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1. Appendix 1: Different definitions of cooperativity

The MWC model features several interesting features in its most general form: i) indirect regulation
and ii) cooperativity. There are several ways of thinking about cooperativity. [1, 2] In this section we
examine three of definitions of cooperativity and find that all of them yield the same two conclusions.
First, the MWC molecule with only one binding site or with equal ligand binding affinities in the two
states does not yield cooperative interactions. Second, all other MWC molecules exhibit signs of positive
cooperativity.

1.1. Ratio of probabilities of ligand binding

A common definition of cooperativity is that the binding of one ligand should encourage or discourage
the binding of the next. This definition excludes the one-site MWC molecule from exhibiting signs of
cooperativity. Mathematically, this involves comparing the probability of the (k + 1)th ligand binding
given that k ligands are bound to the probability that the kth ligand binds given that k − 1 ligands are
bound. [2] Label the sites of an n-site receptor as 1 through n. Let P (k + 1|k) denote the probability
that a (k + 1)th ligand binds to site k + 1 given that sites 1 through k are bound. By definition, this
conditional probability can be calculated from

P (k + 1|k) =
P (sites 1 to k+1 bound)

P (sites 1 to k bound) + P (sites 1 to k+1 bound)
. (1)

We claim that there is positive cooperativity when P (k+ 1|k) > P (k|k− 1), negative cooperativity when
P (k + 1|k) < P (k|k − 1), and no cooperativity in either direction if P (k + 1|k) = P (k|k − 1).

To give an intuition as to why this definition works, we will start by analyzing an Adair-like [3] two-
site receptor. The two binding sites have identical energies of ligand binding εb, but there is a direct
energetic interaction ∆ε between the two ligand binding sites when both sites are bound. This latter
constraint embodies the idea of direct regulation. Using the statistical mechanics formalism in Section 2
of the main text, one can show that

P (1|0) =
P (site one bound)

P (site one bound) + P (no sites bound)
=

c
c0
e−β(εb−µ0)

1 + c
c0
e−β(εb−µ0)

(2)

and

P (2|1) =
P (both sites bound)

P (both sites bound) + P (site one bound)
=

e−β∆ε
(
c
c0
e−β(εb−µ0)

)2

c
c0
e−β(εb−µ0) + e−β∆ε

(
c
c0
e−β(εb−µ0)

)2 (3)

Therefore, the probability that a second ligand binds relative to the probability that the first ligand binds
is

P (2|1)

P (1|0)
= e−β∆ε, (4)
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which is greater than 1 if ∆ε < 0 and less than 1 if ∆ε > 0. This result agrees with our intuition
that an energetically favorable interaction, ∆ε < 0, between two bound ligands should yield positive
cooperativity, encouraging the second ligand to bind. Similarly, an energetically unfavorable interaction,
∆ε > 0, between two bound ligands should yield negative cooperativity, dissuading the second ligand
from binding.

We can do a similar calculation for the n-site MWC molecule, and so we need to calculate

P (k + 1|k) =
P (sites 1 to k+1 bound)

P (sites 1 to k+1 bound) + P (sites 1 to k bound)
. (5)

As discussed in Section 2, the probability of a particular state is proportional to its weight, e−β(Estate−nstateµ),
where µ = µ0 +kBT ln c

c0
and nstate is the number of bound ligands. When all binding sites are identical,

Estate =

{
εA + nstate ε

(A)
b receptor is active

εI + nstate ε
(I)
b receptor is inactive

. (6)

The normalization constant Z is the sum of these weights for all of the states, which can be done
analytically using the binomial series trick (1 + b)n =

∑n
k=0

(
n
k

)
bk,

Z = e−βεA
n∑
k=0

(
n

k

)(
c

c0
e−β(ε

(A)
b −µ0)

)k
+ e−βεI

n∑
k=0

(
n

k

)(
c

c0
e−β(ε

(I)
b −µ0)

)k
(7)

= e−βεA
(

1 +
c

c0
e−β(ε

(A)
b −µ0)

)n
+ e−βεI

(
1 +

c

c0
e−β(ε

(I)
b −µ0)

)n
(8)

Thus the probability of sites 1 to k being bound is

P (sites 1 to k bound) =
1

Z

(
e−βεA

(
c

c0
e−β(ε

(A)
b −µ0)

)k
+ e−βεI

(
c

c0
e−β(ε

(I)
b −µ0)

)k)
(9)

At this point, it is convenient to switch to thermodynamic notation, in which KA = c0e
β(ε

(A)
b −µ0),

KI = c0e
β(ε

(I)
b −µ0), and L = e−β(εI−εA). This gives a normalization constant

Z =

(
1 +

c

KA

)n
+ L

(
1 +

c

KI

)n
(10)

and a probability of the state in which sites 1 to k are bound as

P (sites 1 to k bound) =
1

Z

((
c

KA

)k
+ L

(
c

KI

)k)
. (11)

Therefore, we can calculate the conditional probability P (k + 1|k) and simplify, resulting in

P (k + 1|k) =
P (sites 1 to k+1 bound)

P (sites 1 to k+1 bound) + P (sites 1 to k bound)
(12)

=
( c
KA

)k+1 + L( c
KI

)k+1

( c
KA

)k+1 + L( c
KI

)k+1 + ( c
KA

)k + L( c
KI

)k
(13)

=
c/KA

c/KA + 1+L(KA/KI)k

1+L(KA/KI)k+1

. (14)
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Similarly, replacing k with k − 1,

P (k|k − 1) =
c/KA

c/KA + 1+L(KA/KI)k−1

1+L(KA/KI)k

. (15)

The ratio of the two is

P (k + 1|k)

P (k|k − 1)
=

(
c

KA
+

1 + L(KA/KI)
k−1

1 + L(KA/KI)k

)/( c

KA
+

1 + L(KA/KI)
k

1 + L(KA/KI)k+1

)
. (16)

If KA = KI , i.e. the inactive and active states of the receptor have similar affinity for the ligand, then
this ratio is always 1, indicating no cooperativity. If KA 6= KI , then this ratio will be different from 1,
regardless of k. If KA 6= KI , then one can show that

1 + L(KA/KI)
k−1

1 + L(KA/KI)k
>

1 + L(KA/KI)
k

1 + L(KA/KI)k+1
, (17)

implying that there is positive cooperativity.

1.2. Sigmoidal activity curves or binding curves

Cooperativity is related to the idea that the binding curve or activity curve are sigmoidal. [4] This
graphical definition can only apply to plots in which the scale of concentrations is linear rather than
logarithmic, since otherwise non-cooperative systems appear cooperative on log-log plots. (See Figure 1
of the main text.) A sigmoid curve y(x) is often defined using a differential equation,

dy

dx
= c1y (1− c2y) (18)

with a boundary condition, e.g. y(0) = c3. The solution to this differential equation is

y(x) =
1

c2 +
(

1
c3
− c2

)
e−c1x

, (19)

which is the typical form of the sigmoidal function. In the context of cooperative binding curves, the
importance of the sigmoid function is that its first derivative given in eqn. 18 increases with y until y = 1

c2
and then decreases for larger y. Equivalently, the sigmoid function’s second derivative switches sign. The
MWC activity curve given by

pactive(c) =

(
1 + c

KA

)n
(

1 + c
KA

)n
+ L

(
1 + c

KI

)n (20)

sometimes also has the property that the second derivative of pactive(c) switches signs at some finite,
non-negative concentration. The activity curve’s first derivative (also known as the static gain G0) is

dpactive
dc

=
n(KI −KA)

KA KI


(

1 + c
KA

)n−1

(
1 + c

KA

)n
+ L

(
1 + c

KI

)n

 L

(
1 + c

KI

)n−1

(
1 + c

KA

)n
+ L

(
1 + c

KI

)n
 . (21)

When n = 1, the static gain is monotonically decreasing with increasing c ≥ 0. However, when n > 1,
G0(c) increases and then decreases as c increases if KI > KA, or decreases and then increases as c
increases if KA > KI . This is more easily observed if we rewrite eqn. 21 as

dpactive
dc

=
n(KI −KA)

(c+KA)(c+KI)
pactive (1− pactive) . (22)
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Written in this way, the first derivative of the activity curve looks similar to the first derivative of the
sigmoid function in eqn. 18 with c2 = 1 and where c1 is a function of x rather than a constant.

Some care must be taken in using graphical methods of inferring cooperativity. The plots of activity
curves and binding curves in the main text are shown on a log-log scale, leading to activity curves that
appear to be sigmoidal even when the system itself is non-cooperative. Conversely, a cooperative system
might appear to have a non-sigmoidal activity curve or binding curve if it has a small transition point
concentration.

1.3. Effective Hill coefficient

The last definition, which was presented in the main text, is perhaps the least intuitive. The effective
Hill coefficient heff is mathematically defined as twice the slope of the “normalized” activity curve on
a log-log plot at the transition point. The transition point is the concentration at which the activity is
halfway between its minimum and maximum. [1] This definition leads to a rather complicated formula
for heff as a function of MWC parameters, given in Figure 2 of the main text as a string of equations,
but which we define here as

1

2
= pnormactive(c

∗) =
pactive(c

∗)− pminactive

pmaxactive − pminactive

(23)

and

heff = 2
∂ log pnormactive

∂ log c

∣∣∣
c=c∗

= 2c∗
∂ log pnormactive

∂c

∣∣∣
c=c∗

(24)

This complicated definition is an analytical form for the Hill coefficient that will yield a good fit between
the MWC activity curve and the Hill function. Recall that the Hill function has an activity curve given
by

pHillactive =
ch

ch +Kh
. (25)

In this equation, h is the Hill coefficient and K is a dissociation constant. If the Hill coefficient is positive,
then a Hill coefficient h > 1 indicates positive cooperativity, a Hill coefficient of h < 1 indicates negative
cooperativity, and a Hill coefficient of 1 indicates no cooperativity.

As stated earlier, the effective Hill coefficient provides a good fit between the activity curve of a MWC
molecule and the Hill function. However, the Hill function always increases with ligand concentration
c. If the MWC molecule activity curve decreases with ligand concentration c, then using eqn. 24 will
yield a negative effective Hill coefficient, which amounts to switching the labels of the active and inactive
states. Only the absolute value of the effective Hill coefficient is meaningful for determining whether or
not there is positive cooperativity, negative cooperativity, or no cooperative interactions. Additionally,
the activity curve of a MWC molecule does not necessarily have a minimum of 0 and a maximum of 1 as
the ligand concentration varies from 0 to →∞. This is the reason for “normalizing” the MWC activity
curve in eqn. 24.

As a sanity check, we show here that the effective Hill coefficient of the Hill function is the Hill
coefficient, heff = h, and the transition point concentration is the dissociation constant, c∗ = K. Unlike
the MWC activity curve, pHillactive always has a minimum value of 0 at c = 0 and a maximum value of 1
as c → ∞, and therefore, the “normalized” Hill function is the Hill function. The concentration at the
transition point is given by

pHillactive(c
∗) =

(c∗)h

(c∗)h +Kh
=

1

2
→ c∗ = K. (26)

From this simple formula for the concentration at the transition point, we can calculate an effective Hill
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coefficient of

hHilleff = 2
∂ log pHillactive

∂c

∣∣∣
c=c∗

= 2
c∗

pHillactive(c
∗)

∂pHillactive

∂c

∣∣∣
c=c∗

(27)

= 2
c∗

pHillactive(c
∗)

(
h(c∗)h−1

(c∗)h +Kh
− h(c∗)h−1(c∗)h

((c∗)h +Kh)
2

)
(28)

= 4h

(
(c∗)h

(c∗)h +Kh

)(
Kh

(c∗)h +Kh

)
(29)

= 4h(1/2)(1/2) = h. (30)

In other words, the definition of the effective Hill coefficient and transition point concentration given in
eqns. 24 and 23 are at least reasonable formulas in that when applied to the Hill function, they yield the
Hill coefficient and the dissociation constant K.

It can be shown that the absolute value of the effective Hill coefficient of a MWC molecule with
KA 6= KI is always greater than 1, |heff | > 1, indicating positive cooperativity. Equality (and no
cooperativity) holds only when n = 1 or KA = KI , which corresponds to the intuition that cooperativity
requires multiple binding sites and states with different ligand binding affinities. No MWC parameters
will cause the absolute value of the effective Hill coefficient to be less than 1, and this indicates that no
MWC molecule without direct repulsive interactions between the ligands exhibits negative cooperativity.

2. Appendix 2: A short primer on information theory

In Section 4 of the main text, we introduced the definitions of mutual information and channel capacity
as a general, principled way of quantifying how well an output tracks an input signal. In this appendix,
we present a highly abridged sketch of some of the main ideas that lead to these definitions. Readers
looking for comprehensive treatments of information theory should consult other textbooks or reviews.
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14] To quantify how much information is transmitted, we must define how
much information is contained in the original signal.

A signal can be thought of as a message, i.e. a telephone message passed from one person to another.
The telephone is called a “communication channel”. These messages can be conceptualized in terms of
probability distributions. Suppose someone has written three letters on a blank piece of paper. Without
employing any contextual knowledge about the human language or what this person is doing, each of
those letters has an equal probability of being any of the twenty-six letters in our alphabet. However,
when we read the (smudged) word, we see that the first letter looks like an M or maybe an N, the
second letter looks like a W, or perhaps a U or a V, and the third letter looks like a C, or maybe an O.
After reading (i.e., observing a noisy signal) the probability distribution for each of these letters is quite
different than before we read the word. That is, the probability of the first letter representing each of
the letters in the alphabet is far from uniform; the first letter might have a probability 2

3 of being an M
and probability 1

3 of being an N. The information gained by the act of reading has something to do with
the difference between the probability distributions over these letters before and after reading.

Mathematically, the information contained in a probability distribution is exactly the negative of
the entropy of a probability distribution. Readers may be familiar with the concept of entropy from
thermodynamics as a proxy for the amount of disorder in a system of particles. Similarly, in the parlance
of information theory, entropy can be thought of as the uncertainty of the value of a sample from a
given probability distribution. For instance, if we toss a unweighted coin, it will have a half-half chance
of landing on heads and tails. We are uncertain as to the outcome of the toss. However, if we toss a
weighted coin, we can be fairly certain that it will land on (say) heads. The outcome of the toss of an
unweighted coin has more uncertainty and more entropy than the toss of a weighted coin, and therefore
the outcome of the toss of the unweighted coin conveys more information.
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This intuition can be quantified as follows. LetX be a random variable that can take values {x1, ..., xn}
with probabilities {p(x1), ..., p(xn)}. We ask that any function H(X) that purports to quantify entropy
should satisfy some of our intuitions about what uncertainty means, namely that: uniform probability
distributions should have more entropy than any other probability distribution; that two probability
distributions that are “nearby” should have similar entropy; and that the entropy of a probability dis-
tribution should be the same no matter how we group the outcomes. More detailed description of these
axioms can be found in many other texts. [6, 7] From these axioms alone, we can derive a function for
the entropy up to a multiplicative constant as

H(X) = −
∑
x

p(x) log2 p(x). (31)

Interested readers are highly encouraged to consult one of many detailed texts on the subject, e.g. [6].
It is possible to multiply H(X) in eqn. 31, and the new H(X) will still satisfy the axioms listed above.
Changing the multiplicative constant is equivalent to changing the base of the logarithm. Two standard
choices are 2, so that entropy is in bits, and e, as in statistical mechanics. This definition of entropy is
easily extended to definitions of “joint entropy” and “conditional entropy”. If we have a joint probability
distribution of two random variables, p(x, y), its “joint entropy” is

H(X,Y ) = −
∑
x,y

p(x, y) log2 p(x, y). (32)

The “conditional entropy” H(X|Y ) is perhaps less intuitive than the entropy or the joint entropy; the
conditional entropy H(X|Y ) is the expected number of bits required to describe X given knowledge of
Y , namely,

H(X|Y ) =
∑
y

p(y)

(
−
∑
x

p(x|y) log2 p(x|y)

)
= −

∑
x,y

p(y)p(x|y) log2 p(x|y). (33)

When X and Y vary indepdently (p(x, y) = p(x)p(y)) the conditional entropy is maximal, H(X|Y ) =
H(X). On the other hand, if X and Y are tightly correlated, then H(X|Y ) is small.

With the definition of the entropy of a random variable X in hand, we can define the mutual in-
formation between a random variable X and Y as the information gained about X by measuring Y .
Specifically, this implies

I(X;Y ) = H(X)−H(X|Y ). (34)

The mutual information can also be thought of as the amount of shared information between random
variables X and Y . If X and Y are independent random variables, then they share no information, and
accordingly I(X;Y ) = 0. If Y tracks X perfectly, then the conditional entropy H(X|Y ) = 0, giving a
maximal mutual information I(X;Y ) = H(X). The channel capacity is the maximum value1 of I(X;Y )
attainable by varying p(x), i.e.

Iopt(X;Y ) = max
p(x)

I(X;Y ). (35)

According to the noisy channel coding theorem, the channel capacity is also the maximum possible
rate of error-free information transmission. [6, 7] In this sense, the channel capacity is a single-number
characterization of the information transmission limits of the system. [6, 7] For instance, in Section 4 of
the main text, the channel capacity Iopt(c;Nopen) is the maximal amount of shared information between

1The channel capacity is more correctly defined using a supremum rather than a maximum, Iopt(X;Y ) = supp(x) I(X;Y ).

[6, 7]
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the ligand concentration c and the number of open ion channels Nopen. The probability distribution p∗(c)
that maximizes the mutual information I(c;Nopen) has noise that is “well-matched” to the noise in the
communication channel, p(Nopen|c).

We are interested in rewriting eqn. 34 in terms of the probability distributions p(x) and p(y|x),
since we often have access to the conditional probability distribution p(y|x). Using the definition of the
conditional distribution, p(x|y)p(y) = p(x, y), the conditional entropy takes the form

H(X|Y ) = −
∑
x,y

p(x, y) log2

p(x, y)

p(y)
, (36)

and similarly we can use the definition of the marginal distribution, p(x) =
∑
y p(x, y), to rewrite the

entropy of X in eqn. 32 as

H(X) = −
∑
x

(
∑
y

p(x, y)) log2(
∑
y

p(x, y)) = −
∑
x,y

p(x, y) log2(
∑
y

p(x, y)). (37)

These two expressions enable us to rewrite the mutual information I(X;Y ) given in eqn. 34 in terms of
the probability distribution p(x, y),

I(X;Y ) = −
∑
x,y

p(x, y) log2 p(x) +
∑
x,y

p(x, y) log2

p(x, y)

p(y)
=
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)
. (38)

If X and Y are continuous random variables, then the sums are easily changed to integrals and p(x, y)
becomes a probability density rather than a list of probabilities, e.g.

I(X;Y ) =

∫ ∫
p(x, y) log2

p(x, y)

p(x)p(y)
dxdy. (39)

The conditional probability distribution p(y|x) is related to the joint probability distribution p(x, y)
using p(x, y) = p(x)p(y|x); substituting this expression into the above expression for mutual information
I(X;Y ) gives

I(X;Y ) =

∫ ∫
p(x)p(y|x) log2

p(y|x)

p(y)
dxdy. (40)

There are many other equivalent expressions for the mutual information, e.g. shown in Theorem 2.4.1 of
[6].

3. Appendix 3: Mutual Information and Channel Capacity for MWC Molecules

In Section 4.1 of the main text, we presented a sketch of the derivation of the channel capacity of a
number of N independent MWC molecules, where the input is ligand concentration and the output is
the number of active MWC molecules. Here, we present that derivation in more mathematical detail for
interested readers. A pedagogical derivation with even more mathematical detail is presented in Section
6.4 of Bialek’s excellent new biophysics textbook. [14]

If the joint probability distribution of c and Nopen is p(c,Nopen), then following the procedure outlined
in eqn. 38, the mutual information between the input ligand concentration and the output number of
open channels is defined as

I(c;Nopen) =

∫ N∑
Nopen=0

p(c,Nopen) log2

p(c,Nopen)

p(c)p(Nopen)
dc. (41)
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Using the definition of the joint probability as p(c,Nopen) = p(Nopen|c)p(c) we can rewrite the mutual
information in eqn. 41 as

I(c;Nopen) =

∫ N∑
Nopen=0

p(Nopen|c)p(c) log2

p(Nopen|c)p(c)
p(c)p(Nopen)

dc. (42)

By exploiting the rule log(A/B) = log(A)− log(B), we can now rewrite this as

I(c;Nopen) =

∫
p(c)

 N∑
Nopen=0

p(Nopen|c) log2 p(Nopen|c)

 dc

−
∫
p(c)

 N∑
Nopen=0

p(Nopen|c) log2 p(Nopen)

 dc (43)

The N independent MWC molecules can be conceptualized as N independent binary random variables,
as each of these receptors is open with a probability popen(c). Therefore, the conditional probability
distribution is a binomial distribution,

p(Nopen|c) =

(
N

Nopen

)
(popen(c))

Nopen (1− popen(c))
N−Nopen . (44)

We could now calculate the channel capacity numerically by substituting eqn. 44 above into the expression
for mutual information in eqn. 43, and then finding an optimal p∗(c) using a numerical approximation
scheme. However, when N is large, we can invoke a “small-noise approximation” and approximate the
discrete binomial distribution in eqn. 44 by a continuous function. This allows us to derive an analytic
expression for the channel capacity. Recall from the text that the mean of this binomial distribution is

N̄open(c) = Npopen(c) (45)

and its variance is
σ2
Nopen

(c) = Npopen(c)(1− popen(c)). (46)

When N is very large, the conditional probability distribution p(Nopen|c) in eqn. 44 is highly peaked
about its mean and looks Gaussian. We wish to rewrite the binomial distribution for p(Nopen|c) in a
more convenient form as a continuous normal distribution, and this normal approximation should have
the same mean and variance as the binomial distribution. The approximating normal distribution is
therefore

p(Nopen|c) '
1√

2πσ2
Nopen

e
−(Nopen−N̄open)2/2σ2

Nopen , (47)

where Nopen runs from −∞ to ∞. As long as σNopen
<< N̄open, since then there is vanishingly small

probability of Nopen attaining a negative value or a value greater than N . This is precisely what it means
to make the “small noise” approximation. This small-noise approximation is often used in other contexts
to simplify formulae, e.g. polymer physics. [3] To make the dependence upon key variables such as the
concentration of ligand clear, we rewrite this in the more cumbersome but equivalent form using eqns. 45
and 46 as

p(Nopen|c) =
exp(−(Nopen −Npopen(c))2/2Npopen(c)(1− popen(c)))√

2πNpopen(c)(1− popen(c))
. (48)
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With that approximation in hand, we can now simplify the expression for the mutual information in
equation 43. Specifically, the first parenthetical in eqn. 43 can be approximated as

N∑
Nopen=0

p(Nopen|c) log2 p(Nopen|c) ≈
∫ ∞
−∞

e
−(Nopen−N̄open)2/2σ2

Nopen√
2πσ2

Nopen

log2

e
−(Nopen−N̄open)2/2σ2

Nopen√
2πσ2

Nopen

dNopen

= −1

2
log2(2πeσ2

Nopen
(c)), (49)

where we have used standard rules about Gaussian integrals. [6] This result leaves us poised for sub-
stitution into the first term of eqn. 43. To evaluate the second parenthetical term in equation 43, we
have

N∑
Nopen=0

p(Nopen|c) log2 p(Nopen) ≈
∫ ∞
−∞

p(Nopen|c) log2 p(Nopen)dNopen. (50)

We can approximate this integral using a Taylor expansion of the integrand, expanding log2 p(Nopen)
about N̄open,

log2 p(Nopen) = log2 p(N̄open) +
∂ log2 p(Nopen)

∂Nopen

∣∣∣
N̄open

(Nopen − N̄open)

+
1

2

∂2 log2 p(Nopen)

∂N2
open

∣∣∣
N̄open

(Nopen − N̄open)2 (51)

We then integrate this Taylor expansion according to eqn. 50,∫ ∞
−∞

p(Nopen|c) log2 p(Nopen)dNopen ≈
∫ ∞
−∞

p(Nopen|c)
(

log2(p(N̄open))

+
∂ log2 p(Nopen)

∂Nopen

∣∣∣
N̄open

(Nopen − N̄open)

+
1

2

∂2 log2 p(Nopen)

∂N2
open

∣∣∣
N̄open

(Nopen − N̄open)2
)
dNopen. (52)

The coefficients in this Taylor expansion are independent of Nopen, and as such, we can evaluate the right
hand side of eqn. 52. The zeroth order term in the Taylor expansion for log2 p(Nopen) integrates to∫ ∞

−∞
p(Nopen|c) log2 p(N̄open)dNopen = log2 p(N̄open)

∫ ∞
−∞

p(Nopen|c)dNopen = log2 p(N̄open) (53)

using the condition that probability distributions are normalized. The first order term in the Taylor
expansion for log2 p(Nopen) integrates to∫ ∞
−∞

p(Nopen|c)
∂ log2 p(Nopen)

∂Nopen

∣∣∣
N̄open

(Nopen − N̄open)dNopen =
∂ log2 p(Nopen)

∂Nopen

∣∣∣
N̄open

×∫ ∞
−∞

(Nopen − N̄open)p(Nopen|c)dNopen

= 0, (54)

since the mean N̄open is defined by
∫∞
−∞(Nopen− N̄open)p(Nopen|c)dNopen = 0. (See eqn. 47.) Finally, the
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second order term in the Taylor expansion evaluates to

1

2

∫ ∞
−∞

p(Nopen|c)
∂2 log2 p(Nopen)

∂N2
open

∣∣∣
N̄open

(Nopen − N̄open)dNopen =
1

2

∂2 log2 p(Nopen)

∂N2
open

∣∣∣
N̄open

×∫ ∞
−∞

(Nopen − N̄open)2p(Nopen|c)dNopen

=
1

2

∂2 log2 p(Nopen)

∂N2
open

∣∣∣
N̄open

σ2
Nopen

, (55)

using the definition of variance,
∫∞
−∞(Nopen − N̄open)2p(Nopen|c)dNopen = σNopen(N̄open)2. Therefore,

eqn. 52 simplifies to∫ ∞
−∞

p(Nopen|c) log2 p(Nopen)dNopen ≈ log2 p(N̄open) +
1

2

∂2 log2 p(Nopen)

∂N2
open

∣∣∣
N̄open

σ2
Nopen

. (56)

using eqns. 53-55. Hence, using the simplifications achieved in equations 49 and 56, we are now ready
to compute the mutual information itself by plugging back into equation 43 resulting in

I(c;Nopen) ≈ −
∫
p(c)

(
log2

√
2πeσ2

Nopen
(c) + log2 p(N̄open)

)
dc. (57)

We have exploited a second consequence of the small noise approximation by ignoring the term propor-

tional to σ2
Nopen

in eqn. 56; although σ2
Nopen

∝ N using eqn. 46, its coefficient
∂2 log2 p(Nopen)

∂N2
open

∣∣∣
N̄open

∝ 1
N2 .

Together, these proportionality relationships suggest that
∂2 log2 p(Nopen)

∂N2
open

∣∣∣
N̄open

σ2
Nopen

∝ 1
N , indicating

that this second order term is dwarfed by log2 σ
2
Nopen

∝ log2N in the large N , small noise limit. Finally,

since N̄open is a deterministic function of c, we can relate their probability distributions exactly using a
change of variables formula,

p(c)dc = p(N̄open)dN̄open. (58)

This change of variables formula can be loosely thought of as a statement about the conservation of the
probability. Eqn. 58 permits us to rewrite the integral above as

I(c;Nopen) ' −
∫
p(N̄open)

(
log2

√
2πeσ2

Nopen
(c) + log2 p(N̄open)

)
dN̄open. (59)

Even with the small noise approximation, a determination of the mutual information still requires detailed
knowledge of the empirical distribution of ligand concentration or (equivalently) a detailed knowledge
of the mean number of open channels, p(N̄open). However, we now employ a second major assumption,
which is that the biological system chooses a distribution p(c) and thus a distribution p(N̄open) that
maximizes the mutual information. Alternatively, we are calculating the channel capacity Iopt(c;Nopen)
of the ensemble of receptors, which is its mutual information at maximal information transmission.

The optimal p(N̄open) is found using variational calculus, which is loosely speaking the calculus of
functions of functions. [15, 16] The basic idea is that the mutual information I(c;Nopen) is a function
of the probability distribution p(N̄open) according to eqn. 59. To make this dependency clear, we can
write I[p(N̄open)]. Our goal is to find a probability distribution p∗(N̄open) such that a slightly different
probability distribution, p∗(N̄open) + εh(N̄open), is guaranteed to have a lower mutual information,

I[p∗(N̄open)] ≥ I[p∗(N̄open) + εh(N̄open)] (60)

for |ε| << 1 and all “allowable” functions h(N̄open). An allowable function h(N̄open) is any function such
that both p∗(N̄open) and p∗(N̄open) + εh(N̄open) are normalized probability distributions, i.e.

1 =

∫
p∗(N̄open)dN̄open (61)
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and

1 =

∫ (
p∗(N̄open) + εh(N̄open)

)
dN̄open. (62)

Subtracting these two equations gives us a restriction on h(N̄open), namely,

0 =

∫
h(N̄open)dN̄open. (63)

When trying to find a local maximum of a function of a scalar variable in calculus, we typically take its
derivative and set it to zero. To connect to this intuition, we rewrite eqn. 60 in terms of a derivative of
the mutual information,

lim
ε→0

∂

∂ε

(
I[p∗(N̄open) + εh(N̄open)]− I[p∗(N̄open)]

)
= 0, (64)

for any function h(N̄open) that satisfies the normalization condition in eqn. 63. A function that satisfies
eqn. 64 will not necessarily satisfy eqn. 60, but a function that satisfies eqn. 60 will satisfy eqn. 64. Along
this line of reasoning, we try to find an expression for I[p∗(N̄open)+εh(N̄open)]−I[p∗(N̄open)] in the limit
of infinitesimally small ε. We start by tackling the term I[p∗(N̄open) + εh(N̄open)],

I[p∗(N̄open) + εh(N̄open)] = −
∫ (

p∗(N̄open) + εh(N̄open)
) (

log2

√
2πeσ2

Nopen
(N̄open)

+ log2

(
p∗(N̄open) + εh(N̄open)

))
dN̄open, (65)

from eqn. 59. For small ε, using the rule log(A + B) = log
(
A× (1 + B

A )
)

= logA + log(1 + B
A ), and

applied to eqn. 65, this yields

log2

(
p∗(N̄open) + εh(N̄open)

)
= log2 p

∗(N̄open) + log2

(
1 + ε

h(N̄open)

p∗(N̄open)

)
. (66)

Using the Taylor approximation log(1 + x) ' x for small x,

log2

(
p∗(N̄open) + εh(N̄open)

)
= log2 p

∗(N̄open) +
εh(N̄open)

p∗(N̄open) log 2
+O(ε2). (67)

Substituting this expression into eqn. 65 and expanding to first order in ε yields

I[p∗(N̄open) + εh(N̄open)] = −
∫ (

p∗(N̄open) + εh(N̄open)
) (

log2

√
2πeσ2

Nopen
(N̄open)

+ log2 p
∗(N̄open) + ε

h(N̄open)

p∗(N̄open) log 2

)
dN̄open +O(ε) (68)

= −
∫
p∗(N̄open)

(
log2

√
2πeσ2

Nopen
(N̄open) + log2 p

∗(N̄open)
)
dN̄open

−ε
∫
h(N̄open)

(
log2

√
2πeσ2

Nopen
(N̄open) +

1

log 2

+ log2 p
∗(N̄open)

)
dN̄open +O(ε2). (69)

We fortuitously recognize the first term in this expression as

I[p∗(N̄open)] = −
∫
p∗(N̄open)

(
log2

√
2πeσ2

Nopen
(N̄open) + log2 p

∗(N̄open)
)
dN̄open, (70)
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and substituting this into eqn 69 gives us

I[p∗(N̄open) + εh(N̄open)]− I[p∗(N̄open)] = −ε
∫
h(N̄open)

(
log2

√
2πeσNopen

(N̄open)2

+
1

log 2
+ log2 p

∗(N̄open)
)
dN̄open +O(ε2). (71)

Based on eqn. 64, we wish to find p∗(N̄open) such that the expression

lim
ε→0

(
I[p∗(N̄open) + εh(N̄open)]− I[p∗(N̄open)]

)
= −

∫
h(N̄open)

(
log2

√
2πeσNopen(N̄open)2

+
1

log 2
+ log2 p

∗(N̄open)
)
dN̄open (72)

is 0 for any h(N̄open) that satisfies the normalization condition in eqn. 63. This will happen if the integrand

log2

√
2πeσNopen(N̄open)2 + 1

log 2 + log2 p
∗(N̄open) is a constant for all N̄open, due to the normalization

condition on h(N̄open) in eqn. 63. Therefore,

p∗(N̄open) ∝ 1

σNopen
(N̄open)

. (73)

With appropriate normalization of p∗(N̄open) given in eqn. 61, the form of p(N̄open) that maximizes the
mutual information is of the form

p∗(N̄open) =
1

Z

1

σNopen(N̄open)
(74)

where Z is a normalization constant,

Z =

∫ N̄max
open

N̄min
open

dN̄open
σNopen

(N̄open)
. (75)

The variance σNopen =
√
Npopen(1− popen) depends on N̄open in that the N̄open = Npopen, giving

σNopen
(N̄open) =

√
N̄open

(
1− N̄open

N

)
. (76)

Finally, using the optimal probability distribution of ligand concentration in eqn. 74 in place of p(N̄open)
in eqn. 59, we find that the channel capacity is

Iopt(c;Nopen) = max
p(c)

I(c;Nopen) (77)

= −
∫
p∗(N̄open)

(
log2

(√
2πeσNopen

)
+ log2

1

Z

1

σNopen

)
dN̄open. (78)

Using the familiar rules about logarithm products, log(AB) = logA+ logB, this simplifies to

Iopt(c;Nopen) = −
∫
p∗(N̄open) log2

√
2πe

Z
dN̄open. (79)

Finally, since p∗(N̄open) is a normalized probability distribution such that
∫
p∗(N̄open)dN̄open = 1, and

since log2

√
2πe
Z is a constant,

Iopt(c;Nopen) = log2

Z√
2πe

. (80)
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Now all that remains is to actually calculate Iopt(c;Nopen) by calculating Z in eqn. 75 using the variance
in eqn. 46. Using a change of variables N̄open = Npopen, we find that Z is the product of a term that
depends on the number of receptors N and the parameters that govern the binding curve of a single
receptor,

Z =

∫ Npmax
open

Npmin
open

d(Npopen)√
Npopen(1− popen)

=

∫ pmax
open

pmin
open

Ndpopen√
N
√
popen(1− popen)

(81)

=
√
N

∫ pmax
open

pmin
open

dpopen√
popen(1− popen)

. (82)

Here pminopen and pmaxopen are exactly the probabilities of a single receptor being in the active state where there
is no ligand and when there is a saturating amount of ligand, with formulas given in Figure 2 and Section
4 of the main text. The integral in eqn. 82 can be evaluated using trigonometric substitution. Explicitly,
the indefinite integral

∫
dp√
p(1−p)

can be evaluated by setting another variable, p = sin2 u, giving

∫
dp√

p(1− p)
=

∫
d(sin2 u)√

sin2 u (1− sin2 u)
=

∫
2 sinu cosu du

sinu cosu
= 2u = 2 sin−1√p. (83)

Therefore, eqn. 82 is

Z = 2
√
N
(

sin−1√pmaxopen − sin−1
√
pminopen

)
. (84)

This yields the equation for channel capacity that appeared in Section 4 of the main text, namely,

Iopt = log2

Z√
2πe

= log2

(
sin−1√pmaxopen − sin−1

√
pminopen

)
+ log2

√
2N

πe
. (85)

Increasing pmaxopen or decreasing pminopen will increase both dynamic range (pmaxopen−pminopen) and channel capacity
Iopt in eqn. 85 above.

4. Appendix 4: Constructing transition matrices for a dynamical MWC model

In Section 5.1 of the main text, we presented a transition matrix for a dynamical model of a two-site
MWC molecule, but we only derived its first row. For completeness, we derive here the elements of the
other rows in this transition matrix. We then give a transition matrix for the n-site receptor.

4.1. Transition matrix for the two-site MWC molecule

As described in Section 5.1 of the main text, the dynamical model of a two-site MWC molecule
describes the time evolution of the state vector

x =


[O2]
[O1]
[O0]
[C0]
[C1]
[C2]

 (86)

by the first-order ordinary differential equation

dx

dt
= Mx, (87)
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where M is a transition matrix. Here we use a different state vector than that used in Section 5.1, although
they only differ by a normalization constant [R], the total concentration of receptor. The elements of M
can be determined by listing the elementary chemical reactions that lead to a change in the state vector,
writing down the corresponding rate equations, and comparing those rate equations to eqn. 87. Non-
elementary reactions, i.e. reactions that can be broken into elementary chemical reactions, are implicitly
described by eqn. 87 since they can be described in terms of two or more elementary reactions.

In Section 5.1 of the main text, we derived the first row of M by considering the reactions O1+L← O2

and O2 → O1 + L, written succinctly as O1 + L � O2, as the two elementary chemical reactions that
affect the concentration of O2. We reproduce that here for completeness. Using the kinetic rates defined
in Section 5.1 of the main text, by the Law of Mass Action,

d[O2]

dt
= fO[L][O1]− 2bO[O2]. (88)

The first row of eqn. 87 reads

d[O2]

dt
= M11[O2] +M12[O1] +M13[O0] +M14[C0] +M15[C1] +M16[C2]. (89)

Comparing eqn. 88 and eqn. 89 yields

M11 = −2bO, M12 = fOc, M13 = M14 = M15 = M16 = 0. (90)

Determining the second row of the matrix M proceeds similarly. The four reactions that we consider are
O0 + L� O1 and O1 + L� O2, giving

d[O1]

dt
= 2fO[L][O0]− bO[O1]− fO[L][O1] + 2bO[O2], (91)

where the factors of 2 denote that there are two sites that a ligand can bind to or unbind from on the
receptor. The second row of eqn. 87 reads

d[O1]

dt
= M21[O2] +M22[O1] +M23[O0] +M24[C0] +M25[C1] +M26[C2]. (92)

Comparing eqns. 91 and 92 yields

M21 = 2bO, M22 = −fOc− bO, M23 = 2fOc, M24 = M25 = M26 = 0. (93)

There are four reactions to consider for O0: O0 � C0 and O0 + L � O1. In the main text, we denoted
the forward rate kinetic rate of the latter reaction as fT and the backwards kinetic rate as bT , giving

d[O0]

dt
= −2fO[L][O0] + bO[O1]− fT [O0] + bT [C0]. (94)

The third row of eqn. 87 reads

d[O0]

dt
= M31[O2] +M32[O1] +M33[O0] +M34[C0] +M35[C1] +M36[C2]. (95)

Comparing eqns. 94 and 95 yields

M32 = bO, M33 = −2fOc− fT , M34 = bT , M31 = M35 = M36 = 0. (96)

There are four reactions that affect the concentration of C0, O0 � C0 and C0 + L� C1, giving

d[C0]

dt
= −2fC [L][C0] + bC [C1]− bT [C0] + fT [O0]. (97)
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The third row of eqn. 87 reads

d[C0]

dt
= M41[O2] +M42[O1] +M43[O0] +M44[C0] +M45[C1] +M46[C2]. (98)

Comparing eqns. 97 and 98 yields

M43 = fT , M44 = −2fCc− bT , M45 = bC , M41 = M42 = M46 = 0. (99)

The four reactions that we account for as affecting [C1] are C0 + L� C1 and C1 + L� C2, giving

d[C1]

dt
= 2fC [L][C0]− bC [C1]− fC [L][C1] + 2bC [C2]. (100)

The second row of eqn. 87 reads

d[C1]

dt
= M51[O2] +M52[O1] +M53[O0] +M54[C0] +M55[C1] +M56[C2]. (101)

Comparing eqns. 100 and 101 yields

M54 = 2bC , M55 = −fCc− bC , M56 = 2fCc, M51 = M52 = M53 = 0. (102)

Finally, considering the reaction C1 + L� C2 leads to

d[C2]

dt
= fC [L][C1]− 2bC [C2]. (103)

The sixth row of eqn. 87 reads

d[C2]

dt
= M61[O2] +M62[O1] +M63[O0] +M64[C0] +M65[C1] +M66[C2]. (104)

Comparing eqns. 103 and 104 yields

M65 = fCc, M66 = 2bC , M61 = M62 = M63 = M64 = 0. (105)

4.2. Transition matrix for the n-site MWC molecule

Consider a MWC molecule with n identical binding sites, and denote the receptor’s two states as
either O (open/active) or C (closed/inactive). Each ligand-receptor can be denoted as Ok or Ck, where
k gives the number of bound ligands, and O and C denote the state of the receptor. A dynamical MWC
model describes the time evolution of a vector x,

x =



[On]
...

[O0]
[C0]

...
[Cn]


, (106)

using a first-order differential equation,
dx

dt
= Mx. (107)

The elements of the 2(n+ 1)× 2(n+ 1) matrix M can be determined in the same way that the elements
of M were determined for the two-site receptor. For the n-site MWC molecule we consider the following
elementary reactions:
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• Ok + L� Ok+1, with forward kinetic rate fO and backward kinetic rate bO related by Ko = bO
fO

,

• O0 � C0, with forward kinetic rate fT and backward kinetic rate bT related by K = fT
bT

, and

• Ck + L� Ck+1, with forward kinetic rate fC and backward kinetic rate bC related by Kc = bC
fC

.

Here we list the corresponding rate equations without proof as

d[Ok]

dt
=


−kbO[Ok] + (n− k + 1)fO[L][Ok−1]− (n− k)fO[L][Ok] + (k + 1)bO[Ok+1] 1 ≤ k ≤ n− 1

−fO[L][O0] + nbO[O1]− fT [O0] + bT [C0] k = 0

fO[L][On−1]− nbO[On] k = n

(108)
and

d[Ck]

dt
=


−kbC [Ck] + (n− k + 1)fC [L][Ck−1]− (n− k)fC [L][Ck] + (k + 1)bC [Ck+1] 1 ≤ k ≤ n− 1

−fC [L][C0] + nbC [C1]− bT [C0] + fT [O0] k = 0

fC [L][Cn−1]− nbC [Cn] k = n

.

(109)

We can explicitly the elements of M in terms of the function δi,j =

{
1 i = j

0 i 6= j
as

Mij =



fOc δi,j−1 − nbO δi,j i = 1

− ((n− i+ 1)bO + (i− 1)fOc) δi,j + ifOc δi,j−1 + (n− i+ 2)bO δi,j−1 i = 2, ..., n

− (fOc+ fT ) δi,j + bT δi,j+1 + nbOδi,j−1 i = n+ 1

− (fCc+ bT ) δi,j + fT δi,j−1 + nbCc δi,j+1 i = n+ 2

− ((i− n− 2)bC + (2n+ 2− i)fCc) δi,j + (2n+ 3− i)fCc δi,j−1 + (i− n− 1)bC δi,j+1 i = n+ 3, ..., 2n+ 1

fCc δi,j−1 − nbC δi,j i = 2n+ 2

.

(110)

5. Appendix 5: Response functions of MWC molecules

In Section 5.2 of the main text, we presented a sketch of the derivation of the frequency response
function of an MWC molecule to changing ligand concentration. Here, we present that derivation for
the general n-site MWC molecule and in more mathematical detail for interested readers. Many of the
manipulations presented here are standard manipulations found in textbooks, e.g. [17].

Consider a MWC molecule with n identical binding sites, and denote the receptor’s two states as
either O (open/active) or C (closed/inactive). Each ligand-receptor can be denoted as Ok or Ck, where
k gives the number of bound ligands, and O and C denote the state of the receptor. A dynamical MWC
model describes the time evolution of a vector x,

x =



P (On, t)
...

P (O0, t)
P (C0, t)

...
P (Cn, t)


. (111)
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Recall from Section 5.1 of the main text that the list of probabilities of each of the ligand-receptor
configurations for an MWC molecule evolves in time as

dx

dt
= M(c)x, (112)

where M(c) is a transition matrix that depends on the ligand concentration c. For examples of transition
matrices, see Appendix 4 above. Recall also from Section 5.1 of the main text that the probability of the
receptor being in the open state is related to x using the projection matrix PR using

popen = PR x. (113)

We wish to relate popen(t) to changes in ligand concentration, c(t). As described in Section 5.1 of the
main text, we will find the relationship using the frequency response function

G(ω) =
F(popen)

F(c)
, (114)

where F(popen) is the Fourier transform of popen,

F(popen) =

∫ ∞
−∞

popen(t) e−iωt dt, (115)

and F(c) is the Fourier transform of c,

F(c) =

∫ ∞
−∞

c(t) e−iωt dt. (116)

Some write these formulas for the Fourier transform with an additional factor of 1
2π or 1√

2π
, [17, 15]

but when we take the ratio of two Fourier transforms to find G(ω), these multiplicative factors cancel.
Calculating the frequency response function G(ω) implicitly requires that a sinusoidal oscillation c(t) =
A0 + A1 sinωt will result in a sinusoidal oscillation of popen(t) = B0 + B1 sin(ωt + φ). This assumption
does not hold in the case of the MWC molecule responding to changes in ligand concentration; according
to eqn. 112, changes in ligand concentration are coupled in a nonlinear way to changes in the state
vector x. However, it holds approximately when the variations in ligand concentration are very small.
We will work in the limit that variations in ligand concentration are very small, which will allow us to
“linearize” the system. [17] Explicitly , if c0 is the time-averaged ligand concentration, then we assume
that |∆c(t)| << c0 where

c(t) = c0 + ∆c(t). (117)

Similarly, we linearize all other variables. The state vector x(t) is perturbed slightly from its equilibrium
state xeq(c0) = x0,

x(t) = x0 + ∆x(t), (118)

where x0 is defined by M(c0)x0 = 0. The probability of the receptor existing in the open state is also
perturbed slightly from equilibrium popen(c0) = PRx0 = p0,

popen(t) = p0 + ∆popen(t). (119)

Finally, the transition matrix M given in Appendix 4 is linear in c(t), but even if it were not, we could
Taylor approximate M(c) about c = c0 using

M(c) 'M(c0) +
∂M

∂c

∣∣∣
c0

(c− c0) = M0 +M1∆c(t). (120)



18

Substituting eqns. 117-119 into eqns. 112 and 113 gives us a linearized system for which we can calculate
the frequency response of ∆popen to ∆c. Noting that

dx

dt
=

d

dt
(x0 + ∆x) =

d∆x

dt
, (121)

eqn. 112 becomes
d∆x

dt
= (M0 +M1∆c)(x0 + ∆x) 'M0∆x+M1∆c, (122)

using M0x0 = 0 and ignoring the second-order, nonlinear term ∆c∆x. Noting that p0 = PRx0, eqn. 113
becomes

∆popen = PR∆x. (123)

Solving eqns. 122 and 123 is a much simpler proposition than solving eqns. 112 and 113, precisely
because the system is now linear. The solution to a more general version of eqns. 122 and 123 is actually
a standard formula in various textbooks on dynamical systems, e.g. [17]. A general approach to solving
such equations is to apply the Fourier transform (or Laplace or z-transform) to each of them. The Fourier
transform of eqn. 122 is

F
(
d∆x

dt

)
= F(M0∆x) + F(M1∆c). (124)

In the Fourier domain, time derivatives become multiplication by iω according to the product rule:

F
(
d∆x

dt

)
=

∫ ∞
−∞

d∆x

dt
e−iωtdt = ∆x e−iωt

∣∣∣∞
−∞

+ iω

∫ ∞
−∞

∆x e−iωtdt. (125)

We assume that as |t| → ∞, ∆x → 0 and recognize the second term on the right hand side of this
equation as iωF(∆x), leading to

F
(
d∆x

dt

)
= iωF(∆x). (126)

Additionally, F(ax) = aF(x) if a is independent of time; therefore, as long as the kinetic rates in matrices
M0 and M1 are time-independent,

F(M0∆x) = M0F(∆x) (127)

and
F(M1∆c) = M1F(∆c). (128)

Eqns. 126-128 simplify eqn. 124 to

iωF(∆x) = M0F(∆x) +M1F(∆c). (129)

Moving both F(∆x) terms to the left-hand side gives

(iω −M0)F(∆x) = M1x0F(∆c) (130)

This allows us to solve for the Fourier transform of the changes in the state vector by multiplying the
left and right hand side by the inverse of iω −M0.

F(∆x) = (iω −M0)−1M1x0F(∆c) (131)

From this, we can find the Fourier transform of ∆popen as

F(∆popen) = PRF(∆x) = PR(iω −M0)−1M1x0F(∆c), (132)
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and from this, the frequency response function of this ligand-gated ion channel,

G(ω) =
F(∆popen)

F(∆c)
= PR(iω −M0)−1M1x0. (133)

Earlier, we blithely took the inverse of iω−M0. This inverse exists as long as the determinant of iω−M0

is nonzero, or equivalently, as long as the product of the eigenvalues of iω −M0 is nonzero. [18] Luckily,
the eigenvectors of M0 are also eigenvectors of iω −M0, which makes it easy to calculate the conditions
under which iω−M0 does not have an inverse. Let u1, ..., un be the eigenvectors of M0 with corresponding
(real) eigenvalues λ1, ..., λn. The absolute values of these eigenvalues are the inverse of the internal time
constants of the receptor’s dynamics, and one of these eigenvalues is guaranteed to be 0 with eigenvector
x0. Note that

(iω −M0)uk = iωuk −M0uk = iωuk − λkuk = (iω − λk)uk. (134)

Hence by definition, uk is an eigenvector of iω−M0 with eigenvalue iω−λk. The only way the product of
these eigenvalues can be zero is if one of the eigenvalues is 0 itself, which happens only when ω = 0. If we
then write the diagonalized form of M0 = PDP−1 where D = diag(λk), iω−M0 = P diag(iω−λk) P−1,
and (iω −M0)−1 = P−1 diag( 1

iω−λk
) P , we find that the frequency response is

G(ω) =
F(∆popen)

F(∆c)
= PRP

−1diag(
1

iω + λk
)M1x0 (135)

=
∑
k

ak(c0)Gk(ω), (136)

where

Gk(ω) =
1

iω + λk
=

1

iω + ωcutoff,k
, (137)

and ak(c0) are linear weighting coefficients that are frequency-independent. These filters in Eqn. 137 are
low-pass first-order frequency filters with cutoff frequencies at the inverse time constant of the MWC
molecule’s internal dynamics,

|Gk(ω)| = 1√
ω2 + ω2

cutoff,k

, (138)

as given in Section 5.1 of the main text.
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