Supporting Information

 Mn^{2+} - nucleotide coordination at the myosin active site as detected by pulsed EPR.

Andrei V. Astashkin¹, Yuri E. Nesmelov^{2,*}

¹Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721

²Department of Physics and Optical Science, University of North Carolina, Charlotte, NC 28223

Structures of the nucleotides studied in this work

Figure S1. The structure of ADP.AlF₄ ($C_{10}H_{15}N_5O_{10}P_2AlF_4$) with the metal ion, coordinating β phosphate and AlF₄.

Figure S2. The structure of AMPPNP $(C_{10}H_{17}N_6O_{12}P_3)$ with the metal ion, coordinating γ and β phosphates.

Interpretation of the ligand hfi parameters observed in the complexes of high-spin transition metal ions.

Although the relationship between the observed (effective) *hfi* constant and the true oneelectron *hfi* constant in high-spin systems is well-known [1-3], the necessity to appropriately rescale the ³¹P and ¹⁴⁽¹⁵⁾N isotropic *hfi* constants of coordinated phosphates and nitrogens in the Mn.nucleotide complexes was missed in all of the high-resolution EPR works where such complexes were studied [4-10]. Therefore, as a reminder, we present here a simple derivation that demonstrates the general approach to obtaining such scaling factors. Let us consider the specific system at hand, the Mn²⁺ center, which has the *d*₅ electronic configuration with the total spin S = 5/2. This total spin represents a sum of the individual spins of each of the *d*-electrons:

$$S = \sum_{j} S_{j} \tag{S1}$$

where $S_j = 1/2$ are the individual spins, and the simple summation implies that the multiplet with the highest possible spin is formed. The states with positive total S_Z are described by:

and those with the negative S_Z are obtained from the corresponding positive ones by interchanging the single-electron functions α and β . The average values of single-electron operators S_{Zk} (where the index *k* indicates any one of the five electrons) obtained from eq S2 are:

$$\langle S_{Zk} \rangle_{5/2} = \langle 5/2 | \mathbf{S}_{\mathbf{Zk}} | 5/2 \rangle = 1/2 = (5/2) \times 1/5$$

$$\langle S_{Zk} \rangle_{3/2} = \langle 3/2 | \mathbf{S}_{\mathbf{Zk}} | 3/2 \rangle = 3/10 = (3/2) \times 1/5$$

$$\langle S_{Zk} \rangle_{1/2} = \langle 1/2 | \mathbf{S}_{\mathbf{Zk}} | 1/2 \rangle = 1/10 = (1/2) \times 1/5$$
(S3)

etc. The factor of 1/5 in eq S3 equals to 2*S*, and the average single-electron values can be expressed as:

$$\langle S_{Zk} \rangle_{S_Z} = \langle S_Z \rangle / (2S)$$
 (S4)

Although the derivation of eq S4 was based on considering the specific case of S = 5, it is actually general and applies to the highest spin multiplets formed by any number of individual spins $S_j = 1/2$. In particular, it is relevant for the half-filled orbital shells of atoms and ions, *e.g.*, p_3 (N⁰), d_5 (Mn²⁺), or f_7 (Gd³⁺).

The ligand isotropic *hfi* constants can be considered based on the model where only one of the five *d*-orbitals predominantly interacts with a given ligand, and thus only one unpaired electron delocalizes on that ligand and results in the isotropic *hfi* with the ligand nucleus. The isotropic *hfi* constant in such a model can either be expressed through the total electron spin (the experimentally observable effective *hfi* constant a_{ef}) or using the single-electron operators (the true one-electron *hfi* constant *a*):

$$H_{iso} = a_{ef} \mathbf{S}_{\mathbf{Z}} \mathbf{I}_{\mathbf{Z}} = a \mathbf{S}_{\mathbf{Z}\mathbf{k}} \mathbf{I}_{\mathbf{Z}}$$
(S5)

where a high-field approximation is assumed. Substituting the operators by the expectation values and using eq S4, one immediately obtains:

$$a = 2S \cdot a_{ef} \tag{S6}$$

For the anisotropic *hfi*, two contributions should be considered. The first contribution comes from the (one-electron) spin density delocalized on the ligand and is treated similar to the isotropic *hfi* (eqs S5 and S6), *e.g.*,

$$H_{aniso}^{ligand} = T_{ZZef}^{ligand} \mathbf{S}_{\mathbf{Z}} \mathbf{I}_{\mathbf{Z}} = T_{ZZ}^{ligand} \mathbf{S}_{\mathbf{Z}\mathbf{k}} \mathbf{I}_{\mathbf{Z}}$$
(S7)

(and similar terms for T_{ZX} and T_{ZY}), which results in

$$T_{ZZ}^{ligand} = 2S \cdot T_{ZZef}^{ligand}$$
(S8)

The second contribution is the through-space magnetic dipole interaction of the ligand nucleus with the spin density on the central ion. In this case, all N = 2S individual unpaired electrons interact with the ligand nucleus approximately equally:

$$H_{aniso}^{central} = T_{ZZef}^{central} \mathbf{S}_{\mathbf{Z}} \mathbf{I}_{\mathbf{Z}} = \left(\sum_{k=1}^{2S} T_{ZZ}^{central} \mathbf{S}_{\mathbf{Zk}}\right) \cdot \mathbf{I}_{\mathbf{Z}} = T_{ZZ}^{central} \left(\sum_{k=1}^{2S} \mathbf{S}_{\mathbf{Zk}}\right) \cdot \mathbf{I}_{\mathbf{Z}}$$
(S9)

(and similar terms for T_{ZX} and T_{ZY}). Substituting the average values of the spin projections and using eq S4, one immediately arrives at:

$$T_{ZZ}^{central} = T_{ZZef}^{central}$$
(S10)

Taking into account the conversion factors given by eqs S6, S8, and S10 allows one to meaningfully compare the *hfi* parameters obtained for the ligands of high-spin ions with those observed for the ligands of the S = 1/2 ions. In addition, using the true isotropic *hfi* constant (eq S6) rather than the effective one results in more accurate estimates of the spin density delocalization on the ligands.

As an example, for the phosphate ligand at Mn²⁺ ion we obtained, on average, $a_P \sim 23$ MHz (see Table 1 in the main text). Taking into account that the unpaired electron on the 3s orbital of phosphorus results in the *hfi* constant of about 1.33×10^4 MHz [11] and that the s-character of the phosphorus electronic orbitals in phosphate is about 1/4 (sp_3 orbitals), we can estimate the spin density on phosphorus as $\rho_P \sim 0.007$. Such a spin density will result in the anisotropic *hfi* constant $T_{\perp}^{ligand} \sim (-367 \text{ MHz}) \times (3/4) \times \rho_P \sim -1.9$ MHz, where -367 MHz is the value of T_{\perp} that would be obtained for a pure *p*-orbital and $\rho_P = 1$ [11], and 3/4 is the *p*-character of the sp_3 orbital. The effective (observable) anisotropic *hfi* from this source is thus $T_{\perp ef}^{ligand} = T_{\perp}^{ligand} / 2S \sim -0.4$ MHz. The "through-space" anisotropic *hfi* with the central ion at the distance $R_{\rm MnP} = 3.2$ -3.3 Å is $T_{\perp ef}^{central} = T_{\perp}^{central} \sim -0.9$ MHz. Adding the two contributions together (with the proper account of the geometry of the Mn-O-P fragment) results in a slightly rhombic tensor (T_{11} , T_{22} , T_{33})_{ef} ~ (-1.1, -1.36, 2.46) MHz. The two smaller components obtained by this estimate are somewhat larger than the experimental value of $T_{\perp ef} = -0.9$ MHz. This discrepancy can be corrected by taking into account the spin delocalization from the Mn ion to

the ligands (*e.g.*, assuming $\rho_{Mn} = 0.7$ results in the calculated $T_{\perp ef}$ similar to the experimental one).

The purpose of the above discussion was only to demonstrate the general approach to the analysis of the anisotropic and isotropic *hfi* for the ligands of the high-spin ions, in particular, Mn^{2+} . While this analysis is rather approximate, it is qualitatively better than simply estimating the Mn – P distance using a point dipole approximation. As follows from this analysis, the fact that the point-dipolar anisotropic *hfi* (for $\rho_{Mn} = 1$) is similar to the experimental one is purely coincidental because the spin density delocalization into the phosphate orbitals gives a noticeable (~40%) contribution into the total anisotropic *hfi*.

References

- 1. Kent, T. A., B. H. Huynh, and E. Munck. (1980) Iron-sulfur proteins: spin-coupling model for three-iron clusters, *Proc Natl Acad Sci U S A 77*, 6574-6576.
- 2. Stich, T. A., J. W. Whittaker, and R. D. Britt. (2010) Multifrequency EPR studies of manganese catalases provide a complete description of proteinaceous nitrogen coordination, *J Phys Chem B* 114, 14178-14188.
- 3. Owen, J., and J. H. M. Thornley. (1966) Covalent bonding and magnetic properties of transition metal ions, *Rep. Prog. Phys. 29*, 675-728.
- Schneider, B., C. Sigalat, T. Amano, and J. L. Zimmermann. (2000) Evidence for changes in the nucleotide conformation in the active site of H⁺-ATPase as determined by pulsed EPR spectroscopy, *Biochemistry 39*, 15500-15512.
- 5. Zoleo, A., G. Lippe, S. Contessi, M. Brustolon, F. Dabbeni-Sala, and A. L. Maniero. (2007) Conformational role of the divalent metal in bovine heart mitochondrial F1-ATPase: an electron spin echo envelope modulation study, *Biochemistry 46*, 13443-13450.
- 6. Potapov, A., and D. Goldfarb. (2006) Quantitative Characterization of the Mn²⁺ Complexes of ADP and ATPgS by W-band ENDOR, *Appl. Magn. Reson. 30*, 461-472.
- Petersen, J., C. Gessner, K. Fisher, C. J. Mitchell, D. J. Lowe, and W. Lubitz. (2005) Mn²⁺adenosine nucleotide complexes in the presence of the nitrogenase iron-protein: detection of conformational rearrangements directly at the nucleotide binding site by EPR and 2D-ESEEM (two-dimensional electron spin-echo envelope modulation spectroscopy), *Biochem J 391*, 527-539.
- 8. Hoogstraten, C. G., C. V. Grant, T. E. Horton, V. J. DeRose, and R. D. Britt. (2002) Structural Analysis of Metal Ion Ligation to Nucleotides and Nucleic Acids Using Pulsed EPR Spectroscopy., *J. Am. Chem. Soc.* 124, 834-842.
- 9. Morrissey, S. R., T. E. Horton, C. V. Grant, C. G. Hoogstraten, R. D. Britt, and V. J. DeRose. (1999) Mn²⁺-nitrogen interactions in RNA probed by electron spin-echo envelope modulation spectroscopy: Application to the hammerhead ribozyme, *J. Am. Chem. Soc.* 121, 9215-9218.
- 10. Buy, C., T. Matsui, S. Andrianambinintsoa, C. Sigalat, G. Girault, and J. L. Zimmermann. (1996) Binding sites for Mg(II) in H⁺-ATPase from Bacillus PS3 and in the alpha 3 beta 3 gamma

subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of oxovanadium(IV) complexes: a possible role for beta-His-324, *Biochemistry 35*, 14281-14293.

11. Morton, J. R., and K. F. Preston. (1978) Atomic parameters for paramegnetic resonance data, *J. Magn.Reson.* 30, 577-582.