Supporting Information

Computational De Novo Design and Characterization of a Protein that Selectively Binds a Highly Hyperpolarizable Abiological Chromophore

H. Christopher Fry,[‡] Andreas Lehmann,^{‡¶} Louise E. Sinks,[‡] Inge Asselberghs,[⊥] Andrey Tronin,[‡] Venkata Krishnan,[‡] J. Kent Blasie,[‡] Koen Clays,[⊥] William F. DeGrado,[¬] Jeffrey G. Saven,^{‡*} and Michael J. Therien^{§*}

[‡]Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323; ⁴Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium; ^vDepartment of Pharmaceutical Chemistry, Investigator, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158-9001; [§]Department of Chemistry, Duke University, Durham, NC 27708-0354

Chart S1. Sequence alignment between the monomeric single chain protein PA_{SC} and SCRPZ-1. The highlighted regions represent segments of helical overlap that were used to guide the alignment.

Figure S1. Backbone alignment of models of PA_{sc} (blue) and the template tertiary structure (red) of *SCRPZ-1* and *SCRPZ-2*.

Figure S2. Model structures illustrating acidic and basic residues of *SCRPZ-1* (top), *SCRPZ-2* (middle) and *PA_{SC}* (Bottom) rendered in a spacefilling format from four different viewpoints. Lysine and arginine residues (blue) and aspartic and glutamic acid (red) and glutamine (purple) are highlighted to detail the differences between *SCRPZ-1* (Top) and *SCRPZ-2* (Bottom).

Gene Sequences for SCRPZ 1-3

Synthesis of [RuPZn](PF₆)₂

Scheme S1. Synthesis of the *RuPZn* chromophore.

Chart S1. Sequence alignment between the monomeric single chain protein PA_{SC} and SCRPZ-1. The highlighted regions represent segments of helical overlap that were used to guide the alignment.

			N15	N6	N C	C C6	C15
PA(SC)	1	SPEEAMQEAQ	QTAR <mark>EAEQAM</mark>	QKHR	QAYDKG	dqqkal <mark>qtak</mark>	EFQQAMQKHK
SCRPZ	1	ELEKLR	QTGE <mark>QILQIA</mark>	KQVN	EIMLKG	DDDSLE <mark>QLLK</mark>	LAYELIQQHT
				N15-	N6	6 NC	C6
PA(SC)	51	QYMNPQA	ISESVQKTAR	Y FEQ	AMQKHR	QAYDKGDQQK	AL <mark>QTAKEAQQ</mark>
SCRPZ	47	QLAYNRQEAA	DTE-IMKQGQ	QILE	IAQQVN	EVLLKGDKDS	le <mark>qliklayq</mark>
		-C15					
PA(SC)	98	<mark>am</mark> qkhsqalr	G				
SCRPZ	96	<mark>li</mark> qqlqelfe	KKN				

Figure S1. Backbone alignment of models of PA_{sc} (blue) and the template tertiary structure (red) of *SCRPZ-1* and *SCRPZ-2*.

PA_{sc}

Figure S2. Model structures illustrating acidic and basic residues of *SCRPZ-1* (top), *SCRPZ-2* (middle) and PA_{SC} (Bottom) rendered in a spacefilling format from four different viewpoints. Lysine and arginine residues (blue) and aspartic and glutamic acid (red) and glutamine (purple) are highlighted to detail the differences between *SCRPZ-1* (Top) and *SCRPZ-2* (Bottom).

Gene Sequences for SCRPZ 1-3.

SCRPZ-1:

5'CATATGGAACTGGAAAAACTGCGTCAGACTGGTGAACAGATCCTGCAAATTGCGA AACAGGTTAACGAGATTATGCTGAAGGGTGATGACGACTCTCTGGAGCAGCTGATT AAACTGGCGTACGAACTGATCCAACAACACACACCCAGCTGGCGTACAATCGTCAGGA AGCTGCGGATACGGAGATCATGAAACAGGGTCAGCAGATTCTGGAAATTGCCCAGC AGGTGAACGAAGTGCTGCTGAAAGGCGACAAAGACTCTCTGGAACAGCTGTTAAAG CTGGCGTATCAGCTGATTCAGCAACTGCAGGAGCTGTTCGAAAAGAAAAACTAAAA GCTT 3'

SCRPZ-2:

SCRPZ-3:

5'CATATGGAACTGGAAAAACTGCGTCAGACTGGTGAACAGATCCTGCAAATTGCGA AACAGGTTAACGAGATTATGCTGAAGGGTGATGACGACTCTCTGGAGCAGCTG<mark>ATT</mark> AAACTGGCGTACGAACTGATCCAACAACACACACCCAGCTGGCGTACAATCGTCAGGA AGCTGCGGATACGGAGATCATGAAACAGGGTCAGCAGATTCTGGAAATTGCCCAGC AGGTGAACGAAGTGCTGCTGAAAGGCGACAAAGACTCTCTGGAACAGCTG**TTA**AAG CTGGCGTATCAGCTGATTCAGCAACTGCAGGAGCTGTTCGAAAAGAAAAACTAA*AA GCTT* 3'

Synthesis of [RuPZn](PF₆)₂

The synthesis of the compound followed previous literature methods¹³ but used the unsubstituted 5,15-diphenylporphyrin. For clarity, the reaction scheme is provided in the supporting information. ¹H-NMR (d₆-DMSO, 500 MHz) 10.2 (s, 1), 10.01 (d, 2), 9.35 (d, 2), 9.30 (d, 2), 9.04 (d, 2), 8.89 (d, 2), 8.77 (d, 2), 8.73 (d, 2), 8.51 (d, 2), 8.45 (t, 1), 8.25 (d, 4), 7.97 (t, 2), 7.93 (t, 2), 7.85 (m, 6), 7.56 (d, 2), 7.41 (d, 2), 7.22 (t, 4). UV/Visible (THF): $\lambda_{max} = 428$, 506, 637 nm MALDI-TOF MS: m/z = 1258. 46 (M⁺, -PF₆) (calculated m/z for C₆₄H₄₀F₆N₁₀PRuZn: 1259.14) and 1114.40 (M⁺, -2PF₆) (calculated m/z for C₆₄H₄₀N₁₀RuZn: 1114.18).

Scheme S1. Synthesis of the *RuPZn* chromophore.