Supplementary Information

Diesel exhaust rapidly degrades floral odours used by honeybees

Robbie D. Girling¹*, Inka Lusebrink¹*, Emily Farthing¹, Tracey A. Newman² & Guy M. Poppy¹

Supplementary Tables

Supplementary Table 1 | Percentage constituents of the synthetic floral blend and their vapour pressures; ratios are based upon the natural emission rates identified from oilseed rape flowers by Blight et al.²⁰

Floral chemical	%	Vapour pressure (mm Hg ⁻¹ at 25 °C)	Purity (%)	Supplier
α-pinene	8.83	4.7500	98	Sigma Aldrich
3-carene	0.83	3.7200	\geq 98	Sigma Aldrich
α-terpinene	0.83	1.6380	\geq 95	Sigma Aldrich
<i>p</i> -cymene	2.92	1.4600	99	Sigma Aldrich
linalool	9.58	0.0905	97	Sigma Aldrich
phenylacetaldehyde	0.83	0.3680	\geq 90	Sigma Aldrich
(E,E) - α -farnesene	72.5	0.0067	n.a.	Contech
2-phenylethanol	4.17	0.0740	n.a.	Sigma Aldrich

Sigma Aldrich (St. Louis, MO, USA); Contech (Victoria, BC, Canada)

Supplementary Table 2 | Mean abundances (x 1000; \pm s.e.m) from gas-chromatography mass-spectrometry analyses of the constituents of the synthetic floral blend, exposed to ambient 'clean' air or diesel exhaust polluted air at four different time points post exposure (*n*

= 5).

Floral	Time	Ambient Air				Diesel Exhaust				
chemical	(min)	1	30	60	120	1	30	60	120	
α-pinene		948 ± 36	539 ± 39	449 ± 29	411 ± 28	845 ± 38	558 ± 25	472 ± 20	436 ± 16	
3-carene		554 ± 13	494 ± 22	406 ± 19	363 ± 22	492 ± 11	511 ± 23	431 ± 19	386 ± 13	
α-terpinene		305 ± 24	322 ± 35	259 ± 29	223 ± 25	-	-	-	-	
<i>p</i> -cymene		1046 ± 41	1327 ± 38	1128 ± 38	1014 ± 43	1085 ± 38	1461 ± 74	1283 ± 55	1136 ± 43	
linalool		380 ± 21	2369 ± 62	2782 ± 24	2768 ± 40	308 ± 36	1851 ± 45	2272 ± 88	2288 ± 145	
phenylacetal	dehyde	39 ± 11	178 ± 36	231 ± 43	253 ± 37	23 ± 7	125 ± 18	143 ± 20	133 ± 18	
α-farnesene		36 ± 5	421 ± 27	725 ± 39	1081 ± 82	-	-	-	-	
2-phenyletha	anol	165 ± 9	1201 ± 56	1573 ± 57	1585 ± 83	113 ± 14	633 ± 14	824 ± 31	909 ± 43	

Supplementary Table 3 | Statistical comparisons of mean abundances of the constituents of the synthetic floral blend, exposed to ambient 'clean' air or diesel exhaust polluted air at four different time points post exposure. Data that were normally distributed for each chemical at each time point were compared by *t*-tests, those that were not normally distributed were compared by Mann-Whitney U tests.

Floral Time		1		30	30		60		120	
chemical	(min)	Test statistic	Р	Test statistic	Р	Test statistic	Р	Test statistic	Р	
α-pinene		<i>t</i> = 1.967	0.085	t = 0.398	0.701	t = 0.668	0.523	t = 0.762	0.468	
3-carene		Z = 2.611	0.008	t = 0.551	0.597	Z = 0.940	0.421	Z = 1.149	0.310	
α-terpinene		-	-	-	-	-	-	-	-	
<i>p</i> -cymene		Z = 0.522	0.690	Z = 1.567	0.151	t = 2.302	0.050	t = 2.014	0.079	
linalool		t = 1.722	0.123	t = 6.756	<0.001	t = 5.607	0.001	Z = 1.776	0.095	
phenylacetal	lehyde	t = 1.278	0.237	t = 1.332	0.220	<i>t</i> = 1.853	0.101	t = 2.902	0.020	
α-farnesene		-	-	-	-	-	-	-	-	
2-phenyletha	nol	t = 3.207	0.012	t = 9.782	<0.001	t = 11.568	< 0.001	Z = 2.611	0.008	

Supplementary Table 4 | Statistical comparisons of mean abundances of the constituents of the synthetic floral blend, exposed to ambient 'clean' air or a **10:1** ratio of NO:NO₂ with NO at either 10, 1 or 0.1 ppm. Data that were normally distributed for each chemical at each time point were compared by *t*-tests, those that were not normally distributed were compared by Mann-Whitney U tests.

Floral	Floral NO concentration		10 ppm		m	0.1 ppm	
chemical		Test statistic	Р	Test statistic	Р	Test statistic	Р
α-pinene		t = 5.746	0.001	t = 5.952	0.001	t = 4.600	0.004
3-carene		Z = 2.309	0.029	Z = 2.309	0.029	Z = 2.309	0.029
α-terpinene		<i>t</i> = 25.394	<0.001	t = 5.849	0.001	t = 8.476	<0.001
<i>p</i> -cymene		<i>t</i> = 5.383	0.002	t = 4.548	0.004	t = 6.418	0.001
linalool		t = 5.007	0.005*	Z = 1.155	0.343	Z = 0.577	0.686
phenylaceta	ldehyde	Z = 2.309	0.029	t = 10.469	< 0.001	t = 19.940	<0.001
α-farnesene		t = 6.875	< 0.001	t = 2.486	0.047	t = 0.717	0.500
2-phenyleth	anol	t = 7.606	< 0.001	t = 2.149	0.075	t = 2.254	0.065

*equality of variances not assumed

Supplementary Table 5 | Statistical comparisons of mean abundances of the constituents of the synthetic floral blend, exposed to ambient 'clean' air or a **1:1** ratio of NO:NO₂ with NO at either 10, 1 or 0.1 ppm. Data that were normally distributed for each chemical at each time point were compared by *t*-tests, those that were not normally distributed were compared by Mann-Whitney U tests.

Floral	NO concentration	10 ppm		1 pp	m	0.1 ppm	
chemical		Test statistic	Р	Test statistic	Р	Test statistic	Р
α-pinene		t = 11.160	<0.001	t = 12.324	<0.001*	t = 9.694	0.001*
3-carene		Z = 2.309	0.029	Z = 2.309	0.029	Z = 2.309	0.029
α-terpinene		-	-	<i>t</i> = 8.133	0.003*	t = 16.076	<0.001
<i>p</i> -cymene		<i>t</i> = 19.321	< 0.001	<i>t</i> = 13.555	0.001*	t = 5.616	0.011*
linalool		t = 0.133	0.898	t = 2.963	0.025	t = 0.531	0.627*
phenylaceta	ldehyde	t = 23.326	< 0.001	<i>t</i> = 23.235	< 0.001	Z = 2.309	0.029
α-farnesene		t = 8.918	< 0.001	Z = 2.309	0.029	t = 3.894	0.008
2-phenyleth	anol	<i>t</i> = 4.368	0.005	t = 2.865	0.029	t = 5.114	0.002

*equality of variances not assumed

Supplementary data

Supplementary Figure 1 | **Total ion current chromatogram.** Diesel exhaust polluted air (red line) in the mass ratio scanned showed no components likely to cause interference with or be mistaken for the floral chemicals used in the subsequent experiments. The constituents of the synthetic floral blend, exposed to diesel exhaust polluted air (black line) or ambient 'clean' air (yellow line): 1) α -pinene; 2) 3-carene; 3) α -terpinene; 4) *p*-cymene; 5) linalool; 6) phenylacetaldehyde; 7) α -farnesene; 8) 2-phenylethanol. Recordings were made after an exposure time of 30 min.

Supplementary Figure 2 | Mean abundance of α -pinene (x 1000; ± s.e.m) from gaschromatography mass-spectrometry analyses, when exposed to ambient 'clean' air or a variety of concentrations and ratios of NO and NO₂ (*n* = 4). Asterisks denote significance of difference in comparisons with ambient air (** P < 0.01, *** P < 0.001).

Supplementary Figure 3 | Mean abundance of 3-carene (x 1000; \pm s.e.m) from gaschromatography mass-spectrometry analyses, when exposed to ambient 'clean' air or a variety of concentrations and ratios of NO and NO₂ (n = 4). Asterisks denote significance of difference in comparisons with ambient air (* P < 0.05).

Supplementary Figure 4 | Mean abundance of α -terpinene (x 1000; ± s.e.m) from gaschromatography mass-spectrometry analyses, when exposed to ambient 'clean' air or a variety of concentrations and ratios of NO and NO₂ (n = 4). Asterisks denote significance of difference in comparisons with ambient air (** P < 0.01, *** P < 0.001).

Supplementary Figure 5 | Mean abundance of *p*-cymene (x 1000; \pm s.e.m) from gaschromatography mass-spectrometry analyses, when exposed to ambient 'clean' air or a variety of concentrations and ratios of NO and NO₂ (*n* = 4). Asterisks denote significance of difference in comparisons with ambient air (* P < 0.05, ** P < 0.01, *** P < 0.001).

Supplementary Figure 6 | Mean abundance of linalool (x 1000; \pm s.e.m) from gaschromatography mass-spectrometry analyses, when exposed to ambient 'clean' air or a variety of concentrations and ratios of NO and NO₂ (n = 4). Asterisks denote significance of difference in comparisons with ambient air (* P < 0.05, ** P < 0.01).

Supplementary Figure 7 | Mean abundance of phenylacetaldehyde (x 1000; \pm s.e.m) from gas-chromatography mass-spectrometry analyses, when exposed to ambient 'clean' air or a variety of concentrations and ratios of NO and NO₂ (n = 4). Asterisks denote significance of difference in comparisons with ambient air (* P < 0.05, *** P < 0.001).

Supplementary Figure 8 | Mean abundance of α -farnesene (x 1000; ± s.e.m) from gaschromatography mass-spectrometry analyses, when exposed to ambient 'clean' air or a variety of concentrations and ratios of NO and NO₂ (*n* = 4). Asterisks denote significance of difference in comparisons with ambient air (* P < 0.05, ** P < 0.01, *** P < 0.001).

Supplementary Figure 9 | Mean abundance of 2-phenylethanol (x 1000; \pm s.e.m) from gas-chromatography mass-spectrometry analyses, when exposed to ambient 'clean' air or a variety of concentrations and ratios of NO and NO₂ (*n* = 4). Asterisks denote significance of difference in comparisons with ambient air (* P < 0.05, ** P < 0.01, *** P < 0.001).