figure S31A:

• Periphery: A fine outline of the cell contour, generally very well distinguishable. Rep-
resentative strains include membrane proteins uniformly associated with the cell mem-
brane, or in some cases bright dots distributed on the membrane.

• Structure: This shape includes filaments, circles and shape-forming dots that are often
a direct indication for organelle-related localization of the protein.

• Punctate: A number of distinct small dots of sizes smaller than 1 µm (< 20% of the size
of a cell). Typical representatives are actin, lipid particles and peroxisomes.

• Disk: One dominant area of GFP signal contained in the interior of the cell. The diameter
of these objects is at least around 25% of the diameter of a cell. Typical representatives
of this group are strains localized in the nucleus and nucleolus, but also proteins in the
vacuole or vacuolar membrane.

• Corona: Broad ring (donut) around the center that can also be more sickle-shaped. Typ-
ical localizations that have a corona-like appearance are cytoplasm and in some cases
ER.
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• Homogeneous: Cells where the fluorescence is uniformly distributed. In many cases
homogeneous cells are of low intensity reflecting background levels.

As the boundaries between these shapes can be fuzzy, we chose to assign to each cell a proba-
bility vector reflecting the likelihood to belong to each of the six possibilities. To build such a
soft classifier, we first use Reduced-Rank Linear Discriminant analysis (RRLDA) [24] to com-
press the dimensionality of the feature space. This method is similar to Principal Component
Analysis (PCA), but considers the separation into classes as additional information. Instead
of considering the directions in parameter space with the largest variance in the data, RRLDA
maximizes the between-class variance relative to the within-class variance. We use RRLDA
together with our training set and receive a matrix that reduces the dimensions of our fea-
ture set from 97 dimensions to five. We verified that increasing the number of features does
not improve performance. To assign probabilities to each cell, we use the MATLAB function
’classify’, specifying a ’quadratic’ discriminant function, which fits multivariate normal densi-
ties with a separate covariance estimate for each shape. In addition to the probability vector,
the function ’classify’ gives us for each cell an estimate of the probability density of the feature
set of this cell. This is useful for discarding cells that are atypical (e.g., dead cells) or have
ambiguous fluorescence patterns.

1.11.3 Similarity of two collections of cells

To obtain an objective measure on how two populations of cells compare in their localizations,
we modeled each population (image) as a Dirichlet distribution (DD), which is a natural choice
to model a population of probability vectors. We then exploited the property that the Bhat-
tacharyya distance can be easily computed from the parameters of the DD. A straighfroward
extension would be to use for each population a mixture of DDs, but no simple formula exists
to compute the Bhattacharyya distance in that case. However, we tested that the Bhattacharyya
distance computed numerically for three component mixture models actually correlates well
(R2 > 0.8) with that of the simple DDs. Thus we adopted the latter for the automatic analysis
of localization changes.

1.11.4 Validation and performance of the classifier and the distance measurement

Cross validation. We first assessed the performance of the classifier using 10-fold cross-
validation. Left-out data are assigned to just one, the most probable, shape and the procedure
is repeated ten times. The confusion matrix (Figure S33A) indicates that, expectedly, most
misclassifications happen between groups with the most fuzzy boundaries. Note that assigning
hard classes removes information and performance is thus expected to be lower in this assess-
ment.
Comparison of automatic and manual annotation. As another test, we compared manual
against automatic annotation. For this, we randomly picked 200 images for which more than
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60% of the cells were classified to belong to the same group. Those images then were inde-
pendently and blindly annotated by ND and JB. For the 182 images where the two manual
annotations agreed, there were only two cases of disagreement with the automatic annotation
(Figure S33B). In both cases, the difference between automatic and manual annotation can be
traced back to a subjective estimation as part of the manual annotation.
Agreement of replicated recordings. A total of 2741 strains, for which we had double cov-
erage, were picked to assess reproducibility. We selected only those 1034 strains with high
intensity to avoid the problem that two randomly selected strains that contain only background
noise are as well very similar. Those selected strains have an average Bhattacharyya distance of
0.11. In comparison, if we select two of these strains at random, their distance is significantly
higher (Figure S32).
Comparison between Bhattacharyya distance and manual annotation To assure that the
Bhattacharyya distance produces meaningful values, we calculated the Bhattacharyya distance
for the strains before the MMS treatment and at the end of the experiment. JB and ND then
independently and blindly annotated for 110 randomly picked images, if there was a change
between the last two images before the MMS treatment and the last two images of the exper-
iment. For a Bhattacharyya distance of 0.3 or bigger 75.6% of annotations where changes,
while for a Bhattacharyya distance smaller than 0.3, only 25% of strains where annotated as
changes. Details can be found in Figure S32D. Together with the finding that more than 90%
of replicate experiments have a Bhattacharyya distance smaller than 0.2, we can say with high
certainty that our experiment is reliably reproducible.

1.11.5 Comparison with the original yeast GFP library annotations

To test the agreement between the annotations made for the yeast GFP clone collection (UCSF
data set [3]) and our assignments, we compared an automatic classification for those strains that
had a single subcellular location category in the UCSF data set annotation, similar to previous
evaluations of the UCSF data set [25, 26]. We chose those strains with only one annotated
subcellular localization in the UCSF data set to better characterize the conversion between our
shapes and subcellular components. As many of our strains had low intensity levels, we con-
centrated on those subcellular components where we had enough high intensity strains. For
these strains, there is a reasonable relation between the UCSF annotation and our patterns as
Figure S33 shows. Most subcellular localizations showed distinguishable average probability
vectors. As our experiments lack the additional information of DAPI staining and we had sev-
eral groups with only few high intensity representatives, we grouped subcellular localizations
into those groups that where in general distinguishable by eye: cytoplasm, nucleus, nucleolus,
cell periphery, ER, subcellular periphery, filaments and punctate particle. Subcellular periphery
contains vacuole, vacuolar membrane and nuclear periphery. Filament contains microtubule,
mitochondrion, actin and golgi. Punctate particle contains endosomes, spindle pole, bud neck,
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peroxisomes and lipid particles. Comparing the average probability vectors of each of this
group showed a distinct probability density in the six dimensional space. We added an inten-
sity filter to discard strains with low protein expression, for which we could not confidently
extract information. We identified two key parameters for the filtering. Firstly, we observed
that manual classification of cells was not possible for a mean Top5 pixel intensity below ap-
proximately 130 a.u.. Secondly, the homogeneous class represented cells without an observable
pattern. Therefore, we discarded all strains that had more than 50% of cells below the Top5
pixel intensity threshold or classified as homogeneous. We used 5-fold cross-validation to sep-
arate our data into test and training sets. We did not use a common algorithm like nearest
neighbor for our classification, to avoid favoritism of groups with a high number of strains
(e.g., cytoplasm). Instead, we used a three component Dirichlet Mixture Model to calculate
a density function in probability space for each group in our training set. This allowed us to
calculate group membership probabilities for each average probability vector of the test set. We
then assigned each strain of the test set to the group for which its average probability vector had
the highest group membership probability. Varying the thresholds to discard strains (Top5 pixel
intensity, cell probability of pattern homogeneous), we were able to correctly classify between
77% (less stringent thresholds: 989 strains in total) and 90% (more stringent threshold: 637
strains in total) of strains. In the case of the 637 examined strains (Figure S34), around 30%
of the misclassified strains showed a localization-unrelated stress pattern. For five strains there
is a disagreement between our observation and the UCSF annotation, which could be either a
result of cross-contamination or of slightly different growth conditions.

1.11.6 Identification of localization change

Each movie in the first repeat experiment in MMShigh was systematically annotated for local-
ization changes (see section 1.9.4), resulting in a first set of candidate proteins. We refined
this set by performing another round of manual annotation and kept only the changes that were
clearly identified by both annotators. We grouped the proteins in 5 major relocation classes: (i)
transition between nucleus and cytoplasm, (ii) punctate aggregation within the nucleus, (iii) fo-
cal aggregation of proteins inside the nuclear periphery, (iv) focal aggregation or disaggregation
of proteins in the cytoplasm and (v) transition of proteins between the cell membrane and the
cell interior. To minimize the number of missed hits, we also used the Bhattacharyya distance to
identify strains showing localization probability traces that were similar to the changing strains.
This allowed us to find 8 additional strains. Thus, using both manual and quantitative analysis,
we were able to robustly select a set of 119 proteins that we observed to relocate in response to
MMS treatment. In addition, we found 2 strains, where the change was questionable in MMS,
but clearly visible in Sorbitol.
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1.11.7 Temporal analysis of localization changes

To further quantify the localization changes and analyze their rate and timing, we focused on the
geometrical pattern, which is the most relevant to a given transition (i.e., showing the clearest
change). We found that these are (i) disk for transitions between nucleus and cytoplasm, (ii)
punctate for proteins that aggregate and (iii) periphery for everything transiting from or towards
the cell membrane. For each of those cases we fitted a logistic function to approximate the
average probability of the respective relevant pattern, Pt, by minimizing the error between Lt
and Pt. Lt is given by:

Lt =
α

1 + e(−λ(t−δ))
+ P̃Pre (19)

where P̃Pre is the median value of Pt for the last two hours before the stress stimulus.
α, δ and λ are estimations for the rate, the timing and the slope of a localization change. If
the localization change was transient, we fitted the logistic function only for the time until the
change reached its peak. Otherwise, we included the time points during the first hour after the
peak for robustness. Pulse experiments were automatically calculated as transient. In addition,
we manually changed the analysis for those strains with obvious transiency (e.g. Stb3p and
Nmd3p in Sorbitol (Figure S39)).
To filter strains for which the change was not quantified robustly, we set a minimal threshold to
the score TP , given by the following equation:

TP =
Lmax − Lmin√
P 2
σ + Lmax

(20)

TP takes into account the variance of the average probability of the pattern before treatment,
Pσ, and the maximum and minimum values for the logistic fit, Lmax and Lmin. This way, we
were able to sort out strains for which the automatic analysis could not detect a change with
certainty. In addition, we required that strains with at least double coverage showed a change
in more than one repeat. For the second screen, we discarded strains with single coverage.
The threshold of 0.12 was determined empirically. The requirement that all 119 strains in the
first experiment show a localization change was used to optimize sensitivity. As a result, 111
of 119 strains (93.3%) passed this filter. Strains that we manually detected as not changing in
the second set of experiments were used to maximize specificity. Of all 97 strains that were
automatically detected during the four additional experiments of the second screen, we had to
discard only 3 strains (3.1%) as misclassification errors. Thus the choice of our threshold was
adequate.
To make different stresses comparable, we normalized the data of our relevant pattern by a
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modified z-score, Zt, that is closely related to TP :

Zt = sgnman
Pt − P̃Pre√

P 2
σ +max(Lmax, Pt)

(21)

sgnman sets the directionality of the function after our annotated localization change (e.g.,
a protein moving from the nucleus to the cytoplasm has a positive change, although the disk
probability decreases). The observed localization changes in MMShigh are given in figure 4.e.
Figures S37, S38, S39 and S40 summarize the localization changes found in the four additional
stress conditions.

1.12 Computing Hardware and Software

All images were stored and processed on an IBM server with 5 compute nodes and 50 TB of
disk space. Each compute node consisted of an IBM HS21 XM server with two 2.83GHz Xeon
QC E5440 processors and 32 GB of memory. An IBM DS3200 and three EXP3000 storage
expansions housing 24 hard drives of 1 TB capacity and 24, 2 TB hard drives for a total of 50TB
available storage space. The server ran SUSE Linux Enterprise 10.3, OpenPBS 2.3.16, ImageJ
64 bit version 1.42, Java 1.6.0, MATLAB R2009a, mySQL 5.0.26, Perl 5.8.8, and TWiki 5.0.
We wrote custom scripts to automatically submit MATLAB or ImageJ jobs to the OpenPBS
queue manager which allowed us to compute up to 40 positions in parallel, each job running
on one of the 40 cores of the server. To high loads on the system we generally used 7 CPUs
on each of the nodes and 4-6 CPUs on the master node for a total of 32-34 CPUs. All custom
written scripts, ImageJ plugins and macros, and MATLAB programs can be downloaded from
http://cellbase.epfl.ch.
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3 Supplementary tables

Coating

# Layer Resist Speed Time Baking Temp. Baking time

1 sieve channels SU8 - GM1040 3000 rpm 40 s 80°C 10 min

2 chambers SU8 - GM1050 2250 rpm 40 s 80°C 10 min

3 flow AZ9260 1500 rpm 40 s 115°C 6 min

4 control lines SU8 - GM1060 1500 rpm 40 s 100°C 10 min

Exposure

# Layer Power Time Dose Baking Temp. Baking time

1 sieve channels 8 mW/cm2
5 s 40 mJ/cm2 80°C 10 min

2 chambers 8 mW/cm2
8 s 64 mJ/cm2 100°C 10 min

3 flow 10 mW/cm2
5x20 s 1000 mJ/cm2 none none

4 control lines 8 mW/cm2
2x11 s 176 mJ/cm2 100°C 10 min

Development

# Layer Developer Dev. Time Rinser Rinsing time Final height

1 sieve channels none none none none 1.7 µm

2 chambers PGMEA 2x5 min 2-propanol 1 min 3.3 µm

3 flow AZ400 1:3.5 2x115 s DI water 30 s 15 µm

4 control lines PGMEA 2x7 min 2-propanol 1 min 12 µm

Table S1: Summary of the materials and processes used for the microfabrication of the molds.
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1 1056 0.03% MMS 26h 6h 7h 40 92160 1152 795 69.0 3.1E+06 97
+ 3x control A 

2 1056 0.03% MMS 16h 6h 7h 40 92160 1152 943 81.9 5.3E+06 140
+ 3x control A 

3 1056 0.03% MMS 24h 6h 7h 40 92160 1152 1013 87.9 8.3E+06 204
+ 3x control A 

4 1023 0.03% MMS 18h 6h 7h 40 92160 1152 681 59.1 3.7E+06 134
+ 3x control A 

5 1023 0.03% MMS 18h 6h 7h 40 92160 1152 925 80.3 8.3E+06 225
+ 3x control A 

6 1056 0.03% MMS 24h 6h 7h 40 92160 1152 736 63.9 5.5E+06 185
+ 4x control B 

7 1056 0.03% MMS 21h 6h 7h 40 92160 1152 964 83.7 7.5E+06 195
+ 4x control B 

8 1056 0.03% MMS 19h 6h 7h 40 92160 1152 889 77.2 6.6E+06 185
+ 4x control B 

9 3x 299 0.03% MMS 21h 6h 7h 40 92160 1152 580 50.3 3.6E+06 156

8.3E+05 10368 7526 72.6 5.2E+07 169
802 MB

10 2x 576 0.03% MMS 20h 6h 7h 40 92160 1152 1045 90.7 9.7E+06 233

11 2x 576 0.0075% MMS 20h 6h 7h 40 92160 1152 899 78.0 6.4E+06 177

12 2x 576 0.0075% MMS 16h 6h 7h 40 92160 1152 687 59.6 7.8E+06 284

15 2x 576 1M Sorbitol 18h 6h 7h 40 92160 1152 848 73.6 5.6E+06 164

16 2x 576 1M Sorbitol 22h 6h 7h 40 92160 1152 758 65.8 6.9E+06 229

17 2x 576 UV steps 20h 6h 10 min 30min 1h 75 172800 1152 721 62.6 1.1E+07 211
(6h) (6h) (6h)

18 2x 576 UV steps 24h 6h 10 min 30min 1h 75 172800 1152 759 65.9 1.2E+07 209
(6h) (6h) (6h)

19 2x 576 MMS steps 27h 6h 20 min 40 min 1h20 75 172800 1152 751 65.2 1.2E+07 217
(6h) (6h) (6h)

20 2x 576 MMS steps 24h 6h 20 min 40 min 1h20 75 172800 1152 771 66.9 1.0E+07 177
(6h) (6h) (6h)

21 2x 576 0.2M HU 24h 1h 7h 24 55296 1152 1077 93.5 7.2E+06 280

22 2x 576 0.2M HU 24h 1h 7h 24 55296 1152 889 77.2 5.9E+06 276

1.3E+06 12672 9205 72.6 9.5E+07 223.4
1221 MB

Total 2.1E+06 23040 16731 72.6 1.5E+08 199
1.98 TB
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ACE2, SWI4, NDD1, FKH2, MCM1, CDC10, YAP5, SFP1, FHL1, Hog1, SKO1, GPD1, STB5, YAP1, PDR1, CAD1, MSN1, MSN2, CRZ1, 
RPN4, PHO2, GCN4, MSS1, INO4, HAC1, HSF1, MRC1, RAD9, RAD53, ASF1, RNR4, MAG1

MCM1, HOG1, GPD1, CRZ1, CDC10, RNR4, WTM1, YAP1, RPN4, PHO2, ACE2, ENO1, ENO2, YNL134C, HDR1, CLB2, DCS2, UBI4, 
PEX27, SIS1, HSC82, DHH1, WT,  empty well
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y 
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Table S2: List of on chip experiments.
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Table S3: List of features.

# FEATURE TAG DESCRIPTION

Histogram-based features
1 top5vs20 mean(highest 5 pixels) / mean(highest 20 pixels)
2 top5vs50 mean(highest 5 pixels) / mean(highest 50 pixels)
3 top20vs50 mean(highest 20 pixels) / mean(highest 50 pixels)
4 top5vsMed mean(highest 5 pixels) / median
5 top20vsMed mean(highest 20 pixels) / median
6 top50vsMed mean(highest 50 pixels) / median
7 histo1ratio frequency of highest pixel bin (pixel values 240-255) / frequency

of bottom half (pixel values 0-127)
8 histo2ratio frequency of 2nd highest pixel bin (pixel values 224-239) / fre-

quency of bottom half (pixel values 0-127)
9 histo3ratio frequency of 3rd highest pixel bin (pixel values 208-223) / fre-

quency of bottom half (pixel values 0-127)
10 histoHLratio frequency of top half (pixel values 128-255) / frequency of bottom

half (pixel values 0-127)
11 bin1vs2 93.75th percentile / 87.5th percentile
12 bin1vs3 93.75th percentile / 81.25th percentile
13 bin2vs3 87.5th percentile / 81.25th percentile
14 bin1vsMed 93.75th percentile / median
15 bin2vsMed 87.5th percentile / median
16 bin3vsMed 81.25th percentile / median
17 binHLratio Upper quartile / lower quartile

Spatial distribution features
18 central signal mean(P (x ≤ xi, y ≤ yi)) / total mean, (xi = cos(t)·3·cell

width/12, yi = sin(t)·3·cell height/12)
19 middle signal mean(P (xi < x ≤ xm, yi < y ≤ ym)) / total mean, (xm =

cos(t)·5·cell width/12, ym = sin(t)·3·cell height/12)
20 boundary signal mean(P (xm < x ≤ xb, ym < y ≤ yb)) / total mean, (xb =

cos(t)·7·cell width/12, yb = sin(t)·7·cell height/12)

Morphological features [20, 21]
21 convex hull

overlap
SLF 1.14, Convex hull area / cell area (with binary threshold at
0.5·Pmax)

22 convex hull
roundness

SLF 1.15, The roundness of the convex hull (with binary threshold
at 0.5·Pmax)
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23 edges fraction SLF 1.9, The fraction of the nonzero pixels that are along an edge
(with binary threshold at 0.5·Pmax)

24 edges homogeneity SLF1.10, Measure of edge gradient intensity homogeneity
25 edges direction

homogeneity1
SLF1.11, Measure of edge direction homogeneity 1

26 edges direction
homogeneity2

SLF1.12, Measure of edge direction homogeneity 2

27 edges direction
difference

SLF1.13, Measure of edge direction difference

Granulometries [22]
28 gray open 1 mean intensity of (I − IOd1), IOdr = grayscale opening of image

I with disk of radius r
29 gray open 2 mean intensity of (IOd1 − IOd2)

30 gray open 4 mean intensity of (IOd2 − IOd4)

31 gray open 7 mean intensity of (IOd4 − IOd7)

32 gray open 12 mean intensity of (IOd7 − IOd12)

33 gray close 1 mean intensity of (I − ICd1), ICdr = grayscale closing of image
I with disk of radius r

34 gray close 2 mean intensity of (ICd1 − ICd2)

35 gray close 4 mean intensity of (ICd2 − ICd4)

36 gray close 7 mean intensity of (ICd4 − ICd7)

37 gray close 12 mean intensity of (ICd7 − ICd12)

Threashold adjacencies statistics (TAS) [23]
38-46 tas T35 pk Threshold at 0.35·Pmax, pixel count with k neighbor above thresh-

old / pixel count above threshold
47 tas T35 binRatio Threshold at 0.35·Pmax, pixel count above threshold / total pixel

count
48-56 tas T50 pk Threshold at 0.5·Pmax, pixel count with k neighbor above thresh-

old / pixel count above threshold
57 tas T50 binRatio Threshold at 0.5·Pmax, pixel count above threshold / total pixel

count
58-67 tas T65 pk Threshold at 0.65·Pmax, pixel count with k neighbor above thresh-

old / pixel count above threshold
67 tas T65 binRatio Threshold at 0.65·Pmax, pixel count above threshold / total pixel

count

Threashold adjacencies statistics (TAS) - inverted image
68-97 tas inv Txx pk Same as 38-67with inverted image, Pinv(x, y) = Pmax-P (x, y)
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4 Supplementary figures
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a.  chamber cross-section b.  chip priming sequence

c.  device aligned to cell spots

 

d. cell growth

1.

2.

3.

4.

Initial growth
Chamber 
outlet ON

Spotted
cells

Growing
cells

Cross-contamination
prevented

Imaging Button ON

Monolayer of 
growing cells

Leaving
cells

Description Button

Chamber with postsFlow
channel Sieve

channel

Flow
channel

Chamber outlet

15 μm
5 μm1.7 μm

15 μm

Flow
outlet

V1

V2 V3

V4

 

200 µm200 µm

Figure S1: Additional description of the microfluidic device. a. Chamber cross-section. Schematic
shows the design of the flow layer (in blue) and the control layer (in red). There are three different
structures in the flow layer: (i) flow channels (13 µm), (ii) chambers (5 µm), and (iii) sieve channels
(1.5 µm). The control layer has two features: (i) a chamber button, which allows to pressurize the
chamber roof and thus maintain cells in a monolayer, and (ii) a chamber outlet valve. The middle
schematic shows the cross-section during the initial phase of the experiment when cells initiate growth.
The chamber outlet is closed to prevent chamber to chamber cross-contamination. The bottom schematic
shows a cross-section during imaging. The chamber outlet valve has been released to let the cells exit
the chamber while the button is pressurized to prevent the cells from growing in the vertical dimension.
b. Simplified schematic of the sequence of valve opening/closing, necessary for priming the array with
medium. Full flow lines are shown in blue and empty flow lines in white. Arrows show the direction
of flow. Pressurized control lines are drawn in dark red and released control lines in light red. Crosses
indicate closed valves. c. Brightfield micrograph of 8 chambers taken after cell spotting and chip
alignment. d. Brightfield micrograph of 8 chambers during cell growth. Each chamber is filled with
cells. A red and a orange dye was used to stain the chamber outlet and chamber button, respectively. A
blue dye was added to the medium to highlight the flow channels.
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Figure S2: Lamp calibration and stability test. a. Calibration curve for the Intensilight showing the
lamp power for different neutral density (ND) filters. b. Calibration curve for the LED light source
showing the power for different input percentage. c. Power variation (in percent) of the different light
source over time.



Supplementary information 42 Dénervaud et al.

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 x

y

POS 205
Left Right

Time
delay
(min) Position

50

100

150

200

250

300

350

400

450

500

550

0

2

4

6

8

10

12

14

16

1

Figure S3: Microscope path. Schematic representing the array of positions visited by the microscope
during an acquisition iteration. The path, as shown by the arrows and the color gradient, is optimized to
reduce the traveling distance of the microscope between positions. The color gradient shows to the time
delay from the first position. Each position is located between two chambers, as shown on the inset for
position 205.
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a b
 

20 µm
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Figure S4: Cell arraying. a. Assembly of 7 by 7 images covering the full 24x48 spots of a yeast cell
array. b. High resolution micrograph of a single cell spot containing hundreds of cells.
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Figure S5: Characterization of medium switch. a. Time-series of images showing the diffusion of
a fluorescent dye (sulphorhodamine 101), after medium was switched at 0s. The red rectangle defines
the area used to calculate the fluorescence intensity. b. Normalized fluorescence values over time for
5 pairs of chambers, following a medium switch at t=0s. The red line represents the 95% equilibration
threshold, used to define equilibration time. c. Time to 95% equilibrium for different set of recordings,
from different repeats, different chamber subsets (192 chamber pairs in each subset) and for another
chip, recorded on a different day. Equilibration times vary only slightly, ranging between 4 and 5 min. d.
Comparison of equilibration time between sulphorhodamine and 10kDa dextran conjugated rhodamine
B isocyanate. e. Equilibration time with or without cells in the chambers.
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Figure S6: Effect of MMS concentration on cell growth. Titration of MMS and its effect on cell
growth.
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Figure S7: On-chip doubling time. By tracking individual cells and their displacement we estimated
an average doubling time of 129 minutes, which compares well to bulk doubling time measurements of
120 minutes. Grey data points are individual single cell results (n ∼ 15,000). Green date points show
the moving average.
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Figure S8: (a) Image analysis process. (b) Cell segmentation process. Example of a cell contour
determined by an ovuscule (a snake with three nodes) and by an E-snake (with unlimited number of
nodes). (c) Summary of cell segmentation quality. (d) The six geometrical patterns used to describe
protein localization. (e) A protein localized to the nucleus (Hhf1p) is mainly described by the disk
pattern, proteins that were annotated as nucleolus (Utp10) have a punctate component. (f) Distribution
of strain averages, annotated with subcellular localizations as defined by Huh et al. [3], showing the
relation between geometrical patterns and biological subcellular localizations. (g) Example of a time-
lapse sequence for Rnr4-GFP and the data returned by our image analysis pipeline.
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Figure S9: Illustration of the chamber separation process. a. Flow chart showing the steps of the
chamber identification process. b. Illustration of the Hough transform, calculated to determine and
correct image rotation. c. Alignment of the chamber boundaries to a template to determine the x-y shift
and separate the left and right chambers into two distinct set of images.
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image sequence temporal stdev non-moving mask

Figure S10: Cell segmentation - Detection of the non-moving region. Illustration of the process flow
to identify chamber structures, such as post, or other non-moving objects, such as cell carcasses. Non-
moving regions have low temporal variation and thus can be identified by thresholding the temporal
standard deviation of the image sequence.
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a. Watershed segmentation

b. Ovuscule segmentation

 

c. E-snake segmentation 

original image watersheds overlayed dams

Figure S11: Cell segmentation - Watershed, ovuscule, E-snake. a. Process flow of watershed seg-
mentation. b. Example of a cell contour determined by an ovuscule (a snake with three nodes) and c. by
a snake with unlimited number of nodes
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a. Area gating b. Ovuscule (n=452)

c. Snake (n=1665) d. Region-based (n=1051)
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Figure S12: Cell gating and sorting. a. Histogram illustrating area gating. The selection range is
determined by the intersection of the safety gate and the distribution gate. b-d. Boxplots showing the
distribution of the four features used to discriminate good cells from bad cells for each of the three seg-
mentation methods (ovuscule, snake and region-based). e. Training of the classifier illustrated with an
example. Predicted classification (central image) is compared to manual annotation (left image) to de-
termine true and false classification (right image). f. Overall confusion matrix for the three segmentation
methods
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Figure S13: Auto-fluorescence deconvolution. a. Distribution of auto-fluorescence values for the wild-
type strain BY4741 and the corresponding fits of four different distribution models. b. Quantile-quantile
plots for the fits of the four different distribution models shown in a. The log normal distribution fits
best. c. Comparison of single-cell distribution for the wild-type strain BY4741 (n=621961 cells) and a
representative set of cells from the GFP library (n=816’953 cells). d-f. Examples of auto-fluorescence
deconvolution from three different GFP signals of low (d), average (e) and high (f) intensities. Blue
bars represent the distribution of the measured signal. The red curve shows the distribution of the auto-
fluorescence. The green curve is the distribution of the GFP contribution. The blue curve represents the
convolution of the red and green signal that best fits the measured signal.
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Figure S15: Fold-change error assessment. Log fold-change error is shown against abundance for
2580 strains for which two repeats were available (in absolute value). Fold-change is defined as the
abundance value after 6 hours of MMS treatment relative to the steady-state baseline. The green line
shows a fit through a running standard deviation of the data. Error increases as abundance decreases.
This relationship is used to infer the significance of fold-change measurements.
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Figure S16: Repeatability and error estimation. a. Correlation of repeat measurements from two
different experiments. Data points show the average intensity of 2580 strains in (SD−his). The following
correlation coefficient are given: R2 of the linear data (R2

lin),R2 for log-transform data (R2
log), Spearman

correlation coefficient(Rs). b. Same comparison for the standard deviation of single-cell distribution of
the same 2580 strains. c. R2

log against time at steady-state and during MMS treatment (0.03%) for
2580 repeat data points. Blue line represents the average intensity correlation as shown in a. Green
line is the standard deviation correlation as shown in b. Red line shows the correlation coefficient after
auto-fluorescence deconvolution, as shown in the main text. d. Relative abundance measurement error
against absolute abundance. The blue line shows a fit through the data. Relative error increases as
abundance gets smaller. A 50% error threshold is given as indication. e. Average abundance variability
at steady-state was used to define the measurement error within a time-serie. Relative error is given
against absolute abundance. The red line shows a fit through the data. A 20% error threshold is given
as indication. f. Comparison of the relative error in d (inter-variability) and e (intra-variability). Protein
abundance is given in copies per cell, using the relationship found with other datasets, where absolute
protein amount was calculated (see main text figure 2.d)
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Figure S17: First screen coverage. High quality movie coverage of the 4159 strains.
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Figure S18: Second screen coverage and repeatability. a. High quality movie coverage of the 576
strains present in the second screen is shown for the four different experimental conditions tested (low
MMS concentration, osmotic shock with sorbitol, pulses of UV irradiation and pulses of MMS ex-
posure). b. Correlation of repeat measurements of average strain intensity for the four experimental
conditions.
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Figure S19: Second screen experiment to experiment repeatability. Cross-correlation of average
intensity measurements at steady-state for the four different experimental conditions and for the data of
the first screen (0.03% MMS).
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Figure S20: Correlation of microscopy measurement with FACS and TAP-western measurement.
a. Correlation of abundance values from our data with FACS data [29]. b. Correlation of noise values
from our data with FACS data. c. Correlation of abundance values from our data with TAP-western
data [28].
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Figure S22: Assessment of cell arrest following MMS treatment. a. Assessment of cell division
events following MMS treatment. 8 transient bud neck markers were used to count the number of cell
division events. The number of cell division events decreases drastically 1 hour after MMS treatment. b.
Median abundance variation and median area variation is shown for 2534 strains. Abundance increases
directly after MMS treatment, whereas cell size increases with a 1.5 hour delay.
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Figure S23: Correlation of protein fold-change with mRNA fold-change. 2455 strains that reach
abundance level significantly higher than the auto-fluorescence are represented. mRNA data was taken
from Gasch et al. [31]. The green line shows the correlation for down-regulated genes and the red line
for up-regulated genes. The gray scale shows the significance of the protein fold-change.
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Figure S24: Dynamics of mRNA levels after MMS treatment. mRNA data was taken from Gasch
et al. [31]. Data was available for 113 genes of the 124 for which we observed protein induction. a.
Time-course of gene expression over 2 hours of MMS treatment. b. Comparison of protein and mRNA
induction time. mRNA induction times were defined as the first time-point, after data interpolation,
when mRNA fold-change is above 0.25.
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Figure S25: Rate and timing of protein induction for different MMS conditions. Correlation of
protein induction rate (a) and time (b) for proteins induced in MMSlow and MMShigh. Protein induction
rate (c) and time (d) for the second stimulus in MMS (40 min exposure) compare to MMShigh. Error
bars represent the standard error of the mean (s.e.m). The number of repeats for each data points varies
between 2 and 4.
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Figure S26: Protein abundance dynamics for HU treatment. a. Mean abundance variation against
time is shown for 439 strains. Strains that never reach higher abundance levels from the autofluorescence
are not shown. For each strain, abundance is normalized to median values within 1 hour before HU
treatment. The orange line shows the median of all abundance traces. The red line represents a 3-fold
increase threshold and the blue line a 3-fold decrease threshold. The gray scale shows the significance
of the fold-change for each protein. b. Abundance fold-change against initial pre-HU abundance. The
dashed lines show a threshold of significance (p = 0.01). The continuous line show a 3-fold change
threshold. 18 proteins are above the red and bold line (p-value < 0.01 and fold-change > 3). c. Time-
series as in a for those 18 proteins. The orange line shows the median of all traces. d. Clustergram of
the 18 up-regulated proteins. MMS treatment starts after the first time point.
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Figure S27: Protein abundance dynamics for low MMS treatment. a. Mean abundance variation
against time is shown for 439 strains. Strains that never reach higher abundance levels from the aut-
ofluorescence are not shown. For each strain, abundance is normalized to median values within 1 hour
before MMS treatment. The orange line shows the median of all abundance traces. The red line rep-
resents a 3-fold increase threshold and the blue line a 3-fold decrease threshold. The gray scale shows
the significance of the fold-change for each protein. b. Abundance fold-change against initial pre-MMS
abundance. The dashed lines show a threshold of significance (p = 0.01). The continuous line show a
3-fold change threshold. 13 proteins are above the red and bold line (p-value < 0.01 and fold-change
> 3). c. Time-series as in a for those 13 proteins. The orange line shows the median of all traces. d.
Clustergram of the 13 up-regulated proteins. MMS treatment starts after the first time point.
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Figure S28: Protein abundance dynamics for MMS pulses. a. Mean abundance variation against time
is shown for 445 strains. Strains that never reach higher abundance levels from the autofluorescence
are not shown. For each strain, abundance is normalized to median value within 1 hour before MMS
treatment, which starts at t=0 and lasts 20 min. Following MMs exposure last 40min and 1h30. The
orange line shows the median of all traces. The red line represents a 3-fold increase threshold and the
blue line a 3-fold decrease threshold. b. Abundance fold-change against oscillation significance. Fold-
change is defined as the maximal fold-change (increase or decrease) at any time after t=0. Oscillation
significance represents the enrichment of a 6 hour period in the fourrier spectrum of each time-course.
The red and blue line show a 3-fold change threshold. The vertical gray line shows a 6 hour oscillation
significance threshold of 1e-4. Dark data points have a significant abundance fold-change (p-value <
0.05). 32 proteins have a significance response to oscillating stimulus (p-value < 1e-4) and a significant
fold-change (p-value < 0.05 and fold-change > 2). c. Time-series as in a for those 32 proteins. The
orange line shows the median of all traces. d. Clustergram of the 32 pulse-sensitive proteins. Time line
shows the timing and duration of the MMS pulses.
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Figure S29: Protein abundance dynamics for sorbitol treatment. a. Mean abundance variation
against time is shown for 547 strains. Strains that never reach higher abundance levels from the aut-
ofluorescence are not shown. For each strain, abundance is normalized to median value within 1 hour
before Sorbitol treatment, which starts at t=0. The orange line shows the median of all traces. The red
line represents a 3-fold increase threshold and the blue line a 3-fold decrease threshold. The gray scale
shows the significance of the fold-change for each protein. b. Abundance fold-change against initial
pre-sorbitol abundance. AFold-change is defined as the maximal fold-change at any time after t=0. The
dashed lines show a threshold of significance (p = 0.01). The continuous line show a 3-fold change
threshold. 25 proteins are above the red and bold line (p-value < 0.01 and fold-change > 3). c. Time-
series as in a for those 25 proteins. The orange line shows the median of all traces. d. Clustergram of
the 25 up-regulated proteins. Sorbitol treatment starts after the first time point and last 6.5 hours.



Supplementary information 69 Dénervaud et al.

a b c

d +UV +UV +UV

Rnr3
Hug1
Hsp12
Hsp26
Igd1

Sol4
Ubi4
Hxk1
Uga1
Stf1

Gpd1
Rdl1
Mrp8
Mcm7
Yhb1
Ycp4
Cot1
Tip1
Oye2
Pho80

−4 0 4 8 12 16
−2

0

2

4

6

−4 0 4 8 12 16
−2

0

2

4

6

0 5 10 15 20
−2

−1

0

1

2

3

4

5

6 +UV +UV +UV

time (hours)

ab
un

da
nc

e 
fo

ld
-c

ha
ng

e 
lo

g 2
(a

.u
.)

time (hours)

time (hours)

ab
un

da
nc

e 
fo

ld
-c

ha
ng

e 
lo

g 2
(a

.u
.)

oscillation significance (−log10(p−value))

ab
un

da
nc

e 
fo

ld
-c

ha
ng

e 
lo

g 2
(a

.u
.)

Yel047c
Pnc1
Ybr085c−a
Tps2
Hor7
Nth1
Hsp104
Ybr241c
Hsp42
Hsp31
Gad1

Bmh2
Snq2

0 4 8 12 16

<-3 -1.5 0 1.5 >3
abundance fold-change log2(a.u.)

Figure S30: Protein abundance dynamics for pulsing UV irradiation. a. Mean abundance variation
against time is shown for 507 strains. Strains that never reach higher abundance levels from the autoflu-
orescence are not shown. For each strain, abundance is normalized to median value within 1 hour before
the first UV irradiation, which starts at t=0 and last 10 min. Following irradiation last 30min and 1 hour.
The orange line shows the median of all traces. The red line represents a 3-fold increase threshold and the
blue line a 3-fold decrease threshold. b. Abundance fold-change against oscillation significance. Fold-
change is defined as the maximal fold-change (increase or decrease) at any time after t=0. Oscillation
significance represents the enrichment of a 6 hour period in the fourrier spectrum of each time-course.
The red and blue line show a 3-fold change threshold. The vertical gray line shows a 6 hour oscillation
significance threshold of 1e-4. Dark data points have a significant abundance fold-change (p-value <
0.05). 33 proteins have a significance response to oscillating stimulus (p-value < 1e-4) and a significant
fold-change (p-value < 0.05 and fold-change > 2). c. Time-series as in a for those 33 proteins. The
orange line shows the median of all traces. d. Clustergram of the 33 pulse-sensitive proteins. Time line
shows the timing and duration of the UV pulses.
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Figure S31: Single cell bright field and epifluorescence examples for our geometrical shape classes.
Each image has a size of 5.8 micrometers. A manually annotated set containing 6982 cells was used to
build a classifier.
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Figure S32: Validation of the classifier. (a) Confusion matrix to compare the manual annotation of
single cells with the predicted geometrical shape using 10-fold cross validation. (b) Comparison of
automatic and manual annotation: 200 images for which the classifier found one characteristic group,
where manually and independently predicted by ND and JB. (c) Agreement of replicated recordings:
Histogram of the Bhattacharyya distance of high intensity strains with double coverage, in comparison
to the distance of randomly selected strains. (d) Relation between Bhattacharyya distance and the visual
perception of a change between the images.
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Figure S33: Comparison with the UCSF data. Evaluation of strains with high intensity and well
defined location patterns. The strains are clustered within their groups, as defined by Huh et al. [3] . (a)
Average probability of the six geometrical classes for each strain. White means 0% probability, black
100%.(b) Heat map that shows the Bhattacharyya distances between the strains. The distance goes from
zero (white) to one or above (black).
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Figure S34: Comparison with the UCSF data using cross-validation. This table shows the number
of strains in each category that were classified by our algorithm (columns) and by Huh et al. [3] (rows).
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Figure S35: Mcm timing analysis. (a) Average disk probability for Mcm proteins that translocate from
the nucleus to the cytoplasm. The dashed line represents the average and the transparent area shows the
error (±s.d.). Traces were fitted with a sigmoid (solid line). The vertical dashed lines show the transition
times and their corresponding error bars (±s.d.).
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Figure S36: Protein localization for HU treatment. a. Localization change is shown for proteins in
response to 0.2M HU. The red line shows the minimal threshold to select proteins that change. The
orange line shows the median. b. Localization change is shown for the proteins above the threshold. c.
Same data as above, shown in a heatmap, ordered by timing. The green bar represents the time of the
change. The color code in (b) and (c) indicates the different transition classes, given by the legend.



Supplementary information 76 Dénervaud et al.

a b

c + 0.0075% MMS

time (hours)0 2 4 6

<-0.3 -0.15 0 0.15 >0.3
localization change score(a.u.) estimated transition half-time

Transition from cytoplasm to nucleus
Transition from nucleus to cytoplasm
Transition from nucleus to single spot
Aggregation inside the nuclear periphery

Formation of punctate protein aggregations
Decomposition of punctate protein aggregations
Transition away from the cell periphery
Transition towards the cell periphery

Bmh1

Edc2

Mcm4

Rnr4

Mcm6

Wtm1

Hhf1

Nup145

Nsp1

Ndc1

Nup85

Nup133

Hsp104

Yhb1
Hsp42

Edc3
Lap4

Glt1

Acc1

Bap2

−4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

time (hours)

ad
ju

st
ed

 lo
ca

liz
at

io
n 

ch
an

ge
 (a

.u
.)

−4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1

time (hours)

ad
ju

st
ed

 lo
ca

liz
at

io
n 

ch
an

ge
 (a

.u
.)

+ 0.0075% MMS + 0.0075% MMS

Figure S37: Protein localization for low MMS treatment. a. Localization change is shown for proteins
in response to 0.0075% MMS. The red line shows the minimal threshold to select proteins that change.
The orange line shows the median. b. Localization change is shown for the proteins above the threshold.
c. Same data as above, shown in a heatmap, ordered by timing. The green bar represents the time of the
change. The color code in (b) and (c) indicates the different transition classes, given by the legend.
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Figure S38: Protein localization for MMS pulses. a. Localization change is shown for proteins in
response MMS pulses of 20min, 40min and 1h20. The red line shows the minimal threshold to select
proteins that change. The orange line shows the median. b. Localization change is shown for the
proteins above the threshold. c. Same data as above, shown in a heatmap, ordered by timing. The green
bar represents the time of the change. The color code in (b) and (c) indicates the different transition
classes, given by the legend.
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Figure S39: Protein localization for sorbitol treatment. a. Localization change is shown for proteins
in response to 1M sorbitol. The red line shows the minimal threshold to select proteins that change. The
orange line shows the median. b. Localization change is shown for the proteins above the threshold. c.
Same data as above, shown in a heatmap, ordered by timing. The green bar represents the time of the
change. The color code in (b) and (c) indicates the different transition classes, given by the legend.
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Figure S40: Protein localization for pulsing UV irradiation. a. Localization change is shown for
proteins in response UV pulses of 10min, 30min and 1h. The red line shows the minimal threshold to
select proteins that change. The orange line shows the median. b. Localization change is shown for the
proteins above the threshold. c. Same data as above, shown in a heatmap, ordered by timing. The green
bar represents the time of the change. The color code in (b) and (c) indicates the different transition
classes, given by the legend.
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Figure S41: Comparison of abundance and localization dynamics. Abundance fold-change (top)
and localization change (bottom) are given as a function of time for every protein that responded in (a)
MMS high, (b) hyperosmotic shock, (c) and UV irradiation. The gray areas represent the duration of the
stimuli. The three UV pulses lasted 10, 30, and 60 min.
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Figure S42: Concomitant abundance and localization changes. Abundance (solid line) and localiza-
tion (dashed line) changes of Bmh1 and Bmh2 in response to (a) MMS treatment and (b) UV pulses.
Abundance and localization change of Hsp42p and Hsp104p in response to (c) MMS treatment and (d)
UV pulses.
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Figure S43: Comparison of proteins defined as changing in localization in our dataset and by
Tkach et al. [30]


