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Structure creation and simulation protocol 

We have simulated models of HIV-1 RT bound to NVP (PDB: 1VRT), double stranded DNA 

(PDB: 2HMI), a hybrid RNA/DNA duplex based on the polypurine tract (PDB: 1HYS) and 

the unbound enzyme (PDB: 1DLO). Unfortunately, in all available HIV-1 RT crystal 

structures some residues are not resolved and a number of loop residues in the p51 subunit 

of the NNRTI bound structures used here are missing in the PDBs. The models were 

completed by copying in the coordinates for the missing loop residues from PDB: 1HQU 

(this structure was chosen due to its high resolution, 2.7 Å, and completeness in regions 

missing from other structures) after alignment of the surrounding residues using VMD [1]. 

These structures were then used as templates to homology model the NL4.3 wild-type and 

A400T sequences using the Deepview package (formerly known as Swiss-PdbViewer) [2]. 

This involved the fitting of the common atoms of the residues in the target sequence to 

those in the edited PDB template.  the following mutations were made to transform the 

HXB2 background sequence of the crystal structures into NL4.3: Q102K, K122E, K162S, 

F214L, A272P, K358R, A376T, I343V, D460N, P468T, H483Y, K512Q and S519N. In each 

case the final model contains 556 residues in the first (p66) chain and 427 in the second 

(p51) chain for a total of 983 residues. Each system was solvated using a cubic box of 

TIP3P water molecules [3] providing a buffer of at least 14 Å distance around the protein. 

The systems were neutralised by the addition of Cl- ions for the unbound enzyme and NVP 

bound complexes and Na+ ions for those containing nucleic acids. Simulations for each 

system produced 20 ns of production simulation with structures output for analysis every 10 

ps. 
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Fig S1: The positions in the HIV-1 RT sequence that differ between the NL4.3 and HXB2 
are shown on the enzymes structure as magenta spheres, p51 residues 395 and 396 are 
shown as cyan spheres. (A) shows a view down into the template/primer binding cleft and 
(B) one from the side. The enzyme is shown in cartoon representation and coloured by 
subdomain; fingers are blue, palm red, thumb green, connection yellow and the RNaseH 
orange. The p66 subunit is shown in darker shades. Positions of significant residues in both 
subunits are labelled. Note that p66 residue 400 is located in a solvent exposed helix away 
from any functionally significant regions. 
 
Inhibitor potential parameterization was performed by extracting the drug coordinates into 

separate files, using the PRODRG tool [4] to insert missing hydrogen atoms. The 

geometries were then optimized using Gaussian 98 [5] (with the 6-31G** basis functions). 

The Restrained Electrostatic Potential (RESP) procedure, part of the AMBER package [6], 

was used to calculate the partial charges. The force field parameters for the inhibitors were 

described using the General AMBER Force Field (GAFF) [7]. The protein and nucleic acid 

elements of all systems were described by the standard AMBER force field (ff03) [8] which 

is parameterized for bio-organic molecules including DNA in particular. The default variants 

(such as protonation states) for amino acids in physiological conditions were used for all 

residues. 
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The molecular dynamics package NAMD2 [9] was used throughout the minimisation, 

equilibration and production stages of the simulations. Electrostatic interactions were 

treated using the particle mesh Ewald (PME) [10] method and SHAKE [11] constraints were 

applied to all bonds involving hydrogen atoms in order to employ a 2 fs integration time 

step. Minimisation was conducted using the conjugate gradient and line search algorithms 

for 2000 iterations of each system. During this process all heavy atoms were restrained 

using a force constant of 5 kcal mol-1 Å2. The next stage of the equilibration process was a 

mutational relaxation protocol in which each mutated residue and residues within 5 Å are 

released in turn from the restraints for 50 ps. This allowed the residues to re-orientate into 

more favourable conformations if necessary. After the 50 ps relaxation period the restraints 

are reapplied to each region. The equilibration phase anneals the system taking the 

temperature from 50 K to 300 K in 50 ps. Once achieved, the final temperature was 

maintained using a Langevin thermostat with a coupling coefficient of 5 ps-1. This was 

followed by completely isothermal equilibration for 200 ps in the canonical (NVT) ensemble. 

In both of these stages the restraints imposed during minimization were retained. The 

restraints were then gradually reduced in four steps of 1 kcal mol-1 Å2, each step running for 

50 ps. The restraints applied are weaker than in the protease case as no regions are known 

to suffer solvation induced deformities unlike the flap region of the protease. After this, the 

restraints were removed completely and the systems allowed to evolve under isothermal-

isobaric (NPT) conditions using a Berendsen barostat [12] with a target pressure of 1 bar 

and a pressure coupling constant of 0.1 ps. Coordinate trajectories were recorded every 1 

ps throughout all equilibration and production runs. The five systems were built using 

extensions to the Binding Affinity Calculator (BAC) scripts created to automate simulations 

and free energy calculations for the HIV-1 protease [13]. The Application Hosting 

Environment (AHE) [14] was used in order to automate the running of simulations and 

retrieval of data.  

 

Physical properties can only be reliably calculated from systems which have been adjudged 

properly equilibrated. For all systems simulated here the potential energy minimisation 

applied is sufficient to remove all bad contacts as measured by the decrease in potential 

energy which, after the heating phase, remains stable with a standard deviation of less than 

450 kcal mol-1 in all cases. A further test of whether the systems under study have 

equilibrated was made by investigating the structural variation seen over the simulation. 

Using difference distance matrices, [15] determined a set of residues which vary in relative 

position by less than 2 Å in a wide range of HIV-1 RT crystal structures. These residues are 

assumed to represent the most structurally stable regions of the protein (listed in Tab S1). 

The root mean squared fluctuations (RMSF) of each system was calculated relative to the 
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average structure for these residues (HIV-1 RT is known to be a flexible protein with a 

number of loop regions for which conformational changes might be expected throughout 

even equilibrated simulations). The RMSF of the simulations reduced to, and remained 

below, 1.5 Å after 6 ns for all systems (See Fig S2). The root mean squared deviations for 

the protein backbone is also seen to plateau after around 5 ns (see Fig S3) further 

indicating that the systems have reached an equilibrated state following minimization and 

constraint removal. Consequently the trajectory between the start of the simulation and 6 ns 

in is defined as being the equilibration phase and all subsequent parts of the simulation 

comprise the production phase. All analyses presented here are derived from production 

phase simulations. 

 

Tab S1: Residues determined to vary relative positions by less than 2 Å in a survey of HIV-1 
RT crystal structures by Keller et al. [15]. 
Chain Residues 

p66 4-6, 95-107, 162-163, 180-181, 188-200, 202-205, 226, 234-235, 237-239, 317, 319, 323, 
339-345, 349-353, 365-366, 368-402, 405-419, 428-436, 439, 493, 530 

p51 6-7, 18-45, 54-64 71-84, 97-111, 113-117, 121, 123-138, 140-174, 176-184, 186-192, 197-
198, 201-202, 208, 252, 254-264, 267, 274, 277, 280-282, 284, 296, 298-300, 303-307, 
320, 322, 329, 331, 333-335, 364-393, 397-417 
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Fig S2: The RMSF of the residues of HIV-1 RT defined in Tab S1 as having minimal 
variation between cristal structures for (A) the unbound enzyme, and bound to (B) NVP, (C) 
RNA/DNA template/primer complex and (D) a dsDNA template/primer duplex.  Red lines 
indicate the simulation of the wild-type NL4.3 RT sequence and blue the A400T RT 
sequence. 
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Fig S3: The RMSD of HIV-1 RT backbone over the couse of the simulations for (A) the 
unbound enzyme, and bound to (B) NVP, (C) RNA/DNA template/primer complex and (D) a 
dsDNA template/primer duplex.  Red lines indicate the wild-type RT and blue the A400T 
RT. 
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Structure flexibility 

The structural changes after equilibration are mainly confined to loop regions with only minor 
differences between the two sequences observable (see Figs S4-S7). The main differences 
are concentrated in the p66 fingers which are largely free to move in the absence of an 
incoming nucleotide or NRTI.  
 
 

 
 
Fig S4: RMSF per residue of the unbound HIV-1 RT during the 20 ns of production 
simulation.  Red lines indicate the wild-type RT and blue the A400T RT. 
  
 

 
 
Fig S5: RMSF per residue of the NVP bound HIV-1 RT during the 20 ns of production 
simulation.  Red lines indicate the wild-type RT and blue the A400T RT. 
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Fig S6: RMSF per residue of the HIV-1 RT bound to RNA/DNA template/primer complex 
during the 20 ns of production simulation.  Red lines indicate the wild-type RT and blue the 
A400T RT. 
 
 
 

 
 
Fig S7: RMSF per residue of the HIV-1 RT bound to dsDNA template/primer during the 20 
ns of production simulation.  Red lines indicate the wild-type RT and blue the A400T RT. 
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Definition of dihedral angles 

The dihedral angle φ defines the rotation of the fourth atom in a chain about the middle 

bond of three linking the atoms (see Fig S8). Changes in this angle only alter the distance 

between the first and fourth atoms (the other distances are defined by the chemical bonds 

between them). In amino acid side chains the successive sidechain dihedral angles are 

labeled as χ1-χ5 (depending on sidechain length). The χ1 dihedral angle is defined by atoms 

N-Cα-Cβ-Cγ, the χ2 dihedral by atoms Cα-Cβ-Cγ-Cδ. 

 

 

Fig S8: The dihedral angle φ is defined for four atoms bound by three bonds. 

 

Flexibility of p51 residue 395 

Minimal changes in the p51 residue 395 sidechain 1 dihedral angle are observed between 

the wild-type and A400T sequences in any of the four simulated states (see Fig S9). Fig 

S10 shows that the 2 dihedral angle shows greater variability in the wild-type sequence in 

all four systems. 
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Fig S9: Distribution of the 1 sidechain dihedral angle of p51 residue 395 in simulations of 
HIV-1 RT (A) in the unbound state, (B) bound to NVP, (C) bound to RNA/DNA 
template/primer complex and (D) dsDNA template/primer. Results for the wild-type RT and 
for the A400T RT in blue. 
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Fig S10: Distribution of the 2 sidechain dihedral angle of p51 residue 395 in simulations of 
HIV-1 RT (A) in the unbound state, (B) bound to NVP, (C) bound to RNA/DNA 
template/primer complex and (D) dsDNA template/primer. Results for the wild-type RT are 
shown in red, those for the A400T RT in blue. 
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Definition of the angle between p51 and p66 elements of the RNaseH primer grip 

 

Fig S11: The angle between the RNaseH primer grip residues in p51 and p66. The location of 
the carbon alpha atoms of residues 395 (magenta) and 396 (purple) in p51and 359 (pink) and 
360 (red) in p66. Vectors between these two pairs and the angle between them are shown in 
black. 
 
 

Template flexibility 

Fig S12 shows that, in line with experimental evidence [16], the RNA template in the wild-

type HIV-RT is seen to show high flexibility around the p51 RNaseH primer grip residues, 

this flexibility is suppressed in the A400T RT. These results may be artificially exaggerated 

as the dsDNA template primer is comparatively short (18 nt compared to 29 nt in the 

hybrid). Fig S13 also shows that the dsDNA is held much more rigidly with low RMSF along 

both template and primer strands. 
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Fig S12: The RMSF along the RNA/DNA template/primer complex bound to the NL4.3 
wild-type (red) and A400T (blue) HIV-1 RT. Base pair number is measured from the base 
interacting with the polymerase active site. The RNaseH primer grip residues p51 395 and 
96 interact with bases -10 and -11. 
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Fig S13: The RMSF along the dsDNA template/primer bound to the NL4.3 wild-type (red) 
and A400T (blue) HIV-1 RT. Base pair number is measured from the base interacting with 

e polymerase active site. 

duplex (see Fig S15). However, none of the changes occur at the polymerase end of the 

th
 

 
Structural changes in the template/primer 

 Differences in both the structure and flexibility of the RNA/DNA hybrid and dsDNA 

template/primer duplexes are seen between the wild-type and A400T RTs. It has been 

suggested that the recognition of template/primer duplexes is mediated by the minor grove 

width of the substrate [17,  Biondi,  #534]. Here we have calculated the minor groove width 

of the template/primer duplexes using the 3DNA package [18,19]. In the RNA/DNA 

template/primer complex differences in this property are seen as the duplex enters the 

RNaseH following interactions with the RNaseH primer grip residues p51 395 and 396 which 

interact with base pairs -10 and -11 (see Fig S14). Narrowing of the groove is thought to be 

necessary for RNaseH activity [17]. The minor groove is wider in the A400T simulation as it 

enters the RNaseH. The minor groove width is more dramatically altered in the dsDNA 
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chain which is the only point which is involved in catalytic interactions as there is no RNA in 

this system which could be degraded. 

 

 

   
 
Fig S14: The minor groove width along the RNA/DNA template/primer complex bound to 
the N4.3 wild-type (red) and A400T (blue) HIV-1 RT. Base pair number is measured from 
the base interacting with the polymerase active site. The RNaseH primer grip residues p51 
395 and 396 interact with bases -10 and -11. 
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Fig S15: The minor groove width along the dsDNA template/primer bound to the wild-type 
(red) and A400T (blue) HIV-1 RT. Base pair number is measured from the base interacting 
with the polymerase active site. 
 
 
 
Flexibility of p51 396 in the unbound enzyme 
 

 
Fig S16: Distribution of the 1 sidechain dihedral angle of p51 residue 396 in simulations of 
unbound HIV-1 RT. Results for the wild-type RT sequence are shown in red, those for the 
A400T RT in blue. 
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Fig S17: Average structures of the positions of the heavy atoms of residues 376 and 400 in 
the (A) wild-type and (B) A400T HIV-1 RT bound to DNA. The two residues pack more tightly 
in the wild-type RT that contains alanine residues at positions 400 and 376. 
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